
Cartesian Genetic Programming
as an Optimizer of Programs Evolved
with Geometric Semantic Genetic

Programming

Ondrej Koncal and Lukas Sekanina(B)

Faculty of Information Technology, IT4Innovations Centre of Excellence,
Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic

koncalo@gmail.com, sekanina@fit.vutbr.cz

Abstract. In Geometric Semantic Genetic Programming (GSGP),
genetic operators directly work at the level of semantics rather than
syntax. It provides many advantages, including much higher quality of
resulting individuals (in terms of error) in comparison with a common
genetic programming. However, GSGP produces extremely huge solu-
tions that could be difficult to apply in systems with limited resources
such as embedded systems. We propose Subtree Cartesian Genetic Pro-
gramming (SCGP) – a method capable of reducing the number of nodes
in the trees generated by GSGP. SCGP executes a common Carte-
sian Genetic Programming (CGP) on all elementary subtrees created by
GSGP and on various compositions of these optimized subtrees in order
to create one compact representation of the original program. SCGP
does not guarantee the (exact) semantic equivalence between the CGP
individuals and the GSGP subtrees, but the user can define conditions
when a particular CGP individual is acceptable. We evaluated SCGP on
four common symbolic regression benchmark problems and the obtained
node reduction is from 92.4% to 99.9%.

Keywords: Cartesian Genetic Programming ·
Geometric Semantic Genetic Programming · Symbolic regression

1 Introduction

Geometric Semantic Genetic Programming (GSGP) is a recent branch of genetic
programming (GP) in which specific genetic operators, the so-called geometric
semantic genetic operators, directly work at the level of semantics rather than
syntax [1]. In this context, the semantics is defined as the vector of outputs of
a program on the different training data. GSGP is successful because geometric
semantic operators induce a unimodal fitness landscape which is known to be
relatively easy for search-based optimization algorithms. On many various sym-
bolic regression and classification problems it has been shown that GSGP pro-
vides statistically better results than a common genetic programming and other
c© Springer Nature Switzerland AG 2019
L. Sekanina et al. (Eds.): EuroGP 2019, LNCS 11451, pp. 98–113, 2019.
https://doi.org/10.1007/978-3-030-16670-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16670-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-16670-0_7

Cartesian GP as an Optimizer of Programs Evolved with GSGP 99

machine learning methods in terms of the error score [2,3]. However, since the
genetic operators used in GSGP produce offspring that are larger than their par-
ents, the evolved programs unprecedentedly grow in their size. Some approaches
addressing this issue have been developed (see Sect. 2.1), but the problem is still
considered as unsolved.

This paper presents a new method capable of reducing the size of a program
evolved with GSGP. This work is motivated by the fact that there could be a
high-quality program created by GSGP for a given application, but the program
is unfeasible for implementation on a platform with limited resources (e.g., in
an embedded system with a small memory). In our approach, we consider this
program (i.e. the result of GSGP) as a golden (reference) solution in terms of
functionality and try to minimize its size. The optimized program should then
be implemented in the target embedded system. In our preliminary experiments,
we employed GP to reduce the number of nodes in several programs evolved with
GSGP and keep the error at the same level. Because we optimized the entire
programs without any decomposition and the programs were too complex, no
reduction in the number of nodes has been achieved at all.

We introduce Subtree Cartesian Genetic Programming (SCGP) as an efficient
optimizer of the size of programs evolved with GSGP. The reference solution
(i.e. the program evolved with GSGP) is converted to the representation used in
Cartesian Genetic Programming (CGP). In order to avoid scalability problems
of the aforementioned preliminary approach, SCGP executes, in the first step, a
series of CGP runs with the aim to minimize the number of nodes in all subtrees
belonging to the CGP representation of the reference solution. These optimized
subtrees are then paired and again optimized by CGP. Several iterations of the
pairing strategy then lead to a single optimized program. The optimization pro-
cess is thus decomposed into a number of CGP runs solving low-complexity
optimization problems. CGP is used because of its well-known capabilities to
optimize the phenotype size (as exemplary demonstrated, for example, for digi-
tal circuits in [4]). The proposed method is evaluated using four symbolic regres-
sion problems (%F, LD50, PPB and P3D, see Sect. 4.1) for which a significant
reduction is reported in the number of nodes in the evolved trees.

2 Relevant Work

2.1 Geometric Semantic Genetic Programming

GP operators traditionally work in the syntactic space and manipulate the syn-
tax of parents. The parents can also be modified based on their semantics which
is defined as a vector of outputs of a program on the different training data [1].

GSGP creates new candidate solutions using geometric semantic operators
working at the level of semantics. Geometric semantic crossover (GSC) and
geometric semantic mutation (GSM) usually work as follows

GSC: TXO = (T1 · TR) + ((1 − TR) · T2) (1)

100 O. Koncal and L. Sekanina

GSM: TM = T + ms · (TR1 − TR2) (2)

where T, T1, T2 : R
n → R are parents, TR, TR1, TR2 : R

n → R are random
real functions with output values in interval 〈0, 1〉 and ms is a mutation step.
Generating the output values in interval 〈0, 1〉 is ensured by the sigmoid function

TR = (1 + e−Trand)−1, (3)

where Trand is a random tree with no constraints on the output values.
By applying these operators, one can effectively create a unimodal error

surface for problems such as symbolic regression. The search process conducted
in such a search space is then more efficient than in the case of a common
GP. However, geometric semantic operators, by construction, always produce
offspring that are larger than their parents, causing a fast growth in the size of
the individuals. The growth is linear for GSM and exponential for GSC [1].

In order to reduce the size of candidate solutions, various approaches have
been developed. One branch of the methods is based on simplifying the off-
spring during the evolution, for example, using a computer algebra system [1] or
developing specific genetic operators such as subtree GSC and subtree GSM [5].
Recently, an on-the-fly simplification of trees was proposed capitalizing the fact
that the individuals are always linear combinations of trees and repeated struc-
tures can be aggregated [3]. The original huge individuals created by GSGP were
significantly reduced to several thousands of nodes.

Another approach relies on an efficient GSGP implementation, in which
pointers to existing structures (trees) are recorded rather than all the new
trees [6]. The method only stores the initial population and a set of randomly
generated trees. A new record is created after performing GSC or GSM in form of
(crossover,&T1,&T2,&TR) or (mutation,&T,&TR1,&TR2,ms). The semantics
of the individuals is also stored and used to compute the semantics of the off-
spring, again by means of the pointers to stored semantics records. This method
enables to reduce the evaluation time as pre-calculated partial results are always
available in the memory.

2.2 Cartesian Genetic Programming

In CGP [7], a candidate individual is modeled as a two-dimensional grid of nodes,
where the type of nodes depends on a particular application. Each individual
utilizes ni primary inputs and no primary outputs. A unique address is assigned
to all primary inputs and to the outputs of all nodes to define an addressing
system enabling connections to be specified. As no feedback connections are
allowed in the basic version of CGP, only directed acyclic graphs can be created.
Each candidate individual is represented using r × c × (na + 1) + no integers,
where r×c is the grid size and na is the maximum arity of node functions. In this
representation, the na+1 integers specify one programmable node in such a way
that na integers specify source addresses for its inputs and one integer determines
its function. Finally, the l-back parameter defines how many columns of nodes
in front of i-th column can be used as the data source for the i-th column.

Cartesian GP as an Optimizer of Programs Evolved with GSGP 101

New candidate individuals are created by mutation of selected genes (inte-
gers) of the chromosome. It is important to ensure that all randomly created
gene values are within a valid interval (i.e. a valid candidate individual is always
produced). Crossover is not normally used in CGP. CGP employs a simple search
algorithm denoted (1 + λ) which operates with a set of 1 + λ candidate indi-
viduals [7]. The initial population is created either randomly or heuristically, for
example, an existing program can be employed. A new population is constructed
by applying the mutation operator on the parent individual to generate λ off-
spring individuals. These offspring are then evaluated and the best performing
individual is taken as a new parent. These steps are repeated until the time
available for the evolution is exhausted or a suitable solution is discovered.

CGP was used to evolve new implementations of digital circuits and to opti-
mize existing circuits, for example, in terms of the number of gates [4]. This is
a very similar task to our problem – the program size reduction in GSGP.

3 Subtree CGP

Subtree CGP is a method that analyzes a log file created by a single run of
GSGP in the framework [6] and minimizes the number of nodes in the best
evolved individual. The result of GSGP will be called the Golden Tree (GT)
in the paper. It has to be emphasized that GT is, in fact, distributed in the
log file because the framework [6] only stores: (i) the trees used in the initial
population, (ii) randomly created trees needed for geometric semantic operators
and (iii) particular records about geometric semantic operators. These entities
are linked using pointers. In order to extract GT, the log file has to be parsed
and analyzed from the initial to the last population.

SCGP operates in two steps: (i) SCGP converts GT to the CGP represen-
tation. (ii) SCGP repeatedly executes a CGP-based optimizer on all elementary
subtrees of GT and on various compositions of these optimized subtrees in order
to create one compact representation of GT. SCGP does not guarantee the
(exact) semantic equivalence between the CGP individuals and subtrees of GT,
but the user can define conditions when a particular result of CGP is acceptable.
In order to simplify this initial study, we will only consider GSGP utilizing GSM.

3.1 Obtaining the CGP Representation

As our benchmark problems are symbolic regression tasks with d independent
variables and one output variable y, the basic SCGP parameters are ni = d,
no = 1, r = 1, na = 2, l − back = c and c = u, where u is the total number of
nodes in GT. Each CGP node can operate either as a constant (in interval 〈−10.0;
10.0〉) or function (taken from a function set Γ = {+,−, ∗, /, (1 + e−x)−1, ex},
where division is protected, i.e. x/0 = 1). Despite the fact that this setup is
application-specific and is typically given in the experimental part, it is provided
here to simplify the following description of the method.

102 O. Koncal and L. Sekanina

Fig. 1. GSGP to CGP conversion: original records created by GSGP (top); correspond-
ing Golden Tree (bottom-left); CGP chromosome with and without reused subtrees
(bottom-right).

Because GSGP operates with common syntax trees representing arithmetic
expressions, their conversion to the CGP chromosome is straightforward; a tree
is expressed as a string in the postfix notation and during the reading of this
string from left to right, appropriate nodes (represented using three integers –
two pointers to the inputs of the node and one node function) are created in the
CGP chromosome. Note that the primary inputs representing the independent
variables are internally handled as special nodes.

In order to build GT, SCGP parses the log file of a single GSGP run (gener-
ation by generation), but in such a way that only the nodes contributing to GT
are identified and converted to the CGP representation. In particular,

– all subtrees representing the initial population of GSGP,
– all subtrees representing the randomly generated functions and
– arithmetic operators representing (GSM or simple replication) that are con-

necting these subtrees

are converted to the CGP representation using the procedure given above1.
Figure 1 illustrates how the subtrees are converted to a CGP chromosome. The
number of nodes in the CGP representation is equal to the number of nodes in
GT if it were represented as a single tree. Please note that ms constants are
represented by small white empty boxes in the CGP chromosome in Fig. 1.
1 As all these trees are used in a single resulting solution, we will call them subtrees.

Cartesian GP as an Optimizer of Programs Evolved with GSGP 103

Some subtrees (e.g. random trees) can, however, be used multiple times in
GT. In order to shorten the CGP chromosome, these multiple instances of a given
subtree can be detected and only one instance of each subtree can be included
into the CGP chromosome as seen in Fig. 1. For the benchmark problems used
in this paper, this technique reduces the number of nodes 1.4–2.2×. It should be
noted that this technique is NOT used in the current version of SCGP.

3.2 CGP-based Optimization of Subtrees

The proposed SCGP assumes that (i) only GSM was used in GSGP (i.e. no
GSC) and (ii) the GSGP to CGP conversion does not apply any size reduction
techniques, i.e. all (even multiple instances of) subtrees are preserved. These
assumptions are important as they ensure that the CGP-based optimization can
independently be performed on all the subtrees. Since the subtrees are connected
via (associative and commutative) addition operators their optimization can be
performed in an arbitrary order.

During the conversion process an array of indexes p is created, pointing to
the subtrees that will further be optimized. These subtrees include a random
tree from the initial population (T) and all subtrees whose root is the · operator
from the ms · (TR1 − TR2) expressions created by GSM. Let s be the size of p.
By means of p, all s subtrees can be identified in the CGP chromosome, their
corresponding chromosomes extracted and used as initial seeds (denoted α[i])
for the CGP-based subtree optimization.

A single CGP run is executed for each subtree in p. The objective of CGP is
to minimize the number of nodes and keep the error at desired level. In order to
accelerate the fitness (error) evaluation, responses of a particular subtree (that
was identified in GT) are pre-calculated for the whole data set. In other words,
the semantics ST [i] is created for subtrees α[i], i = 1, . . . , s and data set D.
Please note that these particular CGP runs operate in different search spaces
because the chromosome sizes can, in principle, be different. The remaining CGP
parameters (such as the population size, the number of generations, mutation
rate etc.) are identical for all the CGP runs.

Thanks to the addition operators connecting all the subtrees, one can define
an auxiliary vector AUX[i] for each subtree p[i]

AUX[i](j) = y(j) −
∑

∀k:k �=i

ST [k](j), (4)

whose role is to define a contribution of the i-th subtree to the overall fitness,
where y(j) is a correct result for j-th fitness case. This vector is used as a golden
solution (in terms of the error) during the subtree optimization conducted by
CGP.

The fitness function reflecting the error of a candidate CGP individual g in
the optimization of i-th subtree is defined as

ferr[i](g) =

∑
j∈D |AUX[i](j) − g(j)|

|D| , (5)

104 O. Koncal and L. Sekanina

where D is the training data set. The final fitness score is constructed hierarchi-
cally

fcgp[i](g) =

{
#of active nodes in g if ferr[i](g) ≤ ferr[i](α[i])
∞ otherwise,

(6)

where α[i] is the seed used in the initial population of CGP. The goal is to
minimize the number of active nodes and, at the same time, keep the error at
least identical with respect to the original subtree.

An individual satisfying the quality condition (i.e. its fitness fcgp is no worse
than the fitness of the seed individual) is called an acceptable solution. This
quality condition can be re-defined according to user’s requirements.

The best performing solution obtained in the CGP run is then used in the
following steps of SCGP. As this solution can be semantically different w.r.t the
seed, it is necessary to recalculate its ST [i].

All remaining subtrees are optimized using the aforementioned procedure;
however, updated versions of all ST [i] vectors are always employed. All active
nodes in these CGP chromosomes are marked in order to avoid useless evalua-
tions of the inactive nodes in the next steps.

3.3 Subtree Pairing

After optimizing all elementary subtrees and with the aim of minimizing the
total number of nodes of this set of subtrees (formally denoted Collection
in the following pseudo-code), selected subtrees are paired and then minimized.
The pairing procedure can be executed on arbitrarily chosen subtrees because all
subtrees are connected using the associative and commutative addition operators
(Fig. 1). As the following pseudo-code illustrates the pairing is performed in
iterations until only one final tree (optimized GT) is obtained:

while (the number of subtrees > 1) do
New_Collection = empty_set
while (the number of subtrees in Collection > 1) do

select two subtrees A and B according to Pairing Strategy
create subtree C by joining A and B
compute ST[C] = ST[A] + ST[B]
run CGP (Sect. 3.2) to optimize the number of nodes in C
remove A and B from Collection
update ST[C]
insert C to New_Collection

end while
Collection = Union (Collection, New_Collection)

end while
run CGP (Sect. 3.2) to optimize the final tree
update ST[0]

Cartesian GP as an Optimizer of Programs Evolved with GSGP 105

Fig. 2. Subtree pairing example

Figure 2 shows the pairing mechanism on a structure containing four subtrees.
We propose three pairing strategies whose impact on the SCGP performance will
be analyzed in Sect. 4.3:

– MAXDIFF – subtrees showing a maximum difference in their sizes are
paired;

– MINDIFF – subtrees showing a minimum difference in their sizes are paired;
– RAND – randomly selected subtrees are paired;

The final (sub)tree is the result of SCGP. In total, SCGP executes 2s − 1
elementary CGP runs, where s is the number of subtrees in GT.

4 Results

This section provides a basic experimental evaluation of the proposed method.
It starts with a description of the data sets used in our experiments. It presents
the results of the conventional GSGP (i.e. GTs for our data sets) that were
obtained with the framework from [6]. SCGP capabilities to reduce the GT size
are analyzed with respect to the number of generations allowed in a single CGP
run and the pairing strategy used.

4.1 Data Sets

The proposed method is evaluated using four data sets that are commonly used
in connection with the GSGP research. Three data sets are from the area of
pharmacokinetics: (i) predicting the value of human oral bioavailability of a
candidate new drug as a function of its molecular descriptors (bioav, denoted
%F in the literature), (ii) predicting the value of the plasma protein binding
level of a candidate new drug as a function of its molecular descriptors (LD50)
and (iii) predicting the value of the toxicity of a candidate new drug as a function

106 O. Koncal and L. Sekanina

of its molecular descriptors (PPB; denoted %PPB in the literature) [8,9]. Finally,
the P3D is a data set of physicochemical properties of protein tertiary structure
from UCI Machine Learning Repository [10]. In each data set, 70% records are
used for training and 30% for test.

Table 1 gives the number of independent variables and fitness cases for each
data set. It also provides basic parameters of GTs evolved with GSGP including
training fitness (ftrain) and test fitness (ftest) as it will be discussed in Sect. 4.2.

Table 1. Parameters of data sets and parameters of Golden Trees evolved with GSGP.

Independent
variables (rows)

Fitness
cases

ftrain
(best)

ftest
(best)

Size
(nodes)

Reduced
size (nodes)

bioav 241 359 19.455 26.938 22,285 9,863

PPB 628 131 4.312 30.768 22,907 10,291

LD50 626 234 1336.960 1495.621 21,568 9,934

P3D 9 45,730 3.981 3.999 5,764 3,992

4.2 Obtaining Reference Solutions with GSGP

In order to evaluate the proposed method, we first establish reference solu-
tions (i.e. Golden Trees) for each benchmark problem. The GSGP implemen-
tation from [6] is used with the parameters summarized in Table 2, function set
{+,−, ∗, /} and the fitness function defined as the mean absolute error between
the output of a candidate individual and the golden output (y). GSGP only
employs GSM in which the ms step is randomly generated from interval 〈0, 1〉.
This parameter setting is almost identical with [2]; the main difference lies in
allowing 10× more evaluations for GSGP to ensure that resulting GTs are of
high quality and non-trivial in order to later illustrate the performance of SCGP.

Figure 3 shows box plots constructed from 40 independent runs for each data
set. In particular, (i) the program size, (ii) the reduced program size and (iii)
the training fitness are reported. Properties of GTs are summarized in Table 1.

As we used a state of the art GSGP implementation, a common setup of
GSGP and the obtained results are consistent with [9] in terms of quality, we
can conclude that relevant reference solutions (GTs) were generated with GSGP.

Table 2. Parameters of GSGP

Population size 2000 Mutation prob. 0.9

Generations 1000 (300 for P3D) Max. tree depth 8

of random trees 500 Single-node trees Not used

Tree initialization Ramped Half-and-Half Tournament size 4

Cartesian GP as an Optimizer of Programs Evolved with GSGP 107

(a) bioav (b) PPB

(c) LD50 (d) P3D

Fig. 3. Program size and training fitness values obtained from 40 independent GSGP
runs.

4.3 Experiments with SCGP

From GTs reported in Table 1, all subtrees are extracted and used as the ini-
tial solutions αi for the size optimization conducted by SCGP. Each subtree is
optimized separately in a single CGP run in which the population size is 8 and
the mutation probability is 0.08 (per gene). The impact of these parameters on
the SCGP performance was not the subject of a detailed analysis because these
values are typical for CGP. As the problem instances that are optimized by CGP
are relatively simple, only a low number of generations seems to be sufficient in
comparison with typical numbers from the CGP literature [7]. Our search for
the most suitable number of generations was conducted with 10, 50 and 100
generations. The fitness computation exploits the pre-computed values ST [i] as
explained in Sect. 3.2. The impact of three pairing strategies (MAXDIFF, MIN-
DIFF and RAND) on the SCGP performance is also investigated.

The Number of Generations. Figure 4 shows the impact of the number of
generations (used by CGP when it optimizes one subtree) on the execution time
and the size of resulting programs when applied on the bioav data set. The box
plots are derived from 20 independent SCGP runs in which the RAND pairing
strategy is employed. Because the population size is always 8, the execution time

108 O. Koncal and L. Sekanina

Table 3. Parameters of the best solutions obtained with SCGP when CGP produces
10, 50 and 100 generations for optimizing one subtree.

Generations 10 50 100

bioav nodes; ftrain; ftest 653; 19.46; 26.51 322; 19.45; 26.39 242; 19.40; 26.65

Acceptable solutions 1 2 5

PPB nodes; ftrain; ftest 7643; 4.29; 30.04 2178; 4.29; 28.86 1723; 4.26; 26.80

Acceptable solutions 3 3 1

LD50 nodes; ftrain; ftest 46; 1334.8; 1489.1 19; 1333.0; 1492.1 17; 1327.2; 1473.8

Acceptable solutions 11 13 9

P3D nodes; ftrain; ftest 939; 3.98; 3.99 281; 3.97; 3.98 202; 3.98; 3.98

Acceptable solutions 20 18 18

is growing proportionally to the number of generations. If more generations are
produced, one can obtain more compact programs; however, the dependency is
not linear. A similar pattern was observed for the remaining data sets (not shown
because of limited space). Table 3 summarizes the number of nodes, training
fitness and test fitness for the most compact solutions that were evolved. If an
individual is marked as an acceptable solution then we require that its fitness
values (training and test errors) are not worse than the fitness values (training
and test errors) of the reference solution. The number of acceptable solutions
is not proportional to the number of generations, but the resulting program is
always smaller if more generations are produced. As we are primarily interested
in reducing the number of nodes, we will consider 100 generations as a reasonable
setting in the final experiments.

Fig. 4. The program size and the time of evolution obtained with SCGP on bioav when
CGP produces 10, 50 and 100 generations for optimizing one subtree.

Subtree Pairing Strategies. Figure 5 shows the impact of three pairing strate-
gies on the execution time and the size of programs resulting from SCGP when
applied on particular data sets. The boxplots are derived from 20 independent
runs of SCGP in which 50 generations are produced per CGP run. While MAXD-
IFF is the best performing approach, RAND gives slightly worse results than

Cartesian GP as an Optimizer of Programs Evolved with GSGP 109

MAXDIFF and MINDIFF is clearly the worst one (as there are, in principle,
more limited options to reduce the program size in comparison with the other
approaches). Regarding the execution time, MAXDIFF is the most expensive
approach except one case (P3D). Table 4 summarizes the number of nodes, the
training fitness and test fitness for the smallest, but still acceptable programs.
The number of acceptable solutions is very low in some cases, but recall that
only 50 generations per CGP run are used in this set of experiments.

Table 4. Parameters of the best solutions obtained with SCGP utilizing different
pairing strategies

Pairing strategy MAXDIFF MINDIFF RAND

bioav nodes; ftrain; ftest 288; 19.45; 25.38 383; 19.45; 26.69 322; 19.45; 26.39

Acceptable solutions 3 1 2

PPB nodes; ftrain; ftest 1816; 4.29; 30.67 3755; 4.22; 28.94 2178; 4.29; 28.86

Acceptable solutions 1 1 3

LD50 nodes; ftrain; ftest 27; 1334.0; 1406.9 21; 1308.5; 1382.9 19; 1333.0; 1492.1

Acceptable solutions 11 8 13

P3D nodes; ftrain; ftest 198; 3.98; 3.98 457; 3.98; 3.99 281; 3.97; 3.98

Acceptable solutions 19 17 18

4.4 Final Results

For the final set of experiments we use the SCGP setup given in Sect. 4.3,
but with the best performing number of generations (100) and pairing strategy
(MAXDIFF) identified in the previous experiments. Figure 6 shows the program
size and the execution time in form of box plots derived from 20 independent
SCGP runs. The best obtained solutions are compared in Table 5 against GTs
for all data sets. In the case of PPB, the setup used for SCGP did not provide
any acceptable solution (a very compact solution with 1270 nodes was discov-
ered, but its ftest is slightly higher than the golden tree exhibits). Hence, we took
the best solution PPBTab.3 from Table 3 in order to report the best performing
solutions for all data sets in one table.

4.5 Discussion

We have shown that if GSGP is followed by SCGP a significant reduction in the
number of nodes can be obtained while the (error) fitness is not worsened.

In paper [3], where PPB was used as one of benchmark problems, the median
size of the best individual obtained by a common GSGP (utilizing GSM and
GSC) is 2.29e+64 nodes and the median size of the best individual evolved with
their optimized GSGP-Red method is 12,185 nodes. Both numbers are much
bigger with respect to our results. For the remaining benchmarks, no relevant
results are available in the literature.

110 O. Koncal and L. Sekanina

(a) bioav

(b) PPB

(c) LD50

(d) P3D

Fig. 5. The program size and the time of evolution obtained with SCGP for three
subtree pairing strategies.

Cartesian GP as an Optimizer of Programs Evolved with GSGP 111

In order to further investigate how the pairing mechanism works, we report
Table 6 which gives the number of subtrees after pairing. The initial number of
subtrees is given by GT. One can observe that the number of subtrees is reduced
to half in each iteration of SCGP. The number of nodes is significantly reduced
in the first iterations of pairing; however, at some point it remains unchanged as
seen in Fig. 7 for bioav, PPB and P3D. It means that a future improved version
of our method could detect the iteration of pairing in which the number of nodes
remains unchanged and skip the remaining pairing steps of the algorithm to save
the computation time.

(a) bioav (b) PPB

(c) LD50 (d) P3D

Fig. 6. Program sizes and time of evolution obtained with the final setup of SCGP.

Table 5. The number of nodes and the training and test (error) fitness for the best
individuals obtained with GSGP and SCGP. As there is no acceptable solution cre-
ated by SCGP for PPB, the best acceptable solution obtained in previous experiment
(PPBTab.3) is reported.

GSGP SCGP

nodes nodes (reduced) ftrain ftest nodes ftrain ftest accept.

bioav 22,285 9,863 19.455 26.938 224 19.39 26.69 4

PPB 22,907 10,291 4.312 30.768 1270 4.27 32.30 –

PPBTab.3 1723 4.26 26.80 1

LD50 21,568 9,934 1336.960 1495.621 13 1333.8 1417.6 12

P3D 5,764 3,992 3.981 3.999 186 3.98 3.98 16

112 O. Koncal and L. Sekanina

Table 6. The number of subtrees after 1–10 iterations of pairing.

Initial 1 2 3 4 5 6 7 8 9 10

bioav 911 456 228 114 57 29 15 8 4 2 1

PPB 892 446 223 112 56 28 14 7 4 2 1

LD50 921 461 231 116 58 29 15 8 4 2 1

P3D 259 130 65 33 17 9 5 3 2 1 –

(a) bioav (b) PPB

(c) LD50 (d) P3D

Fig. 7. The number of nodes in subtrees after pairing. Box plots constructed from 20
independent SCGP runs.

5 Conclusions

We proposed a CGP-based method capable of reducing the number of nodes in
programs generated by GSGP. The obtained node reduction is 98.9% for bioav,
92.4% for PPB, 99.9% for LD50 and 96.7% for P3D. One SCGP run required
hundreds of seconds for data sets containing hundreds of records (bioav, PPB,
LD50) and thousands of seconds for P3D in which the data set contains ten
thousands of records. The method can directly be used in GSGP utilizing a
local search [11].

Cartesian GP as an Optimizer of Programs Evolved with GSGP 113

Our future work will be devoted to improving the key steps of SCGP (pairing
strategies, fitness function for subtrees and termination conditions) and involving
GSC into the process.

Acknowledgments. This work was supported by the Ministry of Education, Youth
and Sports, under the INTER-COST project LTC 18053. The authors would like to
thank Dr. Mauro Castelli for his support regarding the C++ framework for GSGP.

References

1. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

2. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic
programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M.
(eds.) Genetic Programming Theory and Practice XI. GEC, pp. 191–209. Springer,
New York (2014). https://doi.org/10.1007/978-1-4939-0375-7 11

3. Martins, J.F.B.S., Oliveira, L.O.V.B., Miranda, L.F., Casadei, F., Pappa, G.L.:
Solving the exponential growth of symbolic regression trees in geometric semantic
genetic programming. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO 2018, 15–19 July 2018, Kyoto, Japan, pp. 1151–1158.
ACM (2018)

4. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital
circuits - part I. Genet. Program. Evolvable Mach. 1(1), 8–35 (2000)

5. Nguyen, Q.U., Pham, T.A., Nguyen, X.H., McDermott, J.: Subtree semantic geo-
metric crossover for genetic programming. Genet. Program. Evolvable Mach. 17(1),
25–53 (2016)

6. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric seman-
tic genetic programming. Genet. Program. Evolvable Mach. 16(1), 73–81 (2015).
https://doi.org/10.1007/s10710-014-9218-0

7. Miller, J.F.: Cartesian Genetic Programming. Springer, Berlin (2011). https://doi.
org/10.1007/978-3-642-17310-3

8. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for
computational pharmacokinetics in drug discovery and development. Genet. Pro-
gram. Evolvable Mach. 8(4), 413–432 (2007). https://doi.org/10.1007/s10710-007-
9040-z

9. Vanneschi, L.: An introduction to geometric semantic genetic programming. In:
Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol.
663, pp. 3–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-
3 1

10. Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

11. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z.-Flores, E., Legrand, P.: Geo-
metric semantic genetic programming with local search. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2015, 11–15 July
2015, Madrid, Spain, pp. 999–1006. ACM (2015)

https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-1-4939-0375-7_11
https://doi.org/10.1007/s10710-014-9218-0
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/s10710-007-9040-z
https://doi.org/10.1007/s10710-007-9040-z
https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1007/978-3-319-44003-3_1
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Cartesian Genetic Programming as an Optimizer of Programs Evolved with Geometric Semantic Genetic Programming
	1 Introduction
	2 Relevant Work
	2.1 Geometric Semantic Genetic Programming
	2.2 Cartesian Genetic Programming

	3 Subtree CGP
	3.1 Obtaining the CGP Representation
	3.2 CGP-based Optimization of Subtrees
	3.3 Subtree Pairing

	4 Results
	4.1 Data Sets
	4.2 Obtaining Reference Solutions with GSGP
	4.3 Experiments with SCGP
	4.4 Final Results
	4.5 Discussion

	5 Conclusions
	References

