
Shepherding Hordes of Markov Chains

Milan Češka1, Nils Jansen2, Sebastian Junges3(B), and Joost-Pieter Katoen3

1 Brno University of Technology, Brno, Czech Republic
2 Radboud University, Nijmegen, The Netherlands

3 RWTH Aachen University, Aachen, Germany
sebastian.junges@cs.rwth-aachen.de

Abstract. This paper considers large families of Markov chains (MCs)
that are defined over a set of parameters with finite discrete domains.
Such families occur in software product lines, planning under partial
observability, and sketching of probabilistic programs. Simple questions,
like ‘does at least one family member satisfy a property?’, are NP-hard.
We tackle two problems: distinguish family members that satisfy a given
quantitative property from those that do not, and determine a family
member that satisfies the property optimally, i.e., with the highest prob-
ability or reward. We show that combining two well-known techniques,
MDP model checking and abstraction refinement, mitigates the compu-
tational complexity. Experiments on a broad set of benchmarks show that
in many situations, our approach is able to handle families of millions of
MCs, providing superior scalability compared to existing solutions.

1 Introduction

Randomisation is key to research fields such as dependability (uncertain sys-
tem components), distributed computing (symmetry breaking), planning (unpre-
dictable environments), and probabilistic programming. Families of alternative
designs differing in the structure and system parameters are ubiquitous. Software
dependability has to cope with configuration options, in distributed computing
the available memory per process is highly relevant, in planning the observabil-
ity of the environment is pivotal, and program synthesis is all about selecting
correct program variants. The automated analysis of such families has to face
a formidable challenge—in addition to the state-space explosion affecting each
family member, the family size typically grows exponentially in the number of
features, options, or observations. This affects the analysis of (quantitative) soft-
ware product lines [18,28,43,45,46], strategy synthesis in planning under partial
observability [12,14,29,36,41], and probabilistic program synthesis [9,13,27,40].

This paper considers families of Markov chains (MCs) to describe config-
urable probabilistic systems. We consider finite MC families with finite-state
family members. Family members may have different transition probabilities
and distinct topologies—thus different reachable state spaces. The latter aspect

This work has been supported by the DFG RTG 2236 “UnRAVeL” and the Czech
Science Foundation grant No. Robust 17-12465S.

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part II, LNCS 11428, pp. 172–190, 2019.
https://doi.org/10.1007/978-3-030-17465-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17465-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-17465-1_10

Shepherding Hordes of Markov Chains 173

goes beyond the class of parametric MCs as considered in parameter synthe-
sis [10,22,24,31] and model repair [6,16,42].

For an MC family D and quantitative specification ϕ, with ϕ a reachability
probability or expected reward objective, we consider the following synthesis
problems: (a) does some member in D satisfy a threshold on ϕ? (aka: feasibility
synthesis), (b) which members of D satisfy this threshold on ϕ and which ones
do not? (aka: threshold synthesis), and (c) which family member(s) satisfy ϕ
optimally, e.g., with highest probability? (aka: optimal synthesis).

The simplest synthesis problem, feasibility, is NP-complete and can naively
be solved by analysing all individual family members—the so-called one-by-one
approach. This approach has been used in [18] (and for qualitative systems in e.g.
[19]), but is infeasible for large systems. An alternative is to model the family D
by a single Markov decision process (MDP)—the so-called all-in-one MDP [18].
The initial MDP state non-deterministically chooses a family member of D, and
then evolves in the MC of that member. This approach has been implemented
in tools such as ProFeat [18], and for purely qualitative systems in [20]. The
MDP representation avoids the individual analysis of all family members, but
its size is proportional to the family size. This approach therefore does not scale
to large families. A symbolic BDD-based approach is only a partial solution as
family members may induce different reachable state-sets.

This paper introduces an abstraction-refinement scheme over the MDP repre-
sentation1. The abstraction forgets in which family member the MDP operates.
The resulting quotient MDP has a single representative for every reachable state
in a family member. It typically provides a very compact representation of the
family D and its analysis using off-the-shelf MDP model-checking algorithms
yields a speed-up compared to the all-in-one approach. Verifying the quotient
MDP yields under- and over-approximations of the min and max probability
(or reward), respectively. These bounds are safe as all consistent schedulers, i.e.,
those that pick actions according to a single family member, are contained in all
schedulers considered on the quotient MDP. (CEGAR-based MDP model check-
ing for partial information schedulers, a slightly different notion than restricting
schedulers to consistent ones, has been considered in [30]. In contrast to our
setting, [30] considers history-dependent schedulers and in this general setting
no guarantee can be given that bounds on suprema converge [29]).

Model-checking results of the quotient MDP do provide useful insights. This
is evident if the resulting scheduler is consistent. If the verification reveals that
the min probability exceeds r for a specification ϕ with a ≤ r threshold, then—
even for inconsistent schedulers—it holds that all family members violate ϕ. If
the model checking is inconclusive, i.e., the abstraction is too coarse, we iter-
atively refine the quotient MDP by splitting the family into sub-families. We
do so in an efficient manner that avoids rebuilding the sub-families. Refinement
employs a light-weight analysis of the model-checking results.

1 Classical CEGAR for model checking of software product lines has been proposed
in [21]. This uses feature transition systems, is purely qualitative, and exploits exis-
tential state abstraction.

174 M. Češka et al.

We implemented our abstraction-refinement approach using the Storm model
checker [25]. Experiments with case studies from software product lines, plan-
ning, and distributed computing yield possible speed-ups of up to 3 orders of
magnitude over the one-by-one and all-in-one approaches (both symbolic and
explicit). Some benchmarks include families of millions of MCs where family
members are thousands of states. The experiments reveal that—as opposed to
parameter synthesis [10,24,31]—the threshold has a major influence on the syn-
thesis times.

To summarise, this work presents: (a) MDP-based abstraction-refinement for
various synthesis problems over large families of MCs, (b) a refinement strategy
that mitigates the overhead of analysing sub-families, and (c) experiments show-
ing substantial speed-ups for many benchmarks. Extra material can be found
in [1,11].

2 Preliminaries

We present the basic foundations for this paper, for details, we refer to [4,5].

Probabilistic models. A probability distribution over a finite or countably infinite
set X is a function μ : X → [0, 1] with

∑
x∈X μ(x) = μ(X) = 1. The set of

all distributions on X is denoted Distr(X). The support of a distribution μ is
supp(μ) = {x ∈ X |μ(x) > 0}. A distribution is Dirac if |supp(μ)| = 1.

Definition 1 (MC). A discrete-time Markov chain (MC) D is a triple
(S, s0,P), where S is a finite set of states, s0 ∈ S is an initial state, and
P : S → Distr(S) is a transition probability matrix.

MCs have unique distributions over successor states at each state. Adding non-
deterministic choices over distributions leads to Markov decision processes.

Definition 2 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s0,Act ,P) where S, s0 as in Definition 1, Act is a finite set of actions, and
P : S × Act � Distr(S) is a partial transition probability function.

The available actions in s ∈ S are Act(s) = {a ∈ Act | P(s, a) �= ⊥}. An
MDP with |Act(s)| = 1 for all s ∈ S is an MC. For MCs (and MDPs), a state-
reward function is rew : S → R≥0. The reward rew(s) is earned upon leaving s.

A path of an MDP M is an (in)finite sequence π = s0
a0−→ s1

a1−→ · · · , where
si ∈ S, ai ∈ Act(si), and P(si, ai)(si+1) �= 0 for all i ∈ N. For finite π, last(π)
denotes the last state of π. The set of (in)finite paths of M is PathsMfin (PathsM).
The notions of paths carry over to MCs (actions are omitted). Schedulers resolve
all choices of actions in an MDP and yield MCs.

Definition 3 (Scheduler). A scheduler for an MDP M = (S, s0,Act ,P) is a
function σ : PathsMfin → Act such that σ(π) ∈ Act(last(π)) for all π ∈ PathsMfin .
Scheduler σ is memoryless if last(π) = last(π′) =⇒ σ(π) = σ(π′) for all
π, π′ ∈ PathsMfin . The set of all schedulers of M is ΣM .

Shepherding Hordes of Markov Chains 175

Definition 4 (Induced Markov Chain). The MC induced by MDP M and
σ ∈ ΣM is given by Mσ = (PathsMfin , s0,Pσ) where:

Pσ(π, π′) =

{
P(last(π), σ(π))(s′) if π′ = π

σ(π)−−−→ s′

0 otherwise.

Specifications. For a MC D, we consider unbounded reachability specifications
of the form ϕ = P∼λ(♦G) with G ⊆ S a set of goal states, λ ∈ [0, 1] ⊆ R,
and ∼ ∈ {<,≤,≥, >}. The probability to satisfy the path formula φ = ♦G
in D is denoted by Prob(D,φ). If ϕ holds for D, that is, Prob(D,φ) ∼ λ, we
write D |= ϕ. Analogously, we define expected reward specifications of the form
ϕ = E∼κ(♦G) with κ ∈ R≥0. We refer to λ/κ as thresholds. While we only
introduce reachability specifications, our approaches may be extended to richer
logics like arbitrary PCTL [32], PCTL* [3], or ω-regular properties.

For an MDP M , a specification ϕ holds (M |= ϕ) if and only if
it holds for the induced MCs of all schedulers. The maximum probability
Probmax(M,φ) to satisfy a path formula φ for an MDP M is given by a max-
imising scheduler σmax ∈ ΣM , that is, there is no scheduler σ′ ∈ ΣM such
that Prob(Mσmax , φ) < Prob(Mσ′ , φ). Analogously, we define the minimising
probability Probmin(M,φ), and the maximising (minimising) expected reward
ExpRewmax(M,φ) (ExpRewmin(M,φ)).

The probability (expected reward) to satisfy path formula φ from state s ∈
S in MC D is Prob(D,φ)(s) (ExpRew(D,φ)(s)). The notation is analogous for
maximising and minimising probability and expected reward measures in MDPs.
Note that the expected reward ExpRew(D,φ) to satisfy path formula φ is only
defined if Prob(D,φ) = 1. Accordingly, the expected reward for MDP M under
scheduler σ ∈ ΣM requires Prob(Mσ, φ) = 1.

3 Families of MCs

We present our approaches on the basis of an explicit representation of a fam-
ily of MCs using a parametric transition probability function. While arbitrary
probabilistic programs allow for more modelling freedom and complex parameter
structures, the explicit representation alleviates the presentation and allows to
reason about practically interesting synthesis problems. In our implementation,
we use a more flexible high-level modelling language, cf. Sect. 5.

Definition 5 (Family of MCs). A family of MCs is defined as a tuple D =
(S, s0,K,P) where S is a finite set of states, s0 ∈ S is an initial state, K is a
finite set of discrete parameters such that the domain of each parameter k ∈ K
is Tk ⊆ S, and P : S → Distr(K) is a family of transition probability matrices.

The transition probability function of MCs maps states to distributions over
successor states. For families of MCs, this function maps states to distributions
over parameters. Instantiating each of these parameters with a value from its
domain yields a “concrete” MC, called a realisation.

176 M. Češka et al.

0 1 2 3

1

0.5 0.5

1

0.5

0.5

(a) Dr1 with r1(k1) = 0, r1(k2) = 2

0 1 2 3

0.5 0.5 1

0.5 0.5

0.5

0.5

(b) Dr2 with r2(k1) = 1, r2(k2) = 2

0 1 2 3

0.5 0.5 0.5

0.5

0.5

0.5

1

(c) Dr3 with r3(k1) = 1, r3(k2) = 3

0 1 2 3

1

0.5

0.5

1

0.50.5

(d) Dr4 with r4(k1) = 0, r4(k2) = 3

Fig. 1. The four different realisations of D.

Definition 6 (Realisation). A realisation of a family D = (S, s0,K,P) is a
function r : K → S where ∀k ∈ K : r(k) ∈ Tk. A realisation r yields a MC
Dr = (S, s0,P(r)), where P(r) is the transition probability matrix in which each
k ∈ K in P is replaced by r(k). Let RD denote the set of all realisations for D.

As a family D of MCs is defined over finite parameter domains, the number of
family members (i.e. realisations from RD) of D is finite, viz. |D| := |RD| =∏

k∈K |Tk|, but exponential in |K|. Subsets of RD induce so-called subfamilies
of D. While all these MCs share the same state space, their reachable states may
differ, as demonstrated by the following example.

Example 1 (Family of MCs). Consider a family of MCs D = (S, s0,K,P) where
S = {0, 1, 2, 3}, s0 = 0, and K = {k0, k1, k2} with domains Tk0 = {0}, Tk1 =
{0, 1}, and Tk2 = {2, 3}. The parametric transition function P is defined by:

P(0) = 0.5: k0 + 0.5: k1 P(1) = 0.5: k1 + 0.5: k2

P(2) = 1: k2 P(3) = 0.5: k1 + 0.5: k2

Figure 1 shows the four MCs that result from the realisations {r1, r2, r3, r4} =
RD of D. States that are unreachable from the initial state are greyed out.

We state two synthesis problems for families of MCs. The first is to identify the
set of MCs satisfying and violating a given specification, respectively. The second
is to find a MC that maximises/minimises a given objective. We call these two
problems threshold synthesis and max/min synthesis.

Problem 1 (Threshold synthesis). Let D be a family of MCs and ϕ a prob-
abilistic reachability or expected reward specification. The threshold synthesis
problem is to partition RD into T and F such that ∀r ∈ T : Dr � ϕ and
∀r ∈ F : Dr � ϕ.

As a special case of the threshold synthesis problem, the feasibility synthesis
problem is to find just one realisation r ∈ RD such that Dr � ϕ.

Shepherding Hordes of Markov Chains 177

Problem 2 (Max synthesis). Let D a family of MCs and φ = ♦G for
G ⊆ S. The max synthesis problem is to find a realisation r∗ ∈ RD such that
Prob(Dr∗ , φ) = maxr∈RD{Prob(Dr, φ)}. The problem is defined analogously for
an expected reward measure or minimising realisations.

Example 2 (Synthesis problems). Recall the family of MCs D from Example 1.
For the specification ϕ = P≥0.1(♦{1}), the solution to the threshold synthesis
problem is T = {r2, r3} and F = {r1, r4}, as the goal state 1 is not reachable for
Dr1 and Dr4 . For φ = ♦{1}, the solution to the max synthesis problem on D is
r2 or r3, as Dr2 and Dr3 have probability one to reach state 1.

Approach 1 (One-by-one [18]). A straightforward solution to both synthesis
problems is to enumerate all realisations r ∈ RD, model check the MCs Dr, and
either compare all results with the given threshold or determine the maximum.

We already saw that the number of realisations is exponential in |K|.
Theorem 1. The feasibility synthesis problem is NP-complete.

The theorem even holds for almost-sure reachability properties. The proof is a
straightforward adaption of results for augmented interval Markov chains [17,
Theorem 3], partial information games [15], or partially observable MDPs [14].

4 Guided Abstraction-Refinement Scheme

In the previous section, we introduced the notion of a family of MCs, two syn-
thesis problems and the one-by-one approach. Yet, for a sufficiently high number
of realisations such a straightforward analysis is not feasible. We propose a novel
approach allowing us to more efficiently analyse families of MCs.

4.1 All-in-one MDP

We first consider a single MDP that subsumes all individual MCs of a family D,
and is equipped with an appropriate action and state labelling to identify the
underlying realisations from RD.

Definition 7 (All-in-one MDP [18,28,43]). The all-in-one MDP of a family
D = (S, s0,K,P) of MCs is given as MD = (SD, sD0 ,ActD,PD) where SD =
S × RD ∪ {sD0 }, ActD = {ar | r ∈ RD}, and PD is defined as follows:

PD(sD0 , ar)((s0, r)) = 1 and PD((s, r), ar)((s′, r)) = P(r)(s)(s′).

Example 3 (All-in-one MDP). Figure 2 shows the all-in-one MDP MD for the
family D of MCs from Example 1. Again, states that are not reachable from the
initial state sD0 are marked grey. For the sake of readability, we only include the
transitions and states that correspond to realisations r1 and r2.

178 M. Češka et al.

sD0

(0, r1)

(0, r2)

(1, r1)

(1, r2)

(2, r1)

(2, r2)

(3, r1)

(3, r2)

ar1

ar2

1

1

ar1

ar2

1

0.5

0.5

ar1

ar2

0.5

0.5

0.5

0.5

ar1

ar2

1

1

ar1

ar2

0.5

0.5
0.5

0.5

Fig. 2. Reachable fragment of the all-in-one MDP MD for realisations r1 and r2.

From the (fresh) initial state sD0 of the MDP, the choice of an action ar cor-
responds to choosing the realisation r and entering the concrete MC Dr. This
property of the all-in-one MDP is formalised as follows.

Corollary 1. For the all-in-one MDP MD of family D of MCs2:

{MD
σr | σr memoryless deterministic scheduler} = {Dr | r ∈ RD}.

Consequently, the feasibility synthesis problem for ϕ has the solution r ∈ RD iff
there exists a memoryless deterministic scheduler σr such that MD

σr � ϕ.

Approach 2 (All-in-one [18]). Model checking the all-in-one MDP determines
max or min probability (or expected reward) for all states, and thereby for all
realisations, and thus provides a solution to both synthesis problems.

As also the all-in-one MDP may be too large for realistic problems, we merely
use it as formal starting point for our abstraction-refinement loop.

4.2 Abstraction

First, we define a predicate abstraction that at each state of the MDP forgets in
which realisation we are, i.e., abstracts the second component of a state (s, r).

Definition 8 (Forgetting). Let MD = (SD, sD0 ,ActD,PD) be an all-in-one
MDP. Forgetting is an equivalence relation ∼f ⊆ SD × SD satisfying

(s, r) ∼f (s′, r′) ⇐⇒ s = s′ and sD0 ∼f (sD0 , r) ∀r ∈ RD.

Let [s]∼ denote the equivalence class wrt. ∼f containing state s ∈ SD.
Forgetting induces the quotient MDP MD

∼ = (SD
∼ , [sD0]∼,ActD,PD

∼), where
PD

∼ ([s]∼, ar)([s′]∼) = P(r)(s)(s′).

At each state of the quotient MDP, the actions correspond to any realisation. It
includes states that are unreachable in every realisation.

Remark 1 (Action space). According to Definition 8, for every state [s]∼ there are
|D| actions. Many of these actions lead to the same distributions over successor
states. In particular, two different realisations r and r′ lead to the same distribu-
tion in s if r(k) = r′(k) for all k ∈ K where P(s)(k) �= 0. To avoid this spurious
blow-up of actions, we a-priori merge all actions yielding the same distribution.
2 The original initial state s0 of the family of MCs needs to be the initial state of MD

σr .

Shepherding Hordes of Markov Chains 179

[sD0]∼ [1]∼ [2]∼ [3]∼

ar1

ar2

1

0.5
0.5

ar1

ar2

0.5
0.5

0.5
0.5

ar1

ar2

1

1

ar1

ar2

0.5

0.5

0.5

0.5

Fig. 3. The quotient MDP MD
∼ for realisations r1 and r2.

The quotient MDP under forgetting involves that the available actions allow to
switch realisations and thereby create induced MCs different from any MC in D.
We formalise the notion of a consistent realisation with respect to parameters.

Definition 9 (Consistent realisation). For a family D of MCs and k ∈ K,
k-realisation-consistency is an equivalence relation ≈k ⊆ RD×RD satisfying:

r ≈k r′ ⇐⇒ r(k) = r′(k).

Let [r]≈k
denote the equivalence class w.r.t. ≈k containing r ∈ RD.

Definition 10 (Consistent scheduler). For quotient MDP MD
∼ after forget-

ting and k ∈ K, a scheduler σ ∈ ΣMD
∼ is k-consistent if for all π, π′ ∈ Paths

MD
∼

fin :

σ(π) = ar ∧ σ(π′) = ar′ =⇒ r ≈k r′ .

A scheduler is K-consistent (short: consistent) if it is k-consistent for all k ∈ K.

Lemma 1. For the quotient MDP MD
∼ of family D of MCs:

{(
MD

∼
)
σr∗ | σr∗

consistent scheduler} = {Dr | r ∈ RD}.

Proof (Idea). For σr ∈ ΣMD

, we construct σr∗ ∈ ΣMD
∼ such that σr∗

([s]∼) = ar

for all s. Clearly σr∗
is consistent and MD

σr =
(
MD

∼
)
σr∗ is obtained via a map

between (s, r) and [s]∼. For σr∗ ∈ ΣMD
∼ , we construct σr ∈ ΣMD

such that if
σr∗

([s]∼) = ar then σr(sD0) = ar. For all other states, we define σr((s, r′)) = ar′

independently of σr∗
. Then MD

σr =
(
MD

∼
)
σr∗ is obtained as above.

The following theorem is a direct corollary: we need to consider exactly the
consistent schedulers.

Theorem 2. For all-in-one MDP MD and specification ϕ, there exists a mem-
oryless deterministic scheduler σr ∈ ΣMD

such that MD
σr � ϕ iff there exists a

consistent deterministic scheduler σr∗ ∈ ΣMD
∼ such that

(
MD

∼
)
σr∗ � ϕ.

180 M. Češka et al.

Example 4. Recall the all-in-one MDP MD from Example 3. The quotient MDP
MD

∼ is depicted in Fig. 3. Only the transitions according to realisations r1 and
r2 are included. Transitions from previously unreachable states, marked grey in
Example 3, are now available due to the abstraction. The scheduler σ ∈ ΣMD

∼

with σ([sD0]∼) = ar2 and σ([1]∼) = ar1 is not k1-consistent as different values
are chosen for k1 by r1 and r2. In the MC MD

∼σ induced by σ and MD
∼ , the

probability to reach state [2]∼ is one, while under realisation r1, state 2 is not
reachable.

Approach 3 (Scheduler iteration). Enumerating all consistent schedulers
for MD

∼ and analysing the induced MC provides a solution to both synthesis
problems.

However, optimising over exponentially many consistent schedulers solves the
NP-complete feasibility synthesis problem, rendering such an iterative approach
unlikely to be efficient. Another natural approach is to employ solving techniques
for NP-complete problems, like satisfiability modulo linear real arithmetic.

Approach 4 (SMT). A dedicated SMT-encoding (in [11]) of the induced MCs
of consistent schedulers from MD

∼ that solves the feasibility problem.

4.3 Refinement Loop

Although iterating over consistent schedulers (Approach 3) is not feasible, model
checking of MD

∼ still provides useful information for the analysis of the family D.
Recall the feasibility synthesis problem for ϕ = P≤λ(φ). If Probmax(MD

∼ , φ) ≤ λ,
then all realisations of D satisfy ϕ. On the other hand, Probmin(MD

∼ , φ) > λ
implies that there is no realisation satisfying ϕ. If λ lies between the min and
max probability, and the scheduler inducing the min probability is not consistent,
we cannot conclude anything yet, i.e., the abstraction is too coarse. A natural
countermeasure is to refine the abstraction represented by MD

∼ , in particular,
split the set of realisations leading to two synthesis sub-problems.

Definition 11 (Splitting). Let D be a family of MCs, and R ⊆ RD a set of
realisations. For k ∈ K and predicate Ak over S, splitting partitions R into

R
 = {r ∈ R | Ak(r(k))} and R⊥ = {r ∈ R | ¬Ak(r(k))}.

Splitting the set of realisations, and considering the subfamilies separately, rather
than splitting states in the quotient MDP, is crucial for the performance of the
synthesis process as we avoid rebuilding the quotient MDP in each iteration.
Instead, we only restrict the actions of the MDP to the particular subfamily.

Definition 12 (Restricting). Let MD
∼ = (SD

∼ , [sD0]∼,ActD,PD
∼) be a quotient

MDP and R ⊆ RD a set of realisations. The restriction of MD
∼ wrt. R is the

MDP MD
∼ [R] = (SD

∼ , [sD0]∼,ActD[R],PD
∼) where ActD[R] = {ar | r ∈ R}.3

3 Naturally, PD
∼ in MD

∼ [R] is restricted to ActD[R].

Shepherding Hordes of Markov Chains 181

Algorithm 1. Threshold synthesis
Input: A family D of MCs with the set RD of realisations, and specification P≤λ(φ)
Output: A partition of RD into subsets T and F according to Problem 1.

1: F ← ∅, T ← ∅, U ← {RD}
2: MD

∼ ← buildQuotientMDP(D, RD, ∼f) � Applying Def. 7 and 8
3: while U �= ∅ do
4: select R ∈ U and U ← U \ {R}
5: MD

∼ [R] ← restrict(MD
∼ , R) � Applying Def. 12

6: (max, σmax) ← solveMaxMDP(MD
∼ [R], φ)

7: (min, σmin) ← solveMinMDP(MD
∼ [R], φ)

8: if max < λ then T ← T ∪ R
9: if min > λ then F ← F ∪ R

10: if min ≤ λ ≤ max then
11: U ← U ∪ split(R, selPredicate(max, σmax, min, σmin)) � See Sect. 4.4

12: return T , F

The splitting operation is the core of the proposed abstraction-refinement. Due
to space constraints, we do not consider feasibility separately.

Algorithm 1 illustrates the threshold synthesis process. Recall that the goal is
to decompose the set RD into realisations satisfying and violating a given spec-
ification, respectively. The algorithm uses a set U to store subfamilies of RD

that have not been yet classified as satisfying or violating. It starts building the
quotient MDP with merged actions. That is, we never construct the all-in-one
MDP, and we merge actions as discussed in Remark 1. For every R ∈ U , the algo-
rithm restricts the set of realisations to obtain the corresponding subfamily. For
the restricted quotient MDP, the algorithm runs standard MDP model checking
to compute the max and min probability and corresponding schedulers, respec-
tively. Then, the algorithm either classifies R as satisfying/violating, or splits it
based on a suitable predicate, and updates U accordingly. We describe the split-
ting strategy in the next subsection. The algorithm terminates if U is empty,
i.e., all subfamilies have been classified. As only a finite number of subfamilies
of realisations has to be evaluated, termination is guaranteed.

The refinement loop for max synthesis is very similar, cf. Algorithm 2. Recall
that now the goal is to find the realisation r∗ that maximises the satisfaction
probability max∗ of a path formula. The difference between the algorithms lies
in the interpretation of the results of the underlying MDP model checking. If
the max probability for R is below max∗, R can be discarded. Otherwise, we
check whether the corresponding scheduler σmax is consistent. If consistent, the
algorithm updates r∗ and max∗, and discards R. If the scheduler is not consistent
but min > max∗ holds, we can still update max∗ and improve the pruning
process, as it means that some realisation (we do not know which) in R induces
a higher probability than max∗. Regardless whether max∗ has been updated, the
algorithm has to split R based on some predicate, and analyse its subfamilies as
they may include the maximising realisation.

182 M. Češka et al.

Algorithm 2. Max synthesis
Input: A family D of MCs with the set RD of realisations, and a path formula φ
Output: A realisation r∗ ∈ RD according to Problem 2.

1: max∗ ← −∞, U ← {RD}
2: MD

∼ ← buildQuotientMDP(D, RD, ∼f) � Applying Def. 7 and 8
3: while U �= ∅ do
4: select R ∈ U and U ← U \ {R}
5: MD

∼ [R] ← restrict(MD
∼ , R) � Applying Def. 12

6: (max, σmax) ← solveMaxMDP(MD
∼ [R], φ)

7: (min, σmin) ← solveMinMDP(MD
∼ [R], φ)

8: if max > max∗ then
9: if isConsistent(σmax) then r∗ ← qmax, max∗ ← max

10: else
11: if min > max∗ then max∗ ← min

12: U ← U ∪ split(R, selPredicate(max, σmax, min, σmin)) � See Sect. 4.4

13: return r∗

4.4 Splitting Strategies

If verifying the quotient MDP MD
∼ [R] cannot classify the (sub-)realisation R

as satisfying or violating, we split R, while we guide the splitting strategy by
using the obtained verification results. The splitting operation chooses a suitable
parameter k ∈ K and predicate Ak that partition the realisations R into R
 and
R⊥ (see Definition 11). A good splitting strategy globally reduces the number of
model-checking calls required to classify all r ∈ R.

The two key aspects to locally determine a good k are: (1) the vari-
ance, that is, how the splitting may narrow the difference between max =
Probmax(MD

∼ [X], φ) and min = Probmin(MD
∼ [X], φ) for both X = R
 or

X = R⊥, and (2) the consistency, that is, how the splitting may reduce the
inconsistency of the schedulers σmax and σmin. These aspects cannot be eval-
uated precisely without applying all the split operations and solving the new
MDPs MD

∼ [R⊥] and MD
∼ [R
]. Therefore, we propose an efficient strategy that

selects k and Ak based on a light-weighted analysis of the model-checking results
for MD

∼ [R]. The strategy applies two scores variance(k) and consistency(k)
that estimate the influence of k on the two key aspects. For any k, the scores are
accumulated over all important states s (reachable via σmax or σmin, respectively)
where P(s)(k) �= 0. A state s is important for R and some δ ∈ R≥0 if

Probmax(MD
∼ [R], φ)(s) − Probmin(MD

∼ [R], φ)(s)
Probmax(MD∼ [R], φ) − Probmin(MD∼ [R], φ)

≥ δ

where Probmin(.)(s) and Probmax(.)(s) is the min and max probability in the
MDP with initial state s. To reduce the overhead of computing the scores, we
simplify the scheduler representation. In particular, for σmax and every k ∈ K,
we extract a map Ck

max : Tk → N, where Ck
max(t) is the number of important

states for which σmax(s) = ar with r(k) = t. The mapping Ck
min represents σmin.

Shepherding Hordes of Markov Chains 183

We define variance(k) =
∑

t∈Tk
|Ck

max(t)−Ck
min(t)|, leading to high scores if

the two schedulers vary a lot. Further, we define consistency(k) = size
(
Ck

max

)·
max

(
Ck

max

)
+size

(
Ck

min

)·max (
Ck

min

)
, where size (C) = |{t ∈ Tk | C(t) > 0}|−1

and max (C) = maxt∈Tk
{C(t)}, leading to high scores if the parameter has clear

favourites for σmax and σmin, but values from its full range are chosen.
As indicated, we consider different strategies for the two synthesis problems.

For threshold synthesis, we favour the impact on the variance as we principally do
not need consistent schedulers. For the max synthesis, we favour the impact on
the consistency, as we need a consistent scheduler inducing the max probability.

Predicate Ak is based on reducing the variance: The strategy selects T ′ ⊂ Tk

with |T ′| = 1
2 �|Tk|�, containing those t for which Ck

max(t)−Ck
min(t) is the largest.

The goal is to get a set of realisations that induce a large probability (the ones
including T ′ for parameter k) and the complement inducing a small probability.

Approach 5 (MDP-based abstraction refinement). The methods under-
lying Algorithms 1 and 2, together with the splitting strategies, provide solutions
to the synthesis problems and are referred to as MDP abstraction methods.

5 Experiments

We implemented the proposed synthesis methods as a Python prototype using
Storm [25]. In particular, we use the Storm Python API for model-adaption,
-building, and -checking as well as for scheduler extraction. For SMT solving,
we use Z3 [39] via pySMT [26]. The tool-chain takes a PRISM [38] or JANI [8]
model with open integer constants, together with a set of expressions with possi-
ble values for these constants. The model may include the parallel composition of
several modules/automata. The open constants may occur in guards4, probabil-
ity definitions, and updates of the commands/edges. Via adequate annotations,
we identify the parameter values that yield a particular action. The annota-
tions are key to interpret the schedulers, and to restrict the quotient without
rebuilding.

All experiments were executed on a Macbook MF839LL/A with 8 GB RAM
memory limit and a 12 h time out. All algorithms can significantly benefit from
coarse-grained parallelisation, which we therefore do not consider here.

5.1 Research Questions and Benchmarks

The goal of the experimental evaluation is to answer the research question:
How does the proposed MDP-based abstraction methods (Approaches 3–5) cope
with the inherent complexity (i.e. the NP-hardness) of the synthesis problems
(cf. Problems 1 and 2)? To answer this question, we compare their perfor-
mance with Approaches 1 and 2 [18], representing state-of-the-art solutions and
the base-line algorithms. The experiments show that the performance of the

4 Slight care by the user is necessary to avoid deadlocks.

184 M. Češka et al.

Table 1. Benchmarks and timings for Approaches 1–3

Bench. Range |K| |D| Member size Quotient size Run time

Avg. |S| Avg. |T | |S| |A| |T | 1-by-1 All-in-1 Sched.

Enum.

Pole [3.35, 3.82] 17 1327104 5689 16896 6793 7897 22416 130k∗ MO 26k

Maze [9.8, 9800] 20 1048576 134 211 203 277 409 28k∗ TO 2.7k

Herman [1.86, 2.44] 9 576 5287 6948 21313 102657 184096 55∗ 72 246

DPM [68, 210] 9 32768 5572 18147 35154 66096 160146 2.9k∗ MO 7.2k

BSN [0, 0.988] 10 1024 116 196 382 457 762 31∗ 2 2

MDP abstraction significantly varies for different case studies. Thus, we consider
benchmarks from various application domains to identify the key characteristics
of the synthesis problems affecting the performance of our approach.

Benchmarks description. We consider the following case studies: Maze is a plan-
ning problem typically considered as POMDP, e.g. in [41]. The family describes
all MCs induced by small-memory [14,35] observation-based deterministic strate-
gies (with a fixed upper bound on the memory). We are interested in the
expected time to the goal. In [35], parameter synthesis was used to find ran-
domised strategies, using [22]. Pole considers balancing a pole in a noisy and
unknown environment (motivated by [2,12]). At deploy time, the controller has
a prior over a finite set of environment behaviours, and should optimise the
expected behavior without depending on the actual (hidden) environment. The
family describes schedulers that do not depend on the hidden information. We
are interested in the expected time until failure. Herman is an asynchronous
encoding of the distributed Herman protocol for self-stabilising rings [33,37].
The protocol is extended with a bit of memory for each station in the ring,
and the choice to flip various unfair coins. Nodes in the ring are anonymous,
they all behave equivalently (but may change their local memory based on local
events). The family describes variations of memory-updates and coin-selection,
but preserves anonymity. We are interested in the expected time until stabilisa-
tion. DPM considers a partial information scheduler for a disk power manager
motivated by [7,27]. We are interested in the expected energy consumption.
BSN (Body sensor network, [43]) describes a network of connected sensors that
identify health-critical situations. We are interested in the reliability. The family
contains various configurations of the used sensors. BSN is the largest software
product line benchmark used in [18]. We drop some implications between fea-
tures (parameters for us) as this is not yet supported by our modelling language.
We thereby extended the family.

Table 1 shows the relevant statistics for each benchmark: the benchmark
name, the (approximate) range of the min and max probability/reward for the
given family, the number of non-singleton parameters |K|, and the number of
family members |D|. Then, for the family members the average number of states
and transitions of the MCs, and the states, actions (=

∑
s∈S |Act(s)|), and transi-

tions of the quotient MDP. Finally, it lists in seconds the run time of the base-line

Shepherding Hordes of Markov Chains 185

Table 2. Results for threshold synthesis via abstraction-refinement

Inst λ # Below # Subf # Above # Subf Singles # Iter Time Build Check Anal. Speedup

below above

Pole 3.37 697 176 1326407 2186 920 4723 308 117 60 118 421

3.73 1307077 7854 20027 3279 1294 22265 1.7k 576 317 396 77

3.76 1322181 3140 4923 1025 1022 8329 584 187 114 197 222

3.79 1326502 572 602 123 74 1389 58 23 10 23 2.2k

Maze 10 4 3 1048572 92 4 189 5 <1 3 <1 26k

20 4247 2297 1044329 4637 3400 13867 114 21 43 29 246

30 18188 9934 1030388 18004 14010 55875 608 80 127 270 46

8000 1046285 846 2291 1125 969 3941 136 9 106 13 1.0k

Herman 1.9 6 6 570 368 320 747 333 303 11 18 0.2

1.71 0 0 576 258 184 515 232 206 8 17 0.3

DPM 80 160 141 32608 1292 356 2865 1.0k 602 322 64 3

70 6 6 32762 443 40 897 380 190 156 32 8

60 0 0 32768 104 6 207 99 42 48 8 29

BSN .965 544 81 480 81 25 321 2 <1 <1 <1 1

.985 994 41 30 8 5 97 <1 <1 <1 <1 3

algorithms and the consistent scheduler enumeration5. The base-line algorithms
employ the one-by-one and the all-in-one technique, using either a BDD or a
sparse matrix representation. We report the best results. MOs indicate breaking
the memory limit. Only the all-in-one approach required significant memory. As
expected, the SMT-based implementation provides an inferior performance and
thus we do not report its results.

5.2 Results and Discussion

To simplify the presentation, we focus primarily on the threshold synthesis prob-
lem as it allows a compact presentation of the key aspects. Below, we provide
some remarks about the performance for the max and feasibility synthesis.

Results. Table 2 shows results for threshold synthesis. The first two columns
indicate the benchmark and the various thresholds. For each threshold λ, the
table lists the number of family members below (above) λ, each with the number
of subfamilies that together contain these instances, and the number of singleton
subfamilies that were considered. The last table part gives the number of iter-
ations of the loop in Algorithm 1, and timing information (total, build/restrict
times, model checking times, scheduler analysis times). The last column gives
the speed-up over the best base-line (based on the estimates).

Key observations. The speed-ups drastically vary, which shows that the MDP
abstraction often achieves a superior performance but may also lead to a perfor-
mance degradation in some cases. We identify four key factors.

5 Values with a ∗ are estimated by sampling a large fraction of the family.

186 M. Češka et al.

Iterations. As typical for CEGAR approaches, the key characteristic of the
benchmark that affects the performance is the number N of iterations in the
refinement loop. The abstract action introduces an overhead per iteration caused
by performing two MDP verification calls and by the scheduler analysis. The
run time for BSN, with a small |D| is actually significantly affected by the
initialisation of various data structures; thus only a small speedup is achieved.

Abstraction size. The size of the quotient, compared to the average size of
the family members, is relevant too. The quotient includes at least all reachable
states of all family members, and may be significantly larger if an inconsistent
scheduler reaches states which are unreachable under any consistent scheduler.
The existence of such states is a common artefact from encoding families in
high-level languages. Table 1, however, indicates that we obtain a very compact
representation for Maze and Pole.

Thresholds. The most important aspect is the threshold λ. If λ is closer to the
optima, the abstraction requires a smaller number of iterations, which directly
improves the performance. We emphasise that in various domains, thresholds
that ask for close-to-optimal solutions are indeed of highest relevance as they
typically represent the system designs developers are most interested in [44]. Why
do thresholds affect the number of iterations? Consider a family with Tk = {0, 1}
for each k. Geometrically, the set RD can be visualised as |K|-dimensional cube.
The cube-vertices reflect family members. Assume for simplicity that one of
these vertices is optimal with respect to the specification. Especially in bench-
marks where parameters are equally important, the induced probability of a
vertex roughly corresponds to the Manhattan distance to the optimal vertex.
Thus, vertices above the threshold induce a diagonal hyperplane, which our
splitting method approximates with orthogonal splits. Splitting diagonally is
not possible, as it would induce optimising over observation-based schedulers.
Consequently, we need more and more splits the more the diagonal goes through
the middle of the cube. Even when splitting optimally, there is a combinato-
rial blow-up in the required splits when the threshold is further from the optimal
values. Another effect is that thresholds far from optima are more affected by
the over-approximation of the MDP model-checking results and thus yield more
inconclusive answers.

Refinement strategy. So far, we reasoned about optimal splits. Due to the
computational overhead, our strategy cannot ensure optimal splits. Instead, the
strategy depends mostly on information encoded in the computed MDP strate-
gies. In models where the optimal parameter value heavily depends on the state,
the obtained schedulers are highly inconsistent and carry only limited information
for splitting. Consequently, in such benchmarks we split sub-optimally. The sub-
optimality has a major impact on the performance for Herman as all obtained
strategies are highly inconsistent – they take a different coin for each node, which
is good to speed up the stabilisation of the ring.

Summary. MDP abstraction is not a silver bullet. It has a lot of potential in
threshold synthesis when the threshold is close to the optima. Consequently,

Shepherding Hordes of Markov Chains 187

feasibility synthesis with unsatisfiable specifications is handled perfectly well by
MDP abstraction, while this is the worst-case for enumeration-based approaches.
Likewise, max synthesis can be understood as threshold synthesis with a shifting
threshold max∗: If the max∗ is quickly set close to max, MDP abstraction yields
superior performance. Roughly, we can quickly approximate max∗ when some of
the parameter values are clearly beneficial for the specification.

6 Conclusion and Future Work

We contributed to the efficient analysis of families of Markov chains. In particu-
lar, we discussed and implemented existing approaches to solve practically inter-
esting synthesis problems, and devised a novel abstraction refinement scheme
that mitigates the computational complexity of the synthesis problems, as shown
by the empirical evaluation. In the future, we will include refinement strategies
based on counterexamples as in [23,34].

References

1. Repository with benchmarks. https://github.com/moves-rwth/shepherd
2. Arming, S., Bartocci, E., Chatterjee, K., Katoen, J.-P., Sokolova, A.: Parameter-

independent strategies for pMDPs via POMDPs. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 53–70. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99154-2 4

3. Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It
usually works: the temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV
1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60045-0 48

4. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of
Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8 28

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model

repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

7. Benini, L., Bogliolo, A., Paleologo, G., Micheli, G.D.: Policy optimization for
dynamic power management. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst.
8(3), 299–316 (2000)

8. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

9. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158
(2018)

https://github.com/moves-rwth/shepherd
https://doi.org/10.1007/978-3-319-99154-2_4
https://doi.org/10.1007/978-3-319-99154-2_4
https://doi.org/10.1007/3-540-60045-0_48
https://doi.org/10.1007/3-540-60045-0_48
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9

188 M. Češka et al.

10. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54(6),
589–623 (2017)

11. Češka, M., Jansen, N., Junges, S., Katoen, J.P.: Shepherding hordes of Markov
chains. CoRR abs/1902.xxxxx (2019)

12. Chades, I., Carwardine, J., Martin, T.G., Nicol, S., Sabbadin, R., Buffet, O.:
MOMDPs: a solution for modelling adaptive management problems. In: AAAI.
AAAI Press (2012)

13. Chasins, S., Phothilimthana, P.M.: Data-driven synthesis of full probabilistic pro-
grams. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
279–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 14

14. Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for
almost-sure reachability with small strategies in POMDPs. In: AAAI, pp. 3225–
3232. AAAI Press (2016)

15. Chatterjee, K., Kößler, A., Schmid, U.: Automated analysis of real-time scheduling
using graph games. In: HSCC, pp. 163–172. ACM (2013)

16. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model
repair for Markov decision processes. In: TASE, pp. 85–92. IEEE (2013)

17. Chonev, V.: Reachability in augmented interval Markov chains. CoRR
abs/1701.02996 (2017)

18. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Asp. Comput.
30(1), 45–75 (2018)

19. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model checking
software product lines with SNIP. STTT 14(5), 589–612 (2012)

20. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Formal semantics,
modular specification, and symbolic verification of product-line behaviour. Sci.
Comput. Program. 80, 416–439 (2014)

21. Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y., Dawagne, B., Leucker, M.:
Counterexample guided abstraction refinement of product-line behavioural models.
In: SIGSOFT FSE, pp. 190–201. ACM (2014)

22. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in
pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 10

23. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 11

24. Dehnert, C., et al.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

25. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

26. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015)

27. Gerasimou, S., Calinescu, R., Tamburrelli, G.: Synthesis of probabilistic models for
quality-of-service software engineering. Autom. Softw. Eng. 25(4), 785–831 (2018)

https://doi.org/10.1007/978-3-319-63387-9_14
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31

Shepherding Hordes of Markov Chains 189

28. Ghezzi, C., Sharifloo, A.M.: Model-based verification of quantitative non-functional
properties for software product lines. Inf. Softw. Technol. 55(3), 508–524 (2013)

29. Giro, S., D’Argenio, P.R., Fioriti, L.M.F.: Distributed probabilistic input/output
automata: expressiveness, (un)decidability and algorithms. Theor. Comput. Sci.
538, 84–102 (2014)

30. Giro, S., Rabe, M.N.: Verification of partial-information probabilistic systems using
counterexample-guided refinements. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, vol. 7561, pp. 333–348. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33386-6 26

31. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Softw. Tools Technol. Transfer 13(1), 3–19 (2011)

32. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

33. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
34. Jansen, N., et al.: Symbolic counterexample generation for large discrete-time

Markov chains. Sci. Comput. Program. 91, 90–114 (2014)
35. Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis.

In: UAI, pp. 519–529. AUAI Press (2018)
36. Kochenderfer, M.J.: Decision Making Under Uncertainty: Theory and Application,

1st edn. The MIT Press, Cambridge (2015)
37. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic verification of Herman’s

self-stabilisation algorithm. Formal Aspects Comput. 24(4), 661–670 (2012)
38. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

39. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

40. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: PLDI, pp. 208–217. ACM (2015)

41. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017)

42. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy app-
roach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9 21

43. Rodrigues, G.N., et al.: Modeling and verification for probabilistic properties in
software product lines. In: HASE, pp. 173–180. IEEE (2015)

44. Skaf, J., Boyd, S.: Techniques for exploring the suboptimal set. Optim. Eng. 11(2),
319–337 (2010)

45. Vandin, A., ter Beek, M.H., Legay, A., Lluch-Lafuente, A.: QFLan: a tool for the
quantitative analysis of highly reconfigurable systems. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 329–337. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 19

46. Varshosaz, M., Khosravi, R.: Discrete time Markov chain families: modeling and
verification of probabilistic software product lines. In: SPLC Workshops, pp. 34–41.
ACM (2013)

https://doi.org/10.1007/978-3-642-33386-6_26
https://doi.org/10.1007/978-3-642-33386-6_26
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-17524-9_21
https://doi.org/10.1007/978-3-319-95582-7_19

190 M. Češka et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

