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Abstract. The article deals with a control of the linear system using the high order integration method. The chosen system (inverted
pendulum on a cart) is analyzed and a proper controller for such system is designed. The controller that is using the high order
method is compared with the controller that uses the state of the art numerical methods. All experiments are performed using
MATLAB software.

INTRODUCTION

The design and implementation of the control systems represents the crucial area for todays industry. All modern
machinery (cars, refrigerators, airplanes, . . . ) uses some sort of control system. The article deals with the numerical
integration that is performed during control task. The presented Modern Taylor Series Method (MTSM) is used due
to the established favorable properties.

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

The numerical solution of ordinary differential equations (ODEs) can utilize many different methods and approaches.
The commonly used explicit methods include Euler and Runge-Kutta fixed order methods [1]. However, these meth-
ods need to keep the integration step quite small to maintain accuracy and stability. This can be overcome by us-
ing variable-step, variable-order (VSVO) scheme of such numerical method. The best-known and the most accurate
method of calculating a new value of the numerical solution of ordinary differential equation [2]

y′ = f (t, y) y(t0) = y0, (1)

is to construct the Taylor series in the form

yi+1 = yi + h f (ti, yi) +
h2

2!
f ′(ti, yi) + . . . +

hn

n!
f [n−1](ti, yi), (2)

where h is the integration step, yi
.
= y(ti) is the previous approximate value and yi+1

.
= y(ti + h) is the next approximate

value of the function y(t).
Taylor series is not widely used to solve initial value problems (IVPs) due to the generally unknown higher deriva-

tives of a arbitrary function. However, the derivatives of many technical problems can be calculated recursively [3].
Linear systems of ODEs could be written in the form

y′ = Ay + b (3)

and then the Taylor series expansion follows

yi+1 = yi + h(Ayi + b) +
h2

2!
A(Ayi + b) + · · · +

hn

n!
A(n−1)(Ayi + b) (4)



FIGURE 1. State-space representation diagram

where A is the constant Jacobian matrix and b is the constant right-hand side. Equation (4) can be rewritten

yi+1 = DY0 + DY1 + DY2 + · · · + DYn, (5)

where Taylor series terms could be computed recurrently

DY0 = yi , DY1 = h(Ayi + b), DYl =
h
l

ADYl−1 , l = 2, . . . , n. (6)

STATE-SPACE REPRESENTATION OF THE CONTROL SYSTEM

In this section, the state-space representation of the control system is discussed. This representation was chosen,
because it describes the system accurately using matrices and vectors, that can be used directly in MATLAB. Different
representations are also possible (for example, the PI regulator can be represented directly as a differential equation [4],
that can be solved using MTSM), the state space representation is more complex look at a system and the desired
control. Furthermore, the controllability and observability of the system [5] can be determined. Generally, the state
space representation of the system is depicted in the Figure 1 where the vector xs is the state of the system, A is the
constant system matrix, b is the constant input vector, C is the constant output matrix, and D is a constant matrix [5].
Matrix A and the vector b correspond to (3). The system represented in state space can be expressed using

x′s = Axs + bu , (7)
ys = Cxs + Du ,

where xs is a state vector and u is an input (or control) vector. To effectively control the system defined by equa-
tions (7), the derivative has to be amended with:

• constant vector k, that describes the required behavior of the system,
• constant vector r, that defines the control objective (for example the position or speed that we want to achieve).

The derivative of xs can therefore be rewritten as

x′s = (A − bkT )xs + bkT r . (8)

Matrix A and vector b are defined below (13).

PENDULUM ON A CART

Pendulum on a cart can be visualized using Figure 2, where M is the mass of the cart, m is the mass of the pendulum,
F is amplitude of the force that causes the cart-pendulum system to move, l is the length of the pendulum and θ is the
deviation angle of the pendulum. The equations of the system can be derived using Lagrange’s equation

d
dt

(
∂L
∂q′i

)
−
∂L
∂qi

= 0. (9)



FIGURE 2. Inverted pendulum

where qi is the unknown function, q
′

i is its time derivative and Lagrangian L summarizes the dynamics of the entire
system. The Lagrangean can be calculated as a difference between kinetic (K) and potential (P) energy of the system

P = mgl cos θ (10)

K =
1
2

(M + m)x′2 +
1
2

m(−2x′lθ′ cos θ + l2θ′2(cos2 θ + sin2 θ)) (11)

Substituting L into (9) and solving for qi = x and qi = θ yields the equations of motion, that are used during the
calculation

(M + m)x′′ + mlθ′′ cos θ + mlθ′2 sin θ = F
lθ′′ − x′′ cos θ − g sin θ = 0 .

(12)

To define the state-space representation of the control system, the state variables were defined as xs = (θ, θ′, x, x′)T .
The system is linearized around 0 to obtain the matrix A that describes the behavior of the linearized system and input
vector b

A =


0 1 0 0

M+m
Ml g 0 0 0
0 0 0 1
− m

M g 0 0 0

 , b =


0
− 1

lM
0
1
M

 . (13)

The matrix A and the vector b can be substituted into (3).

NUMERICAL EXPERIMENTS

This section of the paper contains the numerical experiments performed using (13) in MATLAB [6]. Initial conditions
for the differential equations were set

xs1 = 0.1 , xs2 = 0 , xs3 = 0.1 , xs4 = 0 , (14)

to set the initial position of the pendulum (xs1) and initial position of the cart (xs3). The control objective for this
experiment was to keep the pendulum upright (xs1 = 0) and move the cart into position (xs3 = 1). To achieve this
objective, the vector r is equal to rTmax = (0, 0, 1, 0)T .

Before the experiment, the eigenvalues of the matrix A were calculated to check, if the system is stable without
control. Due to the fact, that one of the eigenvalues was positive, the controller is needed to control the system. The
controllability [5] of the system was confirmed by constructing the controllability matrix and checking its rank against
the number of state variables.

The controller design was then performed by placing the new eigenvalues for the system so that they are all
negative. Vector of eigenvalues p = (−0.8,−0.7,−0.6,−0.5)T was used. Using the vector p, the vector k can be
calculated using the place command in MATLAB. The results are in the Figure 3, which shows the behavior of the
system and the used order of the Modern Taylor Series Method.
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FIGURE 3. The behavior of the controlled system (left), number of used Taylor series terms (right)

The figure confirms that the control system achieved the set objective rTmax at maximum time Tmax = 25s. The
more aggressive placement of the poles (vector p) would speed up the controller response. The accuracy of all solvers
was set to 10−13 and the step size h = 0.1.

Numerical results are summed up in Table 1. The MTSM performed the control tasks faster than the ode solvers
present in MATLAB (mean of calculation time from 100 runs).

TABLE 1. Solvers comparison

Solver Time [s] Order Steps
MTSM 0.00476482 9 – 12 250
ode45 0.04452096 4 – 5 4305
ode23 0.80037904 2 – 3 49432
ode113 0.0065460 1 –12 227

Due to the fact, that the MTSM can use variable order, we can increase the step size and speed up the calculation
further with the same accuracy e.g. for the integration step size h = 1 the order is increased to 15 – 18, while the speed
of the calculation decreased tenfold.

CONCLUSION

This article presented a high order numerical method (MTSM) and used it to solve the set control problem. The
method was compared to the state of the art and seems to have favorable properties for control systems. The solution
of the non-linear variant of the presented problem is the objective of a future research.
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