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Abstract RINASim is a framework for simulation of networks following principles
of clean-slate Recursive InterNetwork Architecture. RINASim should help others
to understand RINA concepts that are often far beyond current TCP/IP networking
craftsmanship. This chapter introduces basic theory behind RINA and outlines RI-
NASim mechanisms and policies. RINASim contains a plethora of high-level and
low-level models offering behavior strictly in compliance with RINA specifications.
In order to understand RINASim capabilities, the chapter also presents narrative
demonstration scenarios.

1 Introduction

Recursive InterNetwork Architecture (RINA) is the clean-slate architecture aimed
to change the whole Internet unlike just temporary fixes for current status quo. The
RINA concept is based on John Day’s thoughts, lectures and book [2] regarding
ISO/OSI initiative failure, TCP/IP development, commercial adoption of the Internet
and other technical/political events in Internet history.

The architecture as proposed by RINA is fundamentally different from the current
TCP/IP networking. The RINA approach focuses on a few principles instead of a
broad and complex eco-system of the modern Internet. The idea of the recursive
composition of layers arises naturally from the structure of repeating computer
networking patterns. Instead of strictly separating network functions into a predefined
set of layers, RINA enables to compose a stack of layers that may offer a nearly the
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same set of functions. All RINA layers employ the same protocols which contrast to
the TCP/IP model, where each layer defines its set of protocols. RINA was designed
to provide a simpler and efficient alternative to the current Internet architecture.

Section 2 provides brief information how to install RINASim and start working
with it. Section 3 starts with a description of high-level RINA network nodes. Sec-
tion 4 goes even deeper and outlines various components and policies. The whole
content of Section 5 is dedicated to a thorough description of few simulations, which
illustrate basic scenarios of RINA network operation. This chapter is summarized in
Section 6.

2 Installation

RINASim [22] is a stand-alone framework for the OMNeT++ discrete event simulator
environment. RINASim is coded from scratch and independent of another library.
The main purpose is to offer the community a reliable and the most up-to-date
tool (in the sense of RINA specification compliance) for simulating RINA-based
computer networks. RINASim at its current state represents an entirely working
implementation of the simulation environment for RINA. The simulator contains all
mechanisms of RINA according to the current specification.

RINASim installation is a straightforward process with two phases: 1) obtain the
source codes; 2) compile the project, which creates one static library (librinasimcore
containing simulation core) and one dynamic library (librinasim binding together
core and implementation of various policies).

RINASim is developed in OMNeT++ 5.2.1. RINASim August 2016’s release is
the last one compatible with OMNeT++ 4.6. The current trend is to make RINASim
operatable on any OMNeT++ versions that support C++ 11 language standard and
GCC 4.9.2 compiler. All source codes (including master and other thematic branches)
are publicly available on the project’s GitHub repository [23]. Manual installation
and building RINASim from the source code is pretty simple. Just clone or download
the main branch, import the project into OMNeT++ (it is named rina), compile it
and start playing with RINASim. The user should be prepared for rather long initial
compilation time.
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3 High-level Design

The purpose of this section is to provide future RINASim user with a short introduc-
tion (or more accurately executive summary) to RINA concepts. These concepts and
ideas formulate the design and development of the whole RINASim.

3.1 Overview

This subsection introduces the theoretical background. However, explanation of the
whole Recursive Internet Architecture is far beyond the scope of this paper. Hence,
only parts relevant to the current RINASim functionality are captured. Synthesis of
RINA information provided below comes from the following sources: [11], [12],
[14], [8] and [9].

Nature of Applications and Application Protocols

The set of Internet applications was rather simplistic before WWW – one application
with a single instance using only one protocol. Hence, there is nearly no distinc-
tion between an application and its networking part. However, the web completely
changed this situation – one application protocol may be used by more than one
application (e.g., HTTP is being over-employed as a communication protocol), and
also one application may have many application protocols (e.g., web browsers, mail
clients).

Following terms are recognized in the frame of RINA, and their relationship is
depicted in Figure 1 below:

• Application Process (AP) – Program instantiation to accomplish some purpose;
• Application Entity (AE) – AE is the part of AP, which represents application

protocol and application aspects concerned with communication.

AE AE

Application Process

(AP)

Application entities

Outside network

Inside network

Fig. 1: Application Protocol and Application Entities relationship
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There may be multiple instances of the Application Process in the same system.
AP may have multiple AEs; each one may process a different application protocol.
There also may be more than one instance of each AE type within a single AP.

All application protocols are stateless; the state is and should be maintained in
the application. Thus, all application protocols modify shared state external to the
protocol itself on various objects (e.g., data, file, HW peripherals). Because of that,
there is only one application protocol that contains trivial operations (e.g., read/write,
start/stop). Data transfer protocols modify state internal to the protocol; the only
external effect is the delivery of Service Data Unit (SDU).

Core Terms

The data transport and internetworking tasks together (generally known as network-
ing) constitute inter-process communication (IPC). IPC between two APs on the
same operating system needs to locate processes, evaluate permission, pass data,
schedule tasks and manage memory. IPC between two APs on different systems
works similarly plus adding functionality to overcome the lack of shared memory.

In traditional networking stack, the layer provides a service to the layer immedi-
ately above it. The recursion (and repeating of patterns) is the main feature of the
whole architecture. Layer recursion became more popular even in TCP/IP with tech-
nologies like Virtual Private Networks (VPNs) or overlay networks (e.g., OTV, TOR).
Recursion is a natural thing whenever we need to affect the scope of communicating
parties. However, so far it was just recursion of repeating functions in existing layers.

In ISO/OSI or TCP/IP, there is a set of layers each with completely different
functions. RINA on the other hand yields the idea of the single generic layer with
fixed mechanisms but configurable policies. This layer is in RINA called Distributed
IPC Facility (DIF) – a set of cooperating APs providing IPC. There is not a fixed
number of DIFs in RINA; we can stack them according to the application or network
needs. From the DIF point of view actual stack depth is irrelevant, DIF must know
only (N+1)-layer above and (N-1)-layer below. DIF stacking partitions network into
smaller, thus, more manageable parts.

The concept of RINA layer could be further generalized to Distributed Application
Facility (DAF) – a set of cooperating APs in one or more computing systems, which
exchange information using IPC and maintain shared state. A DIF is a DAF that does
only IPC. Distributed Application Process (DAP) is a member of a DAF. The IPC
Process (IPCP) is special AP within DIF delivering inter-process communication.
IPCP is an instantiation of DIF membership; computing system can perform IPC
with other DIF members via its IPC process within this DIF. An IPCP is specialized
DAP. The relationship between all newly defined terms is depicted inFigure 2.

DIF limits and encloses cooperating processes in the one scope. However, its
functionality is more general and versatile apart from rigid TCP/IP layers with
dedicated functionality (i.e., datalink layer for adjacent node communication, a
transport layer for reliable data transfer between applications). DIF provides IPC to
either another DIF or to DAF. Therefore, DIF uses a single application protocol with
generic primitive operations to support inter-DIF communication.
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Fig. 2: DIF, DAF, DAP and IPCP illustration

Connection-oriented vs. Connectionless

The clash between connection-oriented and connectionless approaches (that also cor-
rupted ISO/OSI tendencies) is from RINA perspective quite easy to settle. Connection-
oriented and connectionless communication are both just functions of the layer that
should not be visible to applications. Both approaches are equal, and it depends
on application requirements which one to use. On the one hand, connectionless is
characterized by the maximal dissemination of the state information and dynamic
resource allocation. On the other hand, connection-oriented limits the dissemination
and tends toward static resource allocation. The first one is good for low volume
stochastic traffic. The second one is useful for scenarios with deterministic traffic
flows.

If the applications request the allocation of communication resources, then the
layer determines what mechanisms and policies to use. Allocation is accompanied
with access rights and description of Quality of Service (QoS) (e.g., what minimum
bandwidth or delay is needed for correct operation of application). QoS demands are
then translated into the appropriate QoS class called QoS-cube.

Delta-t Synchronization

All properly designed data transfer protocols are soft-state. There is no need for
explicit state synchronization (hard-state) and tools like SYNs and FINs are unneces-
sary.
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Initial synchronization of communicating parties is done with the help of the
Delta-t protocol with the main variable denoted as ∆t (see [27] and [15]). Delta-t was
developed by Richard Watson, who proposed time-based synchronization technique.
He proved that conditions for distributed synchronization were met if the following
three timers are realized: a) Maximum Packet Lifetime (MPL); b) Maximum time
to attempt retransmission a.k.a. maximum period during sender is holding Protocol
Data Unit (PDU) for retransmission while waiting for a positive acknowledgment
(a.k.a. R); c) Maximum time before Acknowledgement (a.k.a. A).

Delta-t assumes that all connections exist all the time. Synchronization state is
maintained only during the activity. The activity is defined as 2 · ∆t from the receiver
side and 3 · ∆t from the sender side, where ∆t = R + MPL + A. After 2-3 ∆t periods
without any traffic, the state may be discarded which effectively resets the connection.
Because of that, there are no hard-state (with explicit synchronization) protocols
only soft-state ones. Delta-t postulates that port allocation and synchronization are
distinct.

Separation of Mechanism and Policy

We understand the term mechanism as the fixed part and policy as the flexible part of
IPC.

If we clearly separate them, we discover that there are two types of mechanisms:

• tightly-bound that must be associated with every PDU, which handles fundamen-
tal aspects of data transfers;

• loosely-bound that may be associated with some data transfer PDUs, which
provide additional features (namely reliability and flow control).

Both groups are coupled through a state vector maintained separately per flow;
every active flow has its state-vector holding state information. For instance, the
behavior of retransmission and flow control can be heavily influenced by chosen
policies, and they can be used independently of each other.

This implies that only a single generic data transfer protocol based on Delta-t
is needed, which may be governed by different transfer control policies. This data
transfer protocol modifies the state internally, where the application protocol (carried
inside) modifies state externally.

Naming and Addressing

The Application Process communicates in order to share states. We mentioned that
AP consists of AEs. We need to differentiate between different APs and also different
AEs within the same AP. Thus, RINA is using following set of identifiers to achieve
desired naming properties:

• Distributed-Application-Name (DAN) is name that identifies a distributed appli-
cation, and it is globally unambiguous. One DAF might have assigned more than
one DAN with different access control properties;
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• Application Process Name (APN) is a globally unambiguous synonym for an AP
of DAF;

• Application Process Instance Identifier (API-id) is an identifier bound to an AP
Instance to distinguish multiple AP Instances. It is unambiguous within the AP;

• Application Entity Name (AEN) is unambiguous within the scope of the AP.
• Application Entity Instance Identifier (AEI-id) is an identifier that is also unam-

biguous within a single AP, and it helps us to identify different AE instances.
• Application Naming Information (ANI) references a complete set of identifiers

to name particular application; it consists of a four-tuple APN, API-id, AEN,
and AEI-id. The only required part of ANI is APN; others are optional.

src CEP-id dst CEP-id

Ports with

port-ids

EFCPIs with

CEP-ids

Connection-id

N-PDU

Structured 

IPCP address

src 

CEP-id

dst

CEP-id
user-data

Port allocation

State synchronization

Connection

Flow

Fig. 3: Overview of IPCP local identifiers

IPC Process has APN to identify it among other DIF members. A RINA address
is a synonym for IPCP’s APN with a scope limited to the layer and structured to
facilitate forwarding. APN is useful for management purposes but not for forwarding.
Address structure may be topologically dependent (indicating the nearness of IPCPs).
APN and address are simply two different means to locate an object in different
context. There are two local identifiers important for IPCP functionality – port-id
and connection-endpoint-id. Port-id binds this (N)-IPCP and (N+1)-IPCP/AP; both
of them use the same port-id when passing messages. Port-id is returned as a handle
to the communication allocator and is unambiguous within a computing system.
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Connection-endpoint-id (CEP-id) identifies a shared state of one communication
endpoint. Since there may be more than one flow between the same IPCP pair,
it is necessary to distinguish them. For this purpose, Connection-id is formed by
combining source and destination CEP-ids with QoS requirements descriptor. CEP-id
is unambiguous within IPCP and Connection-id is unambiguous between a given
pair of IPCPs. Figure 3 depicts all relevant identifiers between two IPCPs.

Watson’s Delta-t implies port-id and CEP-id in order to help separate port alloca-
tion and synchronization. RINA’s connection is a shared state between ends identified
by CEP-ids. RINA’s flow is when connection ends are bound to ports identified by
port-ids. The lifetimes of flow and its connection(s) are independent of each other.

The relationship between node and Point of Attachment (PoA) is relative – node
address is (N)-address, and its PoA is (N-1)-address. Routes are sequences of (N)-
addresses, where (N)-layer routes based on this addresses (not according to (N-1)-
addresses). Hence, the layer itself should assign addresses because it understands
address structure.

3.2 Nodes

There are only three basic kinds of nodes in a RINA network (illustrated in Figure 4).
Each kind represents a computing system running RINA:

• Hosts – end-devices for IPC containing AEs in the top layer; they employ two or
more DIF levels;

• Interior routers – interim devices, which are interconnecting (N)-DIF neighbors
via multiple (N-1)-DIFs; they employ two or more DIF levels;

• Border routers – interim devices, which are interconnecting (N)-DIF neighbors
via (N-1)-DIFs, where some of (N-1)-DIFs are reachable only through (N-2)-
DIFs; they employ three or more DIF levels.

As seen in Figure 4, the main difference between node kinds is in an overall
number of DIF levels present in a computing system. Due to the limited number
of network interface cards (NIC), Hosts usually have a single 0-DIF (connected to
the physical medium) and a few 1-DIFs leveraging on this lowest level DIF. Interior
routers have potentially a lot of 0-DIFs (for each interface) but only a few relaying
1-DIFs. Border routers also perform relaying but serve as gateways between those
(N-1)-IPCs, which are not connected directly. Thus, a (N-2)-DIF is needed to reach
the physical medium.
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Fig. 4: Example of RINA network with three levels of DIFs and different nodes

3.3 DAF Design

DIF Allocator Interface

The primary task of the DIF Allocator (DA) is to return a list of DIFs where the
destination application may be found based on ANI reference and access control
information. An additional and more complex DA description is available in [25].
The DA contains and works with multiple mapping tables to provide its services:

• Naming information table – provides an association between APN and its syn-
onyms;

• Search table – provides a mapping between requested APN and the list of DAs
where to search for it next;
• Neighbor table – maintains a list of adjacent peers when trying to reach other

DAs;
• Directory – contains records mapping APNs with access rights to the list of

supporting DIFs including DIF’s name, access control information and provided
QoS.
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IPC Resource Manager

IPC Resource Manager (IRM) (see specification [6]) as its name suggests manages
DAF resources. This involves multiple different tasks:

• IRM processes allocate calls by delegating them to appropriate local IPCPs in
relevant DIFs;

• IRM manages DA queries and acts upon their responses. When the DA response
contains more than one DIF, IRM chooses which DIF to use;

• IRM administers the use of flows between AEs and DIFs. IRM may choose to
multiplex a single or multiple AE flows into single/multiple flows to a set of
DIFs;

• IRM initiates joining or creating DAF and/or DIF. IRM acts upon the DAF, or
DIF lost (e.g., sending notifications or perform subsequent actions).

Application Process

The AP is a program intended to accomplish some purpose, which can be instantiated
on a processing system. An AP contains one or more AE(s) introduced in the
following section. AP manages some of system resources, such as the processor,
storage, and IPC.

An AP must have at least one AE. Otherwise, the AP would have no input/output
and would lack the state-sharing purpose.

Application Entity

An AE is a component of an AP (task). An AP needs to communicate with other APs
for multiple purposes, potentially at the same time. The goal of AEs is to create and
manage these application connections.

An Application Entity implements an application protocol. Such protocol provides
a shared understanding of the purpose of communication, protocol, set of objects
and their meaning that the two AEs exchange. There is only one application protocol
called Common Distributed Application Protocol (CDAP) used for communication.

AEs could be implemented by subroutine libraries which should be hidden to
application programmers – they would control it via API calls (e.g., similar to BSD
sockets). The example should provide a better understanding of the purpose of the
AEs. Imagine an application that contains two different AEs. One AE should be
responsible for serving requests for web pages, while another AE might be involved
in communicating with network database server. Each of these AEs has its defined
purpose, set of objects they communicate, and communication protocol.

Instances of Application Processes and Application Entities

The Application Process Instance (AP Instance) and the Application Entity Instance
(AE Instance) are instantiations of the AP and AE tasks. One processing system may
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contain multiple instances of the same AP. Also, it is possible to have many instances
of the same AE in one AP.

It is possible to create an application connection specifically to one of the instances
of AP and AE. Each instance can manipulate with unique data, and it can have unique
parameters.

A video conference is a good use-case of how the AP and the AE Instances might
be distinguished. Imagine, that one AP Instance is a video call with more than one
participant. An AE implements a video-streaming protocol, and an AE Instance
represents feed from one camera of a single participant.

Common Distributed Application Protocol

CDAP is the only required application protocol in RINA. It provides a platform for
building all distributed applications. CDAP allows distributed applications to deal
with communication at the object level without the need to do an explicit serialization
and other input/output operations. The CDAP unifies the approach of sharing data
over the network, so we do not need to create any additional specialized protocols.

From the application perspective, the only operations, which can be performed
on objects, are create/delete, read/write, and start/stop (execute/suspend). These
operations are primarily supported by the CDAP.

CDAP consists of three subparts. Common Application Connection Establish-
ment (CACE) that is involved in connection initialization. Authentication which is
responsible for authentication of communication parties. The last one, Common
Distributed Application Protocol is processing all other messages.

Enrollment

Enrollment is the phase of communication that follows right after the CDAP connec-
tion is established with a member of a DIF/DAF. In RINA, there exist two types of
Enrollment - within DIF and within DAF. They differ mainly from the perspective of
the information that is exchanged during this phase. An AP must always be enrolled
to become a full-featured member of a DAF.

The Enrollment may perform following operations:

• determine the current state of the member AP (if AP is joining the DAF for the
first time, or if it is a returning member);

• assign capabilities and synonyms to the new member relevant within the DAF;
• initialize static aspects, policies and synchronize RIBs;
• create additional connections.

Resource Information Base

Resource Information Base (RIB) is the logical representation of the local repository
of objects in DAF. Each member of a DAF has its portion of the information stored
in the local RIB. All objects are accessible via the RIB Daemon, that is responsible
for managing and maintaining them.
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The RIB is a storage (from the operating system perspective) and there are no
restrictions how to implement it. In the DAF, it should most likely be implemented
as some (key-value/relational/temporal) database of application objects.

In current TCP/IP based networks, the RIB can be compared to Management
Information Base of Simple Network Management Protocol (SNMP) that is also
used for the storing objects.

Objects

The object is the designation for a structured data that the CDAP is dealing with.
Objects are the primary building blocks of the RIB. Two communicating AEs create
a shared object space, and they provide access to the portion of the application’s RIB.
All objects enforce some access rights.

There are two types of RIB objects - passive (that contain static data) and active
(which trigger various control events).

RIB Daemon

RIB Daemon (RIBd) is one of the key components of the AP. It is responsible for
managing and maintaining objects in the RIB within the DAF. The RIBd monitors
all events occurring within the DAF and notifies the subscribers.

AP of a DAF may have several tasks (threads), which share a state via RIB with the
help of RIBd. If any task has requirements for information from another participant
in a distributed application, it uses RIBd to get the information.

The RIBd accepts subscriptions from tasks. The subscription for an object is
a mechanism to manage (read or write) data objects in the RIB. The subscription
requests should be time driven, event-driven or direct. The RIBd should process the
subscriptions as efficiently as possible.

The main functions of the RIBd within a DAF are:

• notify sets of members about the current value of selected objects;
• monitor events occurring within the DAF;
• provide the RIBd API that can be used by APs sub-tasks;
• respond to requests for information from other members of the DAF;
• maintain a mandatory log of received events;

3.4 DIF Design

Delimiting

The SDU in RINA is a contiguous chunk of data. IPC might fragment the SDU
(when passing it down to the (N-1)-DIF) or combine user-data (when passing it up
to the (N+1)-DIF). Hence, the operation performed by the Delimiting module (for
specification see [3] and [10]) is to delimit the SDU into/from the PDU’s user-data
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preserving its identity. Employed mechanism indicates the beginning and/or the end
of SDUs. Either internal (special pattern) or external (SDU length) delimiting could
be used. The delimiting module can perform both fragmentation and concatenation.

Encapsulation/Decapsulation of data messages happens in the RINA components
lying in the data path. Figure 5 depicts this process in DIF/DAF together with
messages nomenclature.
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SDU Protection

RMT
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EFCPI

SDU Protection

RMT

SDU Protection
IRM-controlled 

RMT
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Fig. 5: Message passing between RINA components

Data Transfer with Error and Flow Control

The Error and Flow Control Protocol (EFCP) is split into two independent protocol
machines coupled and coordinated through a state vector. EFCP guarantees data
transfer and data control. The full EFCP functionality is described in [13]. The
Data Transfer Protocol (DTP) implements mechanisms tightly coupled with the
transported SDUs, e.g., reassembly, sequencing. The DTP protocol machine operates
on data PDU’s fields requiring minimal processing – source/destination addresses,
QoS requirements, Connection-id, optionally sequence number or checksum. DTP
carries the user-data in the Data-Transfer PDU (DT-PDU).
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The Data Transfer Control Protocol (DTCP) implements mechanisms that are
loosely coupled with the transported SDUs, e.g., (re)transmission control using
various acknowledgment schemes and flow control with data-rate limiting. DTCP
functionality is based on Delta-t, and DTCP processes control PDUs (ControlPDU).
DTCP provides error and flow control over user-data.

There is an EFCP Instance (EFCPI) module per every active flow. EFCPI consists
of DTP and DTCP submodules. The quality of service demands drive DTCP policies.
The DTCP submodule is unnecessary for flows that do not need it, i.e., flows without
any requirements for reliability or flow control. The relationship between DTP and
DTCP is illustrated in the see Figure 6. Depicted are also data transfer and data
control transfer paths. The control traffic stays out of the main data transfer.

State VectorTightly-bound

DTP
Loosely-bound

DTCP

EFCP instance

control traffic

Fig. 6: EFCP instance divided into DTP and DTCP part

Relaying and Multiplexing Task

The Relaying and Multiplexing Task (RMT) modules have two main responsibilities
– relaying and multiplexing as characterized in [7]. The goal of multiplexing is to
pass PDUs from the EFCPIs and RIBd to appropriate (N-1)-flows and reverse of
that. Relaying handles incoming PDUs from (N-1)-ports that are not directed to its
IPCP and forwards them to other (N-1)-ports using the information provided by its
forwarding policy.

RMT Instances in hosts and bottom layers of routers usually perform just the
multiplexing task, while RMTs in the top layers of interior/border routers do both
multiplexing and relaying. In addition to that, RMTs in top layers of border routers
perform flow aggregation.

Each (N-1)-port handled by the RMT has its set of input and output buffers. The
number of buffers, their monitoring, their scheduling discipline and classification of
traffic into distinct buffers are all matter of policies.

The RMT is a straightforward high-speed component. As such, most of its man-
agement (state configuration, forwarding policy input, buffer allocation, and data rate
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regulation) is handled by the Resource Allocator, which makes the decisions based
on the observed IPC process performance.

SDU Protection

The SDU Protection is the last part of the IPCP data path, before an SDU is handed
over to an underlying DIF. It is responsible for protecting SDUs from untrusted (N-
1)-DIFs by providing mechanisms for lifetime limiting, error checking, data integrity
protection and data encryption. The SDU Protection also provides mechanisms for
data compression or other two-way manipulations that depend on the (N-1)-flow.

Due to different levels of trust, the SDU Protection handles each (N-1)-flow on its
own. This gives us the ability to skip some SDU Protection mechanisms in favor of
performance for trusted networks while still being protected from untrusted networks.
This is controlled by using different policies that may protect SDU content with the
help of integrity checks or encryption.

Flow Allocator

Flow Allocator (FA) as specified in [5] processes allocate/deallocate IPC API calls
and further management of all IPCP’s flows. FA instantiates a Flow Allocator Instance
to manage each flow; FA is a controller/container for all Flow Allocator Instances.

A Flow Allocator Instance (FAI) is created upon allocate request call, and it
manages a given flow for its whole lifetime. FAI handles creating/deleting EFCPI(s)
while managing a single flow’s connection. FAI returns port-id to the allocation
requestor upon successful allocation as a referencing handle. FAI participates only
on port allocation, not on synchronization, which is the responsibility of the EFCPI.
The FAI maintains a mapping between flow’s local port-id and connection’s local
CEP-id.

FA contains Namespace Management (NSM) interface for assigning and resolving
names (including synonyms) within a DIF. This activity involves maintaining the
table with entries that map a requested ANI to the IPCP’s address.

The Flow object contains all information necessary to manage any given flow be-
tween communicating parties. It is carried inside create/delete flow request/response
messages controlling FA and FAI operation. A Flow object contains: source and des-
tination ANI, source and destination port-ids, connection-id, source and destination
address, QoS requirements, a set of policies, access control information, hop-count,
current and maximal retries of create flow requests.

Resource Allocator

If a DIF has to support different qualities of service, then different flows will have to
be allocated to different policies and traffic for them will be treated differently. The
Resource Allocator (RA) delineated in [4] is a component accomplishing this goal by
handling the management of various IPCP resources, namely it:

• controls creating/deleting and enlarging/shrinking of RMT queues;
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• modifies EFCPI’s DTCP policy parameters;
• controls creating/deleting of (N-1)-flows and their assignment to appropriate

RMT queue(s);
• manages QoS classes and their assignment to RMT queue(s);
• manages routing information affecting RMT’s relaying or initiates congestion

control.

RA maintains a catalog of meters and dials by monitoring various management
resources. Each catalog item can be manipulated and shared with other IPC processes
within the DIF.
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4 Components and Policies

This section provides a general overview of the components design, which includes
high-level abstract models of computing systems (like hosts and routers) and also
their low-level submodules (like IPCP). In general, a structure of RINASim models
follows the structure proposed in the RINA specification. This intentional corre-
spondence enables anyone understanding the RINA specifications to orient easily
also in RINASim. Though this structure does not always stand for the most natural
representation of the RINA concepts in simulation models, it provides a framework
for evaluating properties of the architecture and to identify missing or inaccurate
information in the original specification.

The RINA specifications present the proposed network architecture as a generic
framework, where mechanisms are intended to perform basic common functionality
and policies are defined to select the most appropriate implementation of variable
functionality. Rather than providing an exhaustive implementation of policies for
each parameterized function, RINASim provides interfaces that are used by the core
implementation to call functions defined by the selected policies.

The RINASim policy framework is based on the OMNeT++ NED module in-
terfaces [20], which helps to minimize the need for modifying existing C++/NED
source code. Instead of placing a simple module with a policy implementation inside
the simulation network graph, a placeholder interface module is used. This design
allows the potentially unlimited amount of user policy implementations to be defined
and easily switchable via the configuration files (by setting a proper parameter of the
encompassing module). Each policy consists of a NED module interface and a base
C++ class.

4.1 Nodes

RINASim offers a variety of high-level models simulating the behavior of indepen-
dent computing system (examples of all three types provided in Fig. 7). These models
can be employed to quickly set up simulation experiments. Through parameterization
and extension, it is possible to test different deployments and settings. Based on the
RINA specifications, we can distinguish between the following node types:

• Host nodes, which represent devices or systems that run distributed applications.
These nodes implement the full RINA stack and, also, contain an application
process(es). AP instances are configured to communicate with each other to
simulate the behavior of an arbitrary RINA application. Currently, there are
several predefined host nodes depending on a count of APs and AEs.

• Routers (intermediate nodes), which can be either interior or border. A router is
a device that interconnects different underlying DIFs and often does not run user
applications. Just as in the RINA specification, there are either interior or border
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routers depending on the DIF stack depth (influenced partially also by a count of
interfaces).

Fig. 7: Examples of RINASim node modules of different types
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4.2 DAF Modules

DAF components can be divided into submodules: a) representing IPC endpoints;
b) interconnecting APs and available IPCPs; c) discovering APNs. The internal
structure of these components and their relationship are described below and depicted
in Figure 8.

DIF Allocator

The difAllocator module handles locating a destination application based on
its name. The DA is a component of the DAP’s IPC Management that takes the ANI
and access control information and returns a list of DIF-names through which the
requested application is available. Moreover, the difAllocator module provides
statically configured knowledge about the simulation network graph. RINASim’s DA
overloads any NSM calls.

Submodules

• da – Delivers the core functionality of DA;
• namingInformation – Provides mapping between APN synonyms;
• directory – Provides mapping between APN and DIF-names;
• searchTable – Provides mapping between APN and peer DA for authoritative search;
• neighborTable – Provides mapping between peer DA and neighboring DA instances.

IPC Resource Manager

The ipcResourceManager module currently queries the DA module to find
suitable IPCP and relays communication between the AE and the IPCP.

Submodules

• irm – Acts as a broker between APs and IPCs and handles AP flow (de)allocation calls;
• connectionTable – Maintains the state of the N-1 flows.

Enrollment

The enrollment module manages all communication within the Common Appli-
cation Connection Establishment Phase and during Enrollment phase. It is responsible
for managing the states of communication and exchanging initial application objects.
Application Process

The applicationProcess module currently handles all application communi-
cation from initialization of the first connection to deallocation of all resources. The
module acts as an independent unit within the DAF. The applicationProcess
module also provides statically configured information about its name within the
DAF.
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Submodules

• enrollment – Delivers the core functionality of Enrollment;
• enrollmentStateTable – Provides state information about connections.

Submodules

• apInst – Spawns a running application;
• rib – Provides an interface for object management in the database;
• ribDaemon – Handles subscription for objects and manages them within DAF members;
• enrollment – Handles initial phases of communication;
• applicationEntity – Wrapper for standard AE Instances;
• aeManagement – Wrapper for AE Management Instances.

AE Monitor Instance

The AEMonitor module is an instance of a specialized AE that mimics a ping-like
application.

Submodules

• iae – Delivers the core functionality of AE Instance;
• commonDistributedApplicationProtocol – Handles all CDAP messages;
• socket – Application buffer for read/write operations cooperating with (N-1)-EFCP.

AE Management Instance

The mgmtae module is used for handling the management communication. It is
mainly used for enrollment and for maintaining RIB updates.

Submodules

• aemgmt – Delivers the core functionality;
• commonDistributedApplicationProtocol – Handles all CDAP messages;
• enrollmentNotifier – Serves as the mediator in communication between
enrollment and aemgmt;

• socket – Application buffer for read/write operations cooperating with (N-1)-EFCP.

RIB Daemon

The ribDaemon module manages objects in the local RIB repository. It provides
an interface for manipulating objects (e.g., read/write/delete) in the RIB.
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RIB

The rib module acts as a database of application objects. It has an interface for
searching, writing, deleting objects. The RIB is primarily accessed by the RIBd that
manages these objects within the AP.

Common Distributed Application Protocol

The commonDistributedApplicationProtocol module accepts and
sends all CDAP messages. Submodules help to differ between types and purposes of
CDAP messages and allows their logging.

Submodules

• cace – Handles all messages that belong to CACE;
• auth – Handles messages that belong to authentication phase;
• cdap – Accepts and sends all other messages;
• cdapSplitter – Forwards messages to appropriate module;
• cdapMsgLog – Provides logging of all messages.
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Fig. 8: DAF modules
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4.3 DIF Modules

All currently implemented DIF components are enclosed to the IPCProcess
container module (IPCP instance). The IPCProcess contains the following sub-
modules, and the overall structure is shown in Figure 9.

Fig. 9: IPCP’s DIF modules
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Delimiting

The delimiting module handles SDUs in the form of SDUData from the N+1 DIF
and produces UserDataField for the EFCP instance module. In the opposite
direction, it accepts UserDataField and produces SDUData to the N+1 DIF.

It is capable of fragmenting and concatenating incoming SDUs. Fragmentation is
based on maxPDUsize. Concatenation takes the incoming SDUs and puts them in
single PDUData until maxPDUSize is met or until the Delimiting Timer expires.

The delimiting module does not contain any submodules. No policies are currently
associated with this module.

EFCP Compound Module

The efcp compound module handles the data transfer and the associated state
vectors. It takes the SDUs from the (N+1)-IPCP or CDAP message from RIBd and
creates PDUs.

This module dynamically spawns EFCP Instances. Dynamic modules consist
of one Delimiting module (delimiting_<portId>) and (possibly) multiple
EFCPI modules (efcp_<cepId>) per one flow. The EFCPI module itself is also a
compound module and contains the static modules DTP and DTPState. If the flow
(QoS demands) requires control, then there are DTCP and DTCPState modules.
It also includes efcpTable to store binding between instances of Delimiting and
EFCP. Moreover, there is a mockEFCPI module containing simplified EFCPI with
DTP-like only capabilities for Management flows.

Submodules
There are three static submodules:

• efcp – Creates and deletes EFCP instances and Delimiting modules;
• efcpTable – Contains bindings between Delimiting and EFCPI (DTP and DTCP);
• mockEFCPI – Is simplified EFCPI with DTP-like only capabilities;

Furthermore, it may contain dynamically created pairs of Delimiting and EFCPI modules.

• delimiting_<portId> – Handles fragmentation/concatenation;
• efcpi_<cepId> – Handles data transfer and control loop functions.

Policies
Policies related to EFCP are specified in DTP and DTCP subsections.

EFCPinstance

An EFCP Instance locally manages the established flow. The efcpi_<cepId>
module contains DTP and DTPState submodules. Any necessary policy submod-
ules associated with the flow are part of this compound module as well.
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Submodules

• dtp – The module implements the Data Transfer Protocol. The dtp module accepts user data
content from the Delimiting module, generates PDUs, and pass them to relayAndMux.
If necessary, it asks dtcp for reliable data transfer. DTP policies are configurable via
config.xml file by specifying EFCP Policy Set in QoS-cube;

• dtpState – The module holds properties related to the actual data transfer. In RINASim,
dtpState module stores all necessary variables and queues;

• dtcp – The module implements Data Transfer Control Protocol. The dtcp handles retrans-
mission and flow control related tasks. From the perspective of RINASim, dtcp executes
policies to update the dtcpState. Policies reacts to a situations when error recovery and/or
flow control are expected. The current implementation supports retransmission, window-based
flow control, allowed gap and A-Time;

• dtcpState – Maintains DTCP related variables;
• northG, southG – These are pass-through modules that serve for better link visualization.

DTP Policies
The dtp module is associated with the following policy types:

• InitialSeqNumPolicy – It allows some discretion in selecting the initial sequence num-
ber when DRF is going to be sent. (default: Sets the new sequential number to 1);

• RcvrInactivityPolicy – If no PDUs arrive in the ewatched period, the receiver should
expect a DRF in the next Transfer PDU. Policy represents a timer, which should be set to
2 · (MPL + R + A). (default: Resets all receiver-side variables and queues);

• SenderInactivityPolicy – Policy represents a timer, which detects long periods of no
traffic. It indicates that a DRF should be sent. ∆t should be set to 3 · (MPL + R + A). (default:
Resets all sender-side variables and queues);

• RTTEstimatorPolicy – Policy is executed by the sender to estimate the duration of the
retransmission timer. This policy is usually based on an estimate of Round-Trip Time (RTT)
and received/lost acknowledgements. (default: Computes RTT as an average from the current
RTT and the last computed estimate).

RMT

The Relaying and Multiplexing Task represents a stateless function that takes incom-
ing PDUs and relays them within current IPC or passes them to the outgoing port. In
particular the RMT takes PDUs from (N-1)-port ids, consults their address fields and
performs one of the following actions:

• If the address is not an address (or a synonym) for this IPC Process (which is
determined by RA’s AddressComparator policy), it consults the PDU Forwarding
policy and posts it to the appropriate (N-1)-port(s).

• If the address is one assigned to this IPC Process, the PDU is delivered either to
the appropriate EFCP flow or the RIB Daemon (via a mock EFCP instance).

• Outgoing PDUs from EFCP instances or the RIB Daemon are posted to the
appropriate (N-1)-port-id(s).
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DTCP Policies

• ECNPolicy – Handles the ECN bit in incoming DT-PDUs. (default: Sets inner variable based
on bit in DT-PDU header);

• ECNSlowDownPolicy – Is executed after IPCP’s RA receives Congestion Notification.
(default: No action);

• LostControlPDUPolicy – Determines what action to take when the protocol machine
detects that a control PDU (Ack or Flow Control) may have been lost. (default: Sends
ControlAck and empty DT-PDU);

• NoOverridePeakPolicy – Allows rate-based flow control to exceed its nominal rate for
presumably short period of time. (default: Puts DT-PDU on ClosedWindowQ);

• NoRateSlowDownPolicy – Is used to lower momentarily the send rate below the allowed
rate. (default: No action);

• RateReductionPolicy – Is executed in case of rate-based flow control. When local
shortage of buffers occurs or when buffers are less full than a given threshold, policy increases
the rate agreed during the connection establishment. (default: Slows down by 10% if buffers
are getting clogged);

• RcvFCOverrunPolicy – Determines what action to take if the receiver receives PDUs,
but the credit or rate has been exceeded. (default: Drops the PDU and sends control PDU as
response);

• RcvrAckPolicy – Is executed by the receiver of the DT-PDU and provides some discretion
in the action taken. (default: Either acknowledges immediately or starts the A-Timer and
acknowledges the RcvLeftWindowEdge when it expires);

• RcvrControlAckPolicy – Is executed upon reception of ControlAckPDU. (default:
Checks the values and if necessary sends back control PDU with updated information);

• RcvrFCPolicy – Policy is invoked when a DT-PDU is received to give the receiving protocol
machine an opportunity to update the flow control allocations. (default: Increments receiver’s
right window edge);

• ReceivingFCPolicy – Is invoked by the receiver of a DT-PDU in case there is a flow
control present, but no retransmission control. (default: Sends FlowControlPDU).

• ReconcileFCPolicy – Is invoked when both credit and rate-based flow control are in use,
and they disagree on whether the protocol machine can send or receive data. If this is the case,
then the protocol machine can send or receive; otherwise, it cannot;

• RxTimerExpiryPolicy – Is executed by the sender when a retransmission timer expires.
This policy must be run in less than the maximum time to Ack. (default: Retransmits DT-PDU
with seqNum equal to the one in RXTimer);

• SenderAckPolicy – Is executed by the sender when PDUs might be deleted from the
retransmission queue. It is useful for multicast-like use-cases, when it is feasable to delay
discardation of PDUs from the retransmission queue. (default: Removes DT-PDU from retrans-
mission queue up to Acked sequence number);

• SenderAckListPolicy – Is executed by the sender when PDUs might be deleted from the
retransmission queue. The policy is used in conjunction with the selective acknowledgement
aspects. It is useful for multicast transfers just like the previous policy. (default: Removes
specified seqNum ranges from retransmission queue);

• SendingAckPolicy – Is executed upon A-Timer expiration in case there is DTCP present.
(default: Updates receiver’s left window edge and sends Ack/FlowControlPDU;

• SndFCOverrunPolicy – Determines what action to take if the sender has DT-PDU ready
for dispatch but values of SndRightWindowEdge or SndRate are blocking them. (default:
Puts DT-PDU in ClosedWindowQueue);

• TxControlPolicy – Is used when there are conditions that warrant sending fewer PDUs
than allowed by the sliding window flow control. (default: Puts as many DT-PDUs from
generatedPDUQ to postablePDUQ).
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In RINASim, all functionality of the RMT including a policy architecture is encom-
passed in a single compound module named relayAndMux, which is present in
every IPC process.

Submodules

• relayAndMux – Consists of multiple simple modules of various types, some of which are
instantiated dynamically at runtime;

• Static modules:

– rmt – Implement fundamental RMT logic that decides what should be done with mes-
sages passing through the module;

– allocator – A manager unit for dynamic modules that provides an API for adding,
deleting and reconfiguration of RMT ports and queues;

• Dynamic modules:

– RMTPort (encompassed in RMTPortWrapper) – A single endpoint of an (N-1)-flow;
– RMTQueue – A representation of either an input or an output queue. The number of
RMTQueues per (N-1)-port is a matter of RA policies;

– sdup – Performs SDU protection.

Policies
RMT provides following policies:

• schedulingPolicy – Is invoked each time some (N-1)-port has data to send. The policy
employs the algorithm to make a decision about which of port’s queues should be handled first;

• queueMonitorPolicy – Is a stateful policy that manages variables used by other RMT
policies. It is invoked by various events happening inside RMT and its ports and queues;

• maxQueuePolicy – Is a policy used for deciding what to do when queue lengths are
overflowing their threshold lengths. It is invoked whenever the size of items in a queue reaches
a threshold;

• pduForwardingPolicy – Is a policy deciding where to forward a PDU. It accepts the
PDU as an argument, does a lookup in its internal structures (usually a forwarding table
populated by the PDUFG policy) and returns a set of (N-1)-ports.

Routing

The Routing module is a policy that serves for exchanging information with other
IPCPs in DIF in order to generate a set of routing information. It indirectly provides
input for populating the RMT PDUForwardingPolicy.

Routing policies are used to propagate information about routing in the DIF and
are dependent on PDU Forwarding Generator (PDUFG).

Policies
Consist of a single replaceable policy that conducts routing within the DIF. There are examples
of policies (e.g., DummyRouting, DomainRouting, SimpleRouting) leveraging distance-
vector, link-state or native RINA approaches for routing PDUs.
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Flow Allocator

The flowAllocator module handles (de)allocation request and response calls
from the IRM, RIBDaemon, DAFEnrollment or AE. FA itself is structured into
the flow table and flow management modules.

Submodules

• fa – Provides the core functionality involving instantiation of FAIs;
• nFlowTable – Maintains mappings between (N)-flow and bound FAI;
• fai_<portId>_<CEPid> – Manages the whole flow lifecycle.

Policies

• allocateRetryPolicy – Occurs whenever initiating FAI receives negative create flow
response. It allows FAI to reformulate the request and/or to recover properly from failure;

• qosComparePolicy – Checks if existing (N-1)-flows can be used to support an (N)-flow;
• newFlowRequestPolicy – Is invoked after FAI’s instantiation. Policy subtasks involve

both 1) evaluation of access control rights; and 2) translation of QoS requirements specified in
allocate request to appropriate RA’s QoS-cubes.

Resource Allocator

The resourceAllocator is one of the most important components of an IPC
Process. It monitors the operation of the IPC Process and makes adjustments to its
operation to keep it within the specified operational range.

Submodules

• ra – Provides core functionality managing RMT and connections to other IPCPs via (N-1)-
flows;

• nm1FlowTable – Maintains a table containing information about the active (N-1)-flows;

Policies

• pduFwdGenerator – A policy, which manages the RMT’s PDU Forwarding policy;
• queueAllocPolicy – A policy handling RMT queue allocation strategy;
• queueIdGenerator – A policy generating queue IDs from Flow information and PDUs;
• addressComparator – A policy matching PDU address and IPCP address.
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5 Demonstrations

This section outlines some of the scenarios where RINA is employed as the native
network stack. General instructions (how to setup and run the examples) are provided
to the reader. Furthermore, a detailed description tries to reveal advantages of adopt-
ing RINA for certain Internet use-cases. Demonstration source codes are located in
/examples/ folder, and each one includes following files (which may be reused
as templates when creating other RINASim scenarios):

• <name>.ned – OMNeT++ simulation network, which contains definitions of
nodes and their interconnections;

• omnetpp.ini – The scheduled setup including model configurations (e.g.,
node addresses, ANI for AEs, references to XML configuration) applied during
initialization of scenario;

• config.xml – The file contains more complex / structured configurations (e.g.,
DA’s mappings, RA’s QoS-cubes, pre-allocation and pre-enrollment settings) in
the form of XML data, which are mostly applied during initialization;

• *.anf – The file(s) is describing which statistics should be collected and
evaluated during simulation run;

• ./results/* – Scalar/vector results of various simulation runs.

5.1 Demo Network

Simulation source codes relevant for this scenario are located in the folder
/examples/Demos/UseCase5.

The motivation behind this particular simulation is to show a ping-like application
within the simple network consisting of all different node types. The topology
contains two host nodes (called HostA and HostB), two border routers (called
BorderRouterA and BorderRouterB) and one interior router (identified as
InteriorRouter) interconnected together.

There are totally six named DIFs of three different ranks (the network is depicted
in Figure 10). Please notice the addressing scheme where the same node may use the
same address on a different DIF as long as this address is unambiguous within the
layer’s scope. The RINA address length and syntax is policy-dependent (comparing
to IP or MAC). The demonstration uses a flat address space with simple strings as
addresses. The addresses are mentioned in blue color to highlight them in the text.

• Top most TopLayer DIF is common to HostA (with address hA),
BorderRouterA (address rA and self-enrolled), BorderRouterB (address
rB) and HostB (hB). Self-enrolled APs/IPCPs in RINASim are ones that are
automatically members of some DAF/DIF and they are skipping Enrollment
phase during any communication.

• Three middle DIFs MediumLayerA, MediumLayerAB and MediumLayerB. Medi-
umLayerA is common to HostA (ha) and BorderRouterA (address ra
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and self-enrolled). MediumLayerAB is common to BorderRouterA (rA),
InteriorRouter (address rC and self-enrolled) and BorderRouterB
(rB). MediumLayerB is common to BorderRouterB (address rb and self-
enrolled) and HostB (hb).

• Two bottom most DIFs BottomLayerA and BottomLayerB. BottomLayerA is
common to BorderRouterA (ra) and InteriorRouter (address rc and
self-enrolled). BottomLayerB is common to InteriorRouter (address rc
and self-enrolled) and BorderRouterB (rb).

By default, every RA contains an implicit QoS-cube (with QoS-id MGMT-
QoSCube) that defines QoS parameters (e.g., reliability, minimum bandwidth) for
management traffic and guarantees successful mapping of management SDUs onto
the appropriate (N)-flow. Apart from this default QoS-cube, each RA loads the
QoS-cube set according to the simulation configuration. For demonstration, there
are two more QoS-cubes available for each RA called QoSCube-RELIABLE and
QoSCube-UNRELIABLE (with the same QoS parameters differing only in data
transfer reliability).

The DA implementation currently allows only the static change of its settings
(namely different kinds of mappings). Hence, the necessary configuration step is to
initialize the DA properly in order to provide services to FA, RA and other compo-
nents depending on naming information. Namely, two DA’s tables are important for
overall functionality – Directory (helps to search target IPCP for a given APN)
and NeighborTable (used by FA to find a neighbor IPCP for a given IPCP).

The simulation description is divided into two phases:

1. Enrollment Phase – If another IPCP wants to communicate within a given
DIF, then, it needs to be enrolled by a DIF member. Self-enrolled IPCPs are
members of certain DIFs from the beginning of the simulation, and they help
other IPCPs to join a DIF. In order to allow communication between any node,
the simulation is scheduled to commence enrollment of: BorderRouterA into
BottomLayerA at t = 1s; BorderRouterA into MediumLayerAB at t = 1.5s;
BorderRouterB into TopLayer at t = 2s; and HostB into TopLayer at t = 5s.
The enrollment usually involves recursive calls of enrollment procedures in lower
ranked DIFs.

2. Data Transfer Phase – The IPC comprises of flow allocation, data transfer,
and optional flow deallocation. HostA and HostB are configured to exchange
messages via a ping-like protocol (measuring one-way and round-trip delays). In
this case, flow allocation is initiated at t = 10s, first ping is sent at t = 15s and
flow deallocation occurs at t = 20s.

All steps related to the Enrollment Phase are described on example of application
connection in Section 5.2. For now, let us skip Enrollment Phase by stating that except
HostA all other DIF/DAF members were successfully enrolled. All flows created
during Enrollment Phase carry only CACE messages (for connection establishment),
and they are intended for direct RIBd-to-RIBd communication employing various
management messages. Thus, these flows are called management flows.
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Fig. 10: Demo network diagram
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The main outcome of this scenario is a simulation of data transfer events between
ping-like applications (APPing) run on HostA and HostB. This ping-like protocol
sends probe request (M_READ) from HostA to HostB, where HostB replies with
the response (M_READ_R). One-way and round-trip time delays are measured
according to timestamp differences of these messages.

The Data flow allocation starts at t = 10s. HostA’s applicationProcess1
requests flow for communication with HostB’s applicationProcess1. The
event goes through following set of steps:

#1) Allocate request is delivered to IRM. Over there, DA is asked to resolve the
destination ANI into an IPC address within certain DIF available to HostA. The
following result is returned yielding that destination is reachable via IPCP hB in
TopLayer;

#2) HostA can access TopLayer leveraging ipcProcess1. Hence, IRM dele-
gates a allocate request call to ipcProcess1’s FA. FA instantiates EFCPI
and verifies whether IPCP is enrolled into DIF before any attempt for sending
create request flow. A couple of enrollment events recursively repats: a) enroll-
ment of HostA’s ipcProcess0 into MediumLayerA by BorderRouterA;
b) creation of management flow between IPCP ha and IPCP ra within Medi-
umLayerA; c) enrollment of HostA’s ipcProcess1 into TopLayer by
BorderRouterA;

#3) After successful enrollment of ipcProcess1, FA may continue with the flow
allocation. FA exchanges create request/respond flow with HostB. This includes
the creation of an (N-1)-flow between ha and ra in MediumLayerA and cre-
ation of the(N)-flow between hA and hB in TopLayer. It gets more complex in
TopLayer because M_CREATE and M_CREATE_R messages must be relayed
by the border routers to reach HostB, which causes additional recursive flow
allocations between interim devices (i.e., BorderRouterA, InteriorRouter, Bor-
derRouterB). All interim devices are already enrolled into their DIFs, thus the
established flows serve as carriers for HostA and HostB data transfer;

#4) M_CREATE from HostA to HostB is received by BorderRouterA’s
relayIpc. BorderRouterA inspects create request flow and determines
BorderRouterB with the help of DA as the next-hop. Because border routers
are not directly connected, they can communicate via InteriorRouter as
a proxy. Therefore, BorderRouterA establishes flow between ra and rc of
BottomLayerA and sends a create request flow in MediumLayerAB;

#5) M_CREATE from BorderRouterA to BorderRouterB is received by
InteriorRouter’s relayIpc. The message needs to be relayed to
BorderRouterB. Hence, the flow is created between rc and rb in Bottom-
LayerB. Then, create request flow is forwarded within this DIF;

#6) M_CREATE from BorderRouterA to BorderRouterB within
MediumLayerAB is received by BorderRouterB’s ipcProcess2.
BorderRouterB accepts the flow and sends create respond flow that travels
back to BorderRouterA. Because the flow connecting both border routers
(rA and rB within MediumLayerAB) is established, flow allocation from #4 may
continue;
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#7) M_CREATE from HostA to HostB is received by BorderRouterB’s
relayIpc after passing through flows the created during #5 and #6. Border-
RouterB inspects create request flow and determines that HostB is reachable via
its MediumLayerB. In order to successfully relay M_CREATE to its final destina-
tion, BorderRouterB allocates the flow between rb and hb in MediumLayerB.
Subsequently, M_CREATE is forwarded to HostB;

#8) M_CREATE is received by HostB’s ipcProcess1. The FA no-
tifies applicationProcess1 about the current flow allocation.
applicationProcess1 accepts flow for data transfer between APs.
The decision is returned to ipcProcess1’s FA. The IRM is asked to create
bindings between AP and IPCP. The FA instantiates the EFCPI, updates the
Flow object and replies back to the requestor with M_CREATE_R;

#9) M_CREATE_R is relayed via all flows formed during #4-#7 to HostA until
ipcProcess1’s FA receives this message. The FA updates the Flow object
and notifies applicationProcess1 about successful flow allocation. Then
the IRM adds the missing bindings, and the whole data path between HostA
and HostB is ready. The (N)-flow in TopLayer can carry data traffic between
AEs with the help of all underlying flows.

The next event is a transfer of data traffic between AEs. HostA sends five ping-like
probing objects inside M_READ message starting at t = 15s. Upon reception of these
messages, HostB replies with probe response (in form of dedicated M_READ_R
message). Data path and flows are depicted in Figure 11 with different colors acom-
panied by the following description. The event consists of five repetitions of these
two steps:

#1) HostA’s applicationProcess1 sends a M_READ message, which is
passed through IRM into ipcProcess1 to flow prepared during the pre-
vious event and descends to ipcProcess0. The message travels through
the medium and flow connecting HostA with BorderRouterA within
MediumLayerA, where it is received by ipcProcess1. It is relayed by
BorderRouterA’s relayIpc to ipcProcess2 and flow interconnect-
ing BorderRouterA and BorderRouterB in MediumLayerAB. Because
border routers are not directly connected, the message is passed to a lower
bottomIpc into flow interconnecting BorderRouterAwith the neighboring
InteriorRouter in BottomLayerA. Message traverses through the medium,
and it reaches InteriorRouter’s ipcProcess0. Over there, the message
ascends to relayIpc, where it is relayed within MediumLayerAB. Then it de-
scends to ipcProcess1 into flow interconnecting InteriorRouter and
BorderRouterB in BottomLayerB. The message travels through medium
to BorderRouterB’s bottomIpc. It ascends to ipcProcess2 and is re-
layed by relayIpc to ipcProcess1. Finally, the message reaches HostB’s
ipcProcess0 through medium inside flow within MediumLayerB. It ascends
to the flow in ipcProcess1 (member of TopLayerB) and through IRM to
HostB’s applicationProcess1 as the recipient;
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#2) HostB’s applicationProcess1 responds with M_READ_R message that
returns to HostA traveling in opposite direction through the same data (marked
with violet line) path as in #1. Refering to Figure 11, the message is either
encapsulated (from HostA to HostB green circles) or decapsulated (from
HostA to HostB orange circles) into/from PDU or relayed (brown circles)
depending on direction.
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Fig. 11: Data transfer path illustration for Demo network

After the APs exchanged pings, HostA’s AE closes the connection and sends
deallocate submit to HostB at t = 20s. Deallocation affects only the flow present in
the TopLayer. The current RINASim implementation leaves the underlying (N-1/2)-
flows (i.e., those not directly connected with APs) intact because they may be reused
later by other applications. This event is accompanied by following steps:

#1) HostA’s applicationProcess1 tells IRM to deliver a deallocate submit.
IRM unbounds the port from its side. Then, the IRM delegates flow deallocation
to ipcProcess1’s FA;

#2) This FA generates a M_DELETE message with an updated Flow object state
inside and sends the object towards HostB through the flow in TopLayer. The
message follows the data path leveraging existing management flows created
during the Enrollment Phase;
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#3) HostB’s ipcProcess1 receives M_DELETE. The FA updates its ver-
sion of the Flow object. FA delivers deallocation submit to HostB’s
applicationProcess1, which tells the IRM to remove bindings;

#4) ipcProcess1’s FA on HostB then replies with M_DELETE_R acknowledg-
ing the successful flow deallocation. This message is carried back to HostA;

#5) HostA’s ipcProcess1 receives M_DELETE_R. FA marks the flow as deal-
located and disconnects remaining bindings between IPCP and IRM.

The result of flow (de)allocation and flow’s state is maintained in
ipcProcess1’s NFlowTable of HostA and HostB.

5.2 Simple application

Simulation source codes relevant for this scenario are located in the folder
/examples/Demos/UseCase2.

There is only one named DIF Layer0 connecting hostA and hostB. RINA
address length and syntax is policy-dependent (comparing to IP or MAC). The
demonstration uses flat address space with simple string as addresses. The IPCP at
hostA has the address 1 and IPCP at hostB has the address 2. The application
on hostA has the APN SourceA and the destination application on hostB has
conveniently the APN DestinationB.

Every application starts with the creation of an application connection to an AP
that is part of a DAF. This process contains several events such as AE Instance
creation, flow allocation, management connection establishment, and enrollment that
need to proceed before the application connection is created. The application goes
through these steps to be able to communicate within the DAF:

#1) In the HostA’s applicationProcess1, the request for a connection
to HostB’s applicationProcess1 is induced via an API call. The
HostA’s applicationProcess1 is not a member of a DAF yet, so
it needs to create a management connection to the destination AP first.
The HostA’s applicationProcess1 spawns a management AEI inside
AEManagement that is used to handle the management communication be-
tween APs in a DAF. The flow to the destination AP is allocated. HostB’s
applicationProcess1 spawns the corresponding management AEI when
it accepts flow allocation. The connection is successfully allocated, and CACE
between the APs may proceed;

#2) HostA’s management AEI sends a M_CONNECT request carrying the authenti-
cation information. The HostB’s management AEI receives the M_CONNECT,
validates the authentication data, and sends the M_CONNECT_R back. The
application connection is successfully established upon reception of the positive
response (the CACE phase proceeded successfully);

#3) The next phase of communication is the Enrollment. The HostA’s
applicationProcess1 sends M_START message containing object(s) re-
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lated to the enrollment. The HostB’s applicationProcess1 replies with
M_START_R. Subsequent exchange of M_CREATE / M_CREATE_R initiated
by HostB’s applicationProcess1 (that is a member of the DAF) may
proceed. These messages should synchronize essential objects in RIBs, which
would allow HostA’s applicationProcess1 to operate as a full-fledged
member of the DAF. RINASim has placeholders to leverage this synchronization
property of enrollment;

#4) When the necessary objects are created, a M_STOP message is generated
by the HostB’s AP. HostA’s applicationProcess1 sends M_STOP_R
indicating that no more messages need to be exchanged. Otherwise, the
HostA’s applicationProcess1 might send several M_READs to ob-
tain information from the member AP (i.e., HostB). Then the HostA’s
applicationProcess1 is a new member of the DAF.

Described Enrollment Phase is the enrollment applied on DAF membership.
Enrollment within DIF follows the same message order and states except for the data
in the objects that are exchanged. In case of DIF, RIBd processes above-mentioned
messages directly instead of AEs (because AEs are not components of any DIF).

Once the management connection is established, and Enrollment Phase finished,
the AP starts to operate as a full-fledged member of a DAF. The simple ping-like
application follows these steps:

#1) HostA’s applicalicationProcess1 spawns the instance of
AEMonitor (which is a specialized AE offering ping-like behavior).
The AEMonitor instance requests the underlying IPCP (i.e., ipcProcess1)
for the flow with a specified application QoS. The flow is then allocated (See
Section 5.1 for more details);

#2) HostB’s applicationProcess1 instantiates the AEMonitor in re-
sponse to positive allocation of the requested flow. The HostA’s
applicationProcess1 generates a M_CONNECT carrying the au-
thentication information and HostB’s applicationProcess1 sends a
M_CONNECT_R with a positive response back. This establishes the appli-
cation connection (CACE phase is completed), and the data objects may be
transferred over this connection;

#3) Generally, AEs support two types of communication - either via the RIB or
direct messaging omitting the RIB completely. Our ping-like application uses
the direct messaging to keep the demonstration as simple as possible. The
HostA’s applicationProcess1 sends a M_READ message request with a
specific object. The request is received by HostB’s applicationProcess1
(namely by an instance of AEMonitor), which replies with M_READ_R;

#4) The HostA’s applicationProcess1 receives the M_READ_R. The ap-
plication then displays a result to a user (i.e., console text). Another round of
M_READ/M_READ_R exchange follows later. The object inside these messages
contains just an integer value that is incremented by each host.

This simple ping-like application shows a direct communication between two APs.
The communication in real ping should be the same.
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5.3 Reliable Data Transfer

Simulation source codes are same as in the case of Section 5.2 and they are in folder
/examples/Demos/UseCase2.

In this scenario, we demonstrate reliable data transfer with a detailed description
of EFCP events. We use a minimal topology with just two hosts (see Figure 12), each
one with a single IPCP for a sake of simplicity. We omit the description of events
prior to EFCP instance creation such as Enrollment Phase or flow allocation.

Fig. 12: Reliable data transfer illustration of two directly connected hosts

We demonstrate the reliable data transfer using a ping-like application between
hostA and hostB (see Figure 12). The transfer over the link between hostA and
hostB is delayed by 0.4 s in both directions. As described previously, the ping-like
application exchanges ping request and response (i.e., M_READ and M_READ_R
messages containing appropriate object referencing time). Both messages are sent
inside the DataTransferPDU and acknowledged by the ControlPDU type.
The EFCP connection is configured with the default policy set. Both flow control
(i.e., speed administration) and retransmission control (i.e., acknowledgements and
retransmits guarantee that nothing gets lost) are active.

At time t = 5s the applicationProcess1 on hostA initiates the communi-
cation. The Data Transfer starts after the successful Enrollment Phase and he flow
allocation at t = 14.8s. The reliable data transfer includes following notable steps:

#1) The module delimiting_57043 encapsulates the incoming SDU (i.e., ping
request in form of M_READ) into PDUData, fragments if necessary, and for-
wards it to the EFCP instance efcpi_20757 as UserDataField. In the
EFCP instance it is handled by the dtp module. The dtp module initialize
dtpState upon UserDataField receipt.
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The UserDataField is encapsulated in the DataTransferPDU with a
DT-PDU header. The SequenceNumber is set to the value produced by
initialSeqNumPolicy which generates a random number by default. For
simplicity, we use 1 as the initial sequence number in our example. The first PDU
is labeled with the Data Run Flag (DRF) indicating the start of a new connection.
After the complete PDU have been generated, the control is handed over to the
DTCP which tries to send it. With the window-based flow control active (with
the maximum windows size of 10 PDUs), dtcp checks if the Sender’s Right
Window Edge (SRWE) is bigger then the sequence number of the DT-PDU it
is trying to send. The initial value of SRWE is set to the sum of nextSeqNum
and intialSenderCredit.
All DT-PDUs that satisfy the flow control check are put in the postablePDUs
queue. Then DTP iterates over the set of postablePDUs and sends them to
RMT. Simultaneously, DTP also puts their copies into the retransmissionQ
queue, and starts the RetransmissionTimer. The timer is initiated
with a default RTT value of the first PDU in the connection. The RTT
value is adjusted during the connection lifetime using ControlPDUs and
the RTTEstimatorPolicy. After passing the PDU to the RMT, the
SenderInactivityTimer is started.

#2) At time t = 15.2s, the DataTransferPDU is delivered to the EFCP instance
in the ipcProcess0 on hostB. Since the PDU has the DRF set, it indicates
the (re)start of a (new) connection. In the case of a restart, DTP dequeues as
many PDUs from reassemblyQ to the delimiting module and deletes the
rest. Subsequently, DTP sets the Receiver’s Left Window Edge (RLWE) to the
seqNum of the incoming PDU (in our example to 1) and adds the PDU to the
reassemblyQ. Simultaneously, DTP updates the state vector. The SVUpdate
initiates RcvrAckPolicy which sends an AckFlowPDU as confirmation of
the DT-PDU (the one with seqNum = 1). The acknowledgement received by
hostA updates the SRWE. Then, the UserDataField is passed on hostB
to the delimiting module and the rcvrInactivityTimer is started.

#3) The AP on hostB sends back a ping response (i.e., M_READ_R) message.
The same set of steps (see #1) related to the first DT-PDU applies to hostB’s
EFCPI as in case of hostA’s corresponding EFCPI - EFCP generates the initial
sequence number, sets the DRF and starts senderInactivityTimer.

#4) At time t = 15.6s, the EFCP on hostA receives the AckFlowPDU.
It trigger both RTTEstimatorPolicy (updating the RTT value) and
SenderAckPolicy. The SenderAckPolicy removes a subset of DT-
PDUs from retransmissionQ with the sequence numbers up to the value
in the AckFlowPDU.
At the same time, hostA also processes the DT-PDU with the ping response
message. The same steps as in #2 are repeated on hostA.

#5) At time t = 15.6s, hostA sends a new ping request. The EFCP
fills the header with sequenceNumber = 2, puts the PDU in
retransmissioQ with associated RetransmissionTimer, and restarts
the SenderInactiveTimer.
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#6) At time t = 16s, hostB receives an acknowledgement of the last ping re-
sponse. As a result, the DT-PDU with sequenceNumber = 1 is removed from
retransmissionQ.

#7) Simultaneously to #6 at the time t = 16s, ipcProcess0 on hostB receives
DT-PDU with the second ping request, and sends back an acknowledgement.
The process starts to repeat.

The summary of both state vectors of the hosts is shown in Table 1 with all
sliding windows including Receiver’s Right Window Edge (RRWE) and Sender’s
Left Window Edge (SLWE), which are counterparts of RLWE and SRWE. The values
indicate the state after the corresponding event.

Variable Value
Event #1 #4 #5 #6
Time 14.8 s 15.6 s 15.6 s 16 s

Next SeqNum 2 2 2 3
RLWE 0 0 1 1
RRWE ∞ ∞ 11 11
SLWE 0 2 2 2
SRWE 10 11 11 11

retransmissionQ 1 ∅ ∅ 2

Variable Value
Event #2 #3 #7 #8
Time 15.2 s 15.2 s 16 s 16 s

Next SeqNum 1 2 2 2
RLWE 1 1 1 2
RRWE 11 11 11 12
SLWE 0 2 2 2
SRWE 10 10 11 11

retransmissionQ ∅ 1 ∅ ∅

Table 1: Values of the hostA and the hostB EFCP

Both state vectors continue to evolve in a similar fashion throughout the rest of
the communication. After the last DataTransferPDU is sent, the inactivity timers
are restarted one last time. After they expire, the State-Vectors are deallocated.

The events are mirrored on both hosts, because the application on top is sending
data in both directions. The EFCP instance on both sides uses its receiver and sender
state vector and finite state machine.

6 Conclusion

In this chapter, we described the core RINA principles. We summarized the RINA
theory in the text that lacks any forward references. We know how hard the “mental
shift” from TCP/IP concepts towards RINA is, thus we urge a reader to follow the
citations in order to learn more. We described different kinds of high-level RINA
nodes including hosts, interior routers, and border routers. Subsequently, we dived
deep into the low-level RINA components that are being used by DIF and DAF.

RINASim at its current state represents an entirely working implementation of the
simulation environment for RINA. The simulator contains all mechanisms of RINA
according to the current specification. The RINASim philosophy benefits from the
clever OMNeT++ module interfacing, which allows flexible change of employed
policies. Furthermore, the chapter also contained a detailed illustration of the RINA
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principles using three RINASim scenarios. The demonstration description show
the impact of recursion and help others to understand the enrollment and the flow
(de)allocation procedures in praxis. The demonstration setup may be employed as
the template when creating new scenarios.

The main motivation behind the development of the RINASim is that it should
allow:

• researchers to prototype and test new policies and mechanisms in a native and
full-compliant RINA environment - scientific goal;

• others to visualize and understand the RINA principles - educational goal.

RINASim (first revealed in [26]) started as one of FP7 EU PRISTINE deliverables
and continues beyond the end of the project. However, RINASim is just one of
the independent implementations (see Section 7.2 for more) of the RINA concepts.
RINASim is the open environment that can be extended with experimental features.
The simulator helps to evaluate new features and to compare them with existing
methods.

The future work for RINASim involves the following improvements that we would
like to integrate:

• Real-life L2 simulation modules – RINASim core lacks any real-life 0-DIF
medium implementations (e.g., Ethernet, LTE, serial). This severely impacts
some simulation results and collected statistics because the medium’s main
properties (delay and bandwidth) are fixed and do not respect usual processing;

• Topology generator – Preparing a scenario and accompanied configuration is a
cumbersome process even with all the help of OMNeT++’s IDE. We want to
create a dedicated web-application that would allow to generate even complex
RINASim topologies using a few mouse clicks and drag-and-drops;

• Hardware-in-the-loop simulation – By the time of this chapter publication, RINA
will already pass ISO standardization process. Since multiple projects obey
RINA specification, we would like to try connect our simulation modules with
real operating system implementations;

We encourage anyone interested in RINA to step in and contribute!
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7 Appendixes

7.1 CDAP Messages

Message Opcode Purpose
M_CONNECT Initiate a connection from a source application

to a destination application
M_CONNECT_R Response to M_CONNECT, carries connection

information or an error indication
M_RELEASE Orderly close of a connection
M_RELEASE_R Response to M_RELEASE, carries final

resolution of the close operation
M_CREATE Create an application object
M_CREATE_R Response to M_CREATE, carries result of the create request,

including identification of the created object
M_DELETE Delete a specified application object
M_DELETE_R Response to M_DELETE, carries result of the deletion attempt
M_READ Read the value of a specified application object
M_READ_R Response to M_READ, carries part or all of object

values, or error indication
M_CANCELREAD Cancel a prior read issued using M_READ

for which a value has not been completely returned
M_CANCELREAD_R Response to M_CANCELREAD, indicates outcome

of the cancellation
M_WRITE Write a specified value to a specified application object
M_WRITE_R Response to M_WRITE, carries result of the write operation
M_START Start the operation of a specified application object,

used when the object has operational and non-operational states
M_START_R Response to M_START, indicates the result of the operation
M_STOP Stop the operation of a specified application object,

used when the object has operational and non-operational states
M_STOP_R Response to M_STOP, indicates the result of the operation

Table 2: CDAP messages

7.2 RINA Adoption

Pouzin Society [21] is a formal body in charge of maintaining the RINA specifications.
Any individual or organization can become a member and participate on related
research and development. RINA is successfully targeted in the frame of multiple
EU projects as an alternative to the traditional TCP/IP stack. Here is a list of projects
and their main interests concerning RINA:
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• IRATI [18] – IRATI advances the state-of-the-art of RINA towards an architec-
ture reference model and specifications that are closer to enable implementations
deployable in production scenarios. The design and implementation of IRATI
prototype on top of Ethernet permits further evaluation and deployment of RINA
in real computer networks;

• IRINA [16] – IRINA aims to compare RINA against TCP/IP in a lab environment
using IRATI prototype. Moreover, it proposes use-cases, where RINA is a better
option for big national research and educational networks;

• PRISTINE [24] – PRISTINE investigates programmability of RINA architecture,
namely its separation of mechanisms and policies to achieve more flexible
behavior of network components;

• OCARINA [19] - OCARINA’s objectives are to research and develop new
congestion control, and routing mechanisms in RINA to show that RINA, indeed
is a much better solution for the Internet than TCP/IP in terms of performance;

• ARCFIRE [1] - ARCFIRE’s main goal is to demonstrate the RINA benefits at
large scale running experiments experimentally (e.g., deployment of virtualized
infrastructure, end-to-end service provisioning, the applicability of DDoS attacks
in RINA stack) on the FIRE+ experimental facilities;

• RINAiSense [17] - The RINAiSense project improves the scalability and security
of wireless sensor networks while investigating the applicability of RINA to
resource-constrained systems.

Moreover, notable implementations are introduced and facts about RINA readiness
and deployment status:

• OpenIRATI - Open-source programmable implementation of RINA protocols
for Linux. Enables Linux device to behave as a RINA-enabled host or software
router;

• rlite - Open-source implementation of RINA for Linux. Implementation is di-
vided into user-space and kernel-space parts. Kernel-space parts can be loaded
as modules on the unmodified Linux kernel;

• Ouroboros - Prototype Inter-Process Communication subsystem for POSIX op-
erating systems, that incorporates a fully decentralised packet switched transport
network based on part of RINA concepts;

• ProtoRINA - One of the implementations of the RINA architecture. It serves as
teaching tool, and also enables the design and development of new protocols and
applications;

• RINASim - The official OMNeT++ based framework simulating RINA architec-
ture.
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List of Acronyms

AE Application Entity
AEI-id Application Entity Instance

Identifier
AEN Application Entity Name
ANI Application Naming Information
AP Application Process
APN Application Process Name
API-id Application Process Instance

Identifier
CEP-id Connection-endpoint-id
CACE Common Application

Connection Establishment
CDAP Common Distributed

Application Protocol
DA DIF Allocator
DAF Distributed Application Facility
DAN Distributed-Application-Name
DAP Distributed Application Process
DIF Distributed IPC Facility
DRF Data Run Flag
DTP Data Transfer Protocol
DTCP Data Transfer Control Protocol
EFCP Error and Flow Control Protocol
EFCPI EFCP Instance

FA Flow Allocator
FAI Flow Allocator Instance
IPC inter-process communication
IPCP IPC Process
IRM IPC Resource Manager
NSM Namespace Management
PDU Protocol Data Unit
PDUFG PDU Forwarding Generator
RA Resource Allocator
RIB Resource Information Base
RIBd RIB Daemon
RINA Recursive InterNetwork

Architecture
RLWE Receiver’s Left Window Edge
RRWE Receiver’s Right Window Edge
RMT Relaying and Multiplexing Task
RTT Round-Trip Time
SDU Service Data Unit
SLWE Sender’s Left Window Edge
SNMP Simple Network Management

Protocol
SRWE Sender’s Right Window Edge
QoS Quality of Service
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