
Detecting hard synapses faults in artificial neural
networks

Martin Krcma, Zdenek Kotasek, Jakub Lojda
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: ikrcma@fit.vutbr.cz, kotasek@fit.vutbr.cz, ilojda@fit.vutbr.cz

Abstract—This paper presents the concepts of detecting hard
faults in artificial neural network synapses using the modification
of the neural network settings. The core of this work is based
on weights values modification and inserting the chosen testing
data when comparing the neural network output to the known
valid results. The paper also discusses the problem of neural
networks output saturation and provides experiments regarding
an influence of the neural network settings to the problem.

I. INTRODUCTION

The artificial neural networks [7] are one of the important
models of soft-computing and artificial intelligence. Their
structure is inspired by the structure of the human brain and
they dispose of a high capability of learning and memorizing to
solve various types of tasks. Basically, the goal of the artificial
neural network is to learn the relation between two sets of data
vectors, to generalize the relation, to determine its features
and to use it for the determining the relation of the unknown
vectors belonging to the same problem. This capability can
be used for classification tasks, for time-series and functional
prediction, for control tasks, image recognition, clustering and
other tasks.

The networks have been implemented in various kinds of
devices starting from analog computers to the most modern
processors, VLSI units, graphical processing units and FPGAs.
In the hardware implementation there is a chance that a fault
occurs in the device influencing its computation. The fault
can be transient, temporary which can be solved by numerous
ways. If the fault is hard and permanent however, it may not
be possible to fix it. In this case, the detecting of the fault
is even more important than in the case of temporary faults
because the computation of the device and the data it produces
are permanently affected by the fault. This paper deals with
one of the possible ways how to detect hard faults in neural
network synapses.

II. ARTIFICIAL NEURAL NETWORKS

Neural networks are composed of a set of neurons. A neuron
is a simple unit which computes an activation function (2)
over a result of a basis function which is often a weighted
sum (1) of the neuron inputs. A neuron is illustrated in Fig. 1.
The neurons are interconnected with the weighted connections
called synapses. The learning of the neural network is basically
a process of setting the weights.

The value θ in equation (2) represents the neuron threshold.
The threshold allows us to affect the shape of the neuron
activation function (its position on the x axis) which increases
the power of the network and the efficiency of its learning.

The neurons are often organized into the layered structure
composed of an input layer, output layer and a number of
hidden layers. This type of structure is illustrated in Fig. 2.
Sometimes, the neural network is composed of only one or
two layers or of layers with different neuron types (i.e. neurons
with different basis and activation functions) or interconnec-
tion structures.

net =

n∑
i=1

xiwi (1)

y = f(net+ θ) (2)

Fig. 1. The neuron.

Fig. 2. The neural network layered structure.

A. Activation functions approximations

A number of different activation functions which are used
in neural networks exists. One of the most used activation978-1-7281-1756-0/19/$31.00 c©2019 IEEE

Fig. 3. The sigmoid function and its approximation.

functions in classical neural networks is a sigmoid function (3).
It is a growing differentiable function, the features of which
are important for gradient-descent based learning algorithms
like the well known backpropagation algorithm [7]. However,
this function uses operations of division and power which are
not suitable for implementation in hardware. Therefore, it is
appropriate to replace it with a more effective approximation
with similar features. One of possible approximations is Fs
function (7) which is based on equations (4),(5) and (6). Both
the sigmoid function graphs and the Fs function are compared
in Fig. 3.[8]

sigmoid(x) =
1

1 + ε−θx
(3)

θ = 1
L2 β = 2

L (4)

Hs(x) =

{
x (β + θx) for x ∈ 〈−L, 0〉
x (β − θx) for x ∈ (0, L〉 (5)

Gs(x) =

 −1 for x ∈ (−∞,−L〉
Hs(x) for x ∈ (−L,L)

1 for x ∈ 〈L,∞)
(6)

Fs(x) =
1

2
Gs(x) +

1

2
(7)

III. DETECTING THE HARD FAULTS

Artificial neural networks are inherently massively parallel
structures with a lot of redundancy. Even though this property
makes them able to tolerate some faults, this fault tolerance
reaches only a certain level and it is complicated to predict
its quality. In order to enhance the fault tolerant properties of
neural networks, several techniques are used. Some techniques
are based on modifications of the neural networks training
process to force the networks to learn to be fault tolerant
[10], [11], [12]. Other techniques use retraining as a way

of recovery from a fault [9], [18]. In some techniques, dif-
ferent modifications and restrictions of weights and neurons
activation functions take place [13], [14], [15], [16], [17].
Also, techniques which utilize redundancy are commonly
used. Either based on neurons replications [19], [21], [24],
[25] or on the well known Triple Modular Redundancy (TMR)
technique which is used for both faults detection and masking
it in order to produce a correct output.

When implemented in hardware, the neural networks may
face two types of faults. The soft (temporary) faults occur only
temporarily and affect the computation only for some time.
These faults are often caused by radiation generating a Single
Event Upset (SEU) - flipping a bit in a memory. This type of
fault may be often solved by rewriting the memory with correct
data. Other type of faults - hard faults are persistent faults often
caused by a physical condition or failure in the device. Most
approaches of faults detection, masking and recovery are based
on the TMR techniques [22], [23]. This technique, though
proven reliable, may fail in some combinations of faults as
shown in [20].

We propose a method of permanent faults detection that
does not utilize redundancy or learning but it uses properties of
neural networks computation instead. It utilizes modifications
of basic neural network parameters - weights values and
activation function shapes in order to detect a fault using
the network output. As we present general principles and
algorithm which may be used on any neural network platform
and implementation which are flexible enough to allow the
needed neural network parameters settings modification, we
primarily intent this method to be used on reconfigurable
hardware implementations, where a hard fault is more likely to
occur and is harder to mask and recover from them in a purely
software implementation. In our research, we intent to use
these methods, while utilizing a dynamic reconfiguration, with
our neural network Field Programmable Gate Array (FPGA)
implementation. This platform is based on the concept of Field
Programmable Neural Network (FPNN)[1] and we presented
this platform in [4], [5].

A. Definitions

In order to describe the principles clearly, we declare a set of
terms presented in the following list and equations. The terms
describe the neural network structure and derive additional
terms. Going through the list we define sets and functions
containing neurons, synapses and their weights (N ,S and W).
Using those, we declare a set of neurons layers L, the input
layer I and the output layer O. For all neurons we define two
sets - φ and τ . The φ set contains all the sequences of synapses
which connect the selected neuron to the input layer (to all its
neurons). To the opposite, the τ set contains all sequences of
synapses that connect the neuron to the output neurons.

Based on these sets we define a set π for all the neurons
which contains all sequences of synapses connecting the input
layer to the output layer through the selected neuron. It is
important to have this set as we need to find a way to propagate
the test data through the network in the sequence that includes

the neuron or synapse we want to test against the presence of
a hard fault.

1) N is the set of all neurons.
2) S ⊆ (N ×N) is the set of all synapses.
3) W = S → R is the set of weights of all synapses.
4) W = {ws ∈ R|s ∈ S} is the set of weights of all

synapses.
5) B = {bn : Rm → R|n ∈ N \ I,m ∈ N} is the set of

basis functions of all neurons except the input neurons.
m is the number of the neuron n inputs.

6) L is set of network layers defined by equation (8).
7) I is the input layer defined by equation (9).
8) O is the output layer defined by equation (10).
9) F = {fn : R → R|n ∈ N \ I} is the set of activation

functions of all neurons except the input neurons.
10) φn is a set of sequences of synapses connecting the

neuron n to the neurons in the input layer (11).
11) τn is a set of sequences of synapses connecting the

neuron n to the neurons in the output layer (12).
12) ∀n ∈ N : πn = φn × τn is a set of all sequences of

synapses connecting the input layer to the output layer
through the neuron n.

13) ψ(s) is a sequence of all source neurons of the synapses
in the synaptic sequence s (13).

14) χ(s) is a sequence of all target neurons of the synapses
in the synaptic sequence s (14).

15) Ω ∈ R is a chosen global value of weights to be used
in further algorithms.

16) da, do ∈ R are chosen input data values for an active
neuron (da) and for other neurons in the input layer
(do).

L ⊂ NX : ∀(n1, n2) ∈ S : n1 ∈ L1 ∧ n2 ∈ L2;
L1, L2 ∈ L

(8)

I ∈ L : ∀n ∈ I ∧ ∃(n, nx) ∈ S : 6 ∃(ny, n) ∈ S;
nx, ny ∈ N

(9)

O ∈ L : ∀n ∈ O ∧ ∃(nx, n) ∈ S : 6 ∃(n, ny) ∈ S;
nx, ny ∈ N

(10)

∀n ∈ N∃φn ⊂ SX : (nx, nx+1) ∈ φn, x ∈ {i..m};
i,m ∈ N;ni ∈ I;nm+1 = n

(11)

∀n ∈ N∃τn ⊂ SX : (nx, nx+1) ∈ τn, x ∈ {m..o};
m, o ∈ N;nm = n;no+1 ∈ O

(12)

∀s = s1s2..sm = (n1, n2)(n2, n3)...(nm−1, nm) ∈ Sm :
ψ(s) = n1, n2, ..., nm−1

(13)

∀s = s1s2..sm = (n1, n2)(n2, n3)...(nm−1, nm) ∈ Sm :
χ(s) = n2, n3, ..., nm

(14)

B. Detecting a fault in a synapse without affecting the acti-
vation functions

Using the previous definitions we declare an algorithm
which utilizes the modifications of neural networks properties
in order to detect the hard fault of a synapse. The principle
of the algorithm is to check sequentially all the synapses by
propagating the test data to the network and checking the
network output while setting all the other synapses weights
to 1 in order to omit them from the computation. Omitting
the weight ensures that the passing test data are affected only
by the weight of the tested synapse which makes the result
easy to determine. The algorithm is as follows:

A) Declare a set FS = ∅ to store the faulty synapses.
B) For all synapses s ∈ S execute:

1) To test a synapse s = (n1, n2) ∈ S compute πn2.
2) Select a sequence α out of πn2. α = βγ, β ∈ φn2, γ ∈

τn2.
3) Set all other weights to Ω: ∀w ∈ W \ {W (a)|a ∈ α} :

w = Ω.
4) Set weights in α synapses to 1, leave the original value

of the tested synapse - W (s): ∀w ∈W (S\α\s) : w = 1.
5) Present the input data i to the input layer of the network

in the form of a vector composed of da on the place of
the neuron from the α sequence and do in places of
others input neurons. Let the neural network compute
the output o(α, s, i).

6) Compute an ω value. ω(α, s, i) ∈ R represents the
expected output value for the selected synaptic sequence
α, tested synapse (n1, n2) and the input data i. It is
computed using equation (16) as a sequence of applica-
tion of all activation functions of the neurons in the β
sequence over the input data followed by multiplication
with the tested synapse weight. Then, the sequence of
all activation functions of the neurons in the γ sequence
is applied.

7) Compute the difference ε between the expected and the
actual output value:
ε(α, s, i) = o(α, s, i)− ω(α, s, i).

8) If the difference ε = 0 (the output is not affected by a
fault), return to the step A). Otherwise execute:

a) Repeat the steps 1 to 8 for several other α se-
quences containing the synapse s.

b) If all the ε values are not zero, the synapse s is
affected by a fault. Add then the synapse s to the
set FS.

ω(α, s, i) = fγ
(
fβ (in)× ws

)
;

n ∈ N, in ∈ R, ws ∈ S;
fβ = fn1 ◦ ... ◦ fn0;ψ(β) = n0, ..., n1;
fγ = fn1 ◦ ... ◦ fn0;χ(γ) = n0, ..., n1

(15)

The general problem to deal with in this algorithm is a
possibility of neurons outputs saturation preventing the fault
detection. This problem has its origin in the input (the da, do
values), used weights values (the Ω value) during the algorithm

and the activation functions. Regular sigmoid function has the
range of 〈0, 1〉 and the value of 0.5 as the function value
of zero (sigmoid(0) = 0.5). When the weights of synapses
outside an α sequence are set to zero, it causes all the neurons
in the rest of the network to emit value of 0.5. This can affect
the neurons in the α sequence as well as these values enter
their basis functions. Together with data passing through the α
sequence this can cause the neuron outputs to be saturated, i.e.
to have the value of 1.0 or 0.0. When these are valid values
for properly functioning network and there are no changes in
them, this can cause a fault to be masked from detection. This
effect can be straightened even more by values presented to the
input neurons both in and outside the α sequence (the da, do
values). It is necessary to choose all these values wisely to
obtain as correct detection as possible.

Another problem related to the saturation problem is the
problem of false positive detection. In the case that the fault
causes the weight to have a high value, it may saturate the
successive neuron itself causing saturation of neurons in higher
level as well as the saturation of the network outputs. The
saturated output then may be detected as fault even in case
when other synapses than the faulty one is under the test. This
problem may be solved by repetitive detection using different
settings as well as using heuristics to obtain specific strategies
of the test. This heuristics and methods will be part of the
future research.

C. Detecting a fault in a synapse with affecting the activation
functions

The hard faults detection becomes easier and less
demanding if there is an option to change shapes of neurons
activation functions. By changing the functions to the linear
functions f(x) = x we can prevent the saturation problem
mentioned in the previous paragraph. However, the saturation
problem is still present but it is far less likely as the
only risk of saturation is reaching the upper or the lower
boundary given by the used data-type and the bit width. Also,
by changing the activation functions, we obtain a higher
precision of the output computation and lesser influence of
neurons faults to the output. The algorithm, derived from the
previous algorithm, which utilizes the change of activation
functions is as follows:

A) Declare a set FS = ∅ to store the faulty synapses.
B) For all synapses s ∈ S perform:

1) Perform 1) - 4) steps of the section B algorithm.
5) Set the activation functions of the neurons in the α

sequence to linear function:
∀n ∈ ψ(β) ∪ χ(γ) : fn(x) = x; fn(x) ∈ F . When the
activation function is approximated using the function
(7), the modification can be done using constants mod-
ifications according to the (17) equation.

6) Perform 5) step of the section B algorithm.
7) Compute an ω value. ω(α, s, i) ∈ R represents the

expected output value for the selected synaptic sequence
α, tested synapse (n1, n2) and the input data i. It is

computed using equation (16) as a sequence of appli-
cations of all activation functions of the neurons in
the β sequence. In this case, the activation functions
are linear, therefore the applications are in principle
function of identity. The output data of the activation
functions sequence is data followed by multiplication
with the tested synapse weight. Then the sequence of
all activation functions of the neurons in the γ sequence
is applied, again as a sequence of identities.

8) Perform 7) - 8) steps of the section B algorithm.

ω(α, s, i) = in × ws;
n ∈ N, in ∈ R, ws ∈ S;

(16)

D. Activation functions modifications

If the implementation uses the Fs function as the activation
function approximation, it can be simply forced to behave like
a linear function in order to pass the neuron input data directly
to the output without affecting them by the activation function.
In the case of the Fs function, it can be done using constants
modifications and input data propagation to the multiplexers
realizing the Gs function. The modifications of the functions
and the constants are as follows:

θ = 0; β =1

Hs(x) =

{
x (β + θx) = x for x ∈ 〈−L, 0〉
x (β − θx) = x for x ∈ (0, L〉

Gs(x) =

 x for x ∈ (−∞,−L〉
Hs(x) = x for x ∈ (−L,L)

x for x ∈ 〈L,∞)

Fs(x) =1×Gs(x) + 0 = Gs(x)

(17)

IV. EXPERIMENTS

We have experimented with the first algorithm which does
not utilize the activation functions modifications in order
to determine the influence of the da, do and Ω values to
the saturation problem and therefore to the quality of faults
detection.

The used neural network was composed of 8 neurons in
the input layer, 2 neurons in the output layer and of 64 and
16 neurons in two hidden layers. The sigmoid function was
used as the activation function of all the neurons and the
function of the weighted sum was used as basis functions.
The experiments were implemented using a FANN library
[3] using 32-bit floating point arithmetic. The neural network
was trained to solve the Diabetes classification task from the
Proben [2] set of neural networks benchmark tasks. Every
experiment used two identical neural networks, one as a golden
model, the second to inject fault and perform the algorithm.
Only one fault per test was injected randomly into a synapse
and the algorithm was executed to detect the fault.

With each set of da, do and Ω values, 100 tests were run
and the number of successful detections was measured as
a result. The do values were chosen in the 〈−10, 0〉 as we
expected that low values around zero may help to prevent the
saturation problem as well as the negative values. We expect

these values cause the neurons to emit low values as well
which may help to prevent the basis function to generate high
values which would saturate the neurons outputs in the higher
layers making the neural network output to be saturated as
well. The Ω values were chosen to be the same for the same
reasons as it may help to lower the high values emitted by
neurons and thus lower the risk of saturation in higher layers.
On the other hand, the di values are the most important as they
enter the computation in the α sequence. In order to explore
their influence on the detection quality, we chose them to be
in the 〈−10, 10〉 interval.

Tables I - III illustrate the results of the experiments. In
each table, the Ω value is the same for all listed experiments
and it is declared on the top row of the table. The values of do
are declared in the third rows of the tables (the first numerical
rows) and the di values are listed in the first columns of the
tables. The cells contain the experiments results illustrating
how many detections out of 100 were successful with the Ω, di
and do set according to the position in the table.

TABLE I
THE EXPERIMENTS RESULTS WHEN Ω = 0.0

Ω = 0.0

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 21 21 56 21 24
-1.0 20 99 32 58 78
-0.1 66 99 72 1 97

-0.01 81 100 0 0 71
0.01 70 96 79 58 0
0.1 79 100 75 63 85
1.0 86 100 83 100 82

10.0 100 100 1 63 91

TABLE II
THE EXPERIMENTS RESULTS WHEN Ω = −0.01

Ω = −0.01

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 97 97 98 92 75
-1.0 98 98 98 100 81
-0.1 99 99 100 99 70

-0.01 100 96 97 96 64
0.01 96 98 100 99 61
0.1 100 100 100 98 68
1.0 99 100 100 97 72

10.0 100 100 100 96 80

As you can see in the tables, the most of the experiments
resulted in the high ratio of detected faults. If we are going to
identify the general trends of the Ω, di and do values influence
on the results, we can see that higher values of di often led
to better results. This can be also stated in general about
influence of the higher negative values of do. As we expected,
the negative values of do helped the detection by lowing the
risk of saturation and allowing the fault detection by doing
so. On the other hand, the 0.0 value of do proved to provide
generally worse results. As it was said before, the value of 0.0
as an input to the neuron causes to emit the value of 0.5 as

a result in case it uses the sigmoid function as an activation
function, which is the case of these experiments. Also, the high
negative values of di provided worse results as they probably
increased the saturation problem in case the weights values
were high in the α sequence or the injected fault had a high
value.

TABLE III
THE EXPERIMENTS RESULTS WHEN Ω = −10.0

Ω = −10.0

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 75 55 53 54 60
-1.0 99 84 84 88 64
-0.1 84 91 92 100 58

-0.01 88 85 93 87 43
0.01 74 85 92 95 64
0.1 81 89 94 99 60
1.0 81 86 89 89 55

10.0 100 89 100 98 78

TABLE IV
THE EXPERIMENTS RESULTS WHEN Ω = −0.1

Ω = −0.1

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 97 97 98 93 82
-1.0 99 98 99 98 85
-0.1 99 99 100 100 73

-0.01 99 98 98 99 61
0.01 96 100 100 100 64
0.1 100 100 100 99 77
1.0 99 100 99 100 83

10.0 100 100 100 97 77

TABLE V
THE EXPERIMENTS RESULTS WHEN Ω = −1.0

Ω = −1.0

do

di -10.0 -1.0 -0.1 -0.01 0.0
-10.0 21 24 56 21 24
-1.0 20 58 32 58 66
-0.1 66 97 72 1 97
-0.01 81 71 0 0 71
0.01 70 91 79 58 0
0.1 79 85 75 63 85
1.0 86 100 83 100 100
10.0 100 91 1 63 91

As the tables II and IV illustrate, the low negative values of
Ω has positive influence on the results. These values reduced
the neurons output to higher layers helping to prevent the
saturation problem. The assumption of false positive detection
during the experiments was also confirmed, however this
aspect of the problem is beyond the range of this paper.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we described basis of neural networks as well
of formal basis of two algorithms which are the core of this
research. The algorithms offer the way to detect hard fault
in neural network synapses. Both algorithms are based on the

principle of setting the synapses weights to some chosen value,
then creating an interconnected sequence from input layer to
an output layer. One of the synapses is then set with its original
weight and chosen testing data are passed trough the network
and the output is compared to the pre-calculated valid result.
The difference between the outputs indicates a fault.

One of the algorithms uses the change of activation func-
tions to linear ones preventing the problem with an output
saturation which may occur with the other algorithm. The
experimental part of this work focuses on this problem and
shows the effect of the chosen values of the input data and
the weights to the quality of faults detection. The results show
that combination of low negative Ω values with high values of
do and negative values of do led in general to the best results
as they were the most successful preventing the saturation of
the network output.

In the future research, more extensive experiments with
both algorithms will be done as well as an optimization of
the algorithms based on a test strategy selection heuristics.
The heuristics are needed to achieve higher speed and better
precision of detection as well as saving of resources. Also, the
heuristics will help to prevent false positive detection which
may occur in case of the algorithm which does not utilize
the activation function modification. In addition, experiments
with limited precision will be performed, as in case of classical
neural networks, 16-bit fixed point precision was proven to be
sufficient [6]. We have also designed modifications for both
algorithm to be used to detect fault in both neurons basis
functions and their activation functions.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science
– LQ1602, the BUT project FIT-S-17-3994 and the JU EC-
SEL Project SECREDAS (Product Security for Cross Domain
Reliable Dependable Automated Systems), Grant agreement
No. 783119.

REFERENCES

[1] Girau, B.: FPNA: Concepts and Properties. In FPGA Implementations
of Neural Networks, A. R. Omondi; J. C. Rajapakse, Springer US,
2006, ISBN 978-0-387-28487-3, pp. 71–123, http://dx.doi.org/10.1007/
0-387-28487-7-3

[2] Prechelt, L. P.; Informatik, F. F.: — A Set of Neural Network Bench-
mark Problems and Benchmarking Rules. Technical report, Universitat
Karlsruhe; 76128 Karlsruhe, Germany, 1994.

[3] Fast Artificial Neural Network Library (FANN).
http://leenissen.dk/fann/wp/

[4] KRCMA Martin, KASTIL Jan a KOTASEK Zdenek: Mapping trained
neural networks to FPNNs. In: IEEE 18th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems. Belgrade:
IEEE Computer Society, 2015, pp. 157–160. ISBN 978-1-4799-6779-7.

[5] Krcma, M.; Kotasek, Z.; Kastil, J.: Fault tolerant Field Programmable
Neural Networks. In Nordic Circuits and Systems Conference (NORCAS):
NORCHIP International Symposium on System-on-Chip (SoC), 2015, Oct
2015, pp. 1–4, 10.1109/NORCHIP.2015.7364381.

[6] Holt, J.; Baker, T.: Back propagation simulations using limited precision
calculations. In Neural Networks, 1991., IJCNN-91-Seattle International
Joint Conference on, volume II, July 1991, pp. 121 –126.

[7] Munakata, T.: Neural Networks: Fundamentals and the Backpropagation
Model. In Fundamentals of the New Artificial Intelligence, editace T. Mu-
nakata, Texts in Computer Science, Springer London, 2007, ISBN 978-1-
84628-839-5, pp. 7–36, http://dx.doi.org/10.1007/978-1-84628-839-5--2

[8] Kwan, H.: Simple sigmoid-like activation function suitable for digital
hardware implementation. Electronics Letters, 1992: pp. 1379–1380.
http://link.aip.org/link/?ELL/28/1379/1

[9] Deng, J.; Rang, Y.; Du, Z.; aj.: Retraining-based timing error mitigation
for hardware neural networks. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2015, March 2015, s. 593–596.

[10] Elsimary, H.; Mashali, S.; Shaheen, S.: Generalization ability of fault
tolerant feedforward neural nets. In Systems, Man and Cybernetics, 1995.
Intelligent Systems for the 21st Century., IEEE International Conference
on, Issue 1, Oct 1995, pp. 30–34 vol.1, 10.1109/ICSMC.1995.537728.

[11] Arad, B. S.; El-Amawy, A.: On Fault Tolerant Training of Feedforward
Neural Networks. Neural Networks, Issue 10, vol. 3, 1997: pp. 539 – 553,
ISSN 0893-6080, http://dx.doi.org/10.1016/S0893-6080(96)00089-5.
http://www.sciencedirect.com/science/article/pii/S0893608096000895

[12] Ito, T.; Takanami, I.: On fault injection approaches for fault tolerance
of feedforward neural networks. In Test Symposium, 1997. (ATS ’97)
Proceedings., Sixth Asian, Nov 1997, ISSN 1081-7735, pp. 88–93,
10.1109/ATS.1997.643927.

[13] Haruhiko, T.; Hidehiko, K.; Terumine, H.: Partially weight minimiza-
tion approach for fault tolerant multilayer neural networks. In Neural
Networks, 2002. IJCNN ’02. Proceedings of the 2002 International
Joint Conference on, vol. 2, 2002, ISSN 1098-7576, pp. 1092–1096,
10.1109/IJCNN.2002.1007646.

[14] Haruhiko, T.; Hidehiko, K.; Terumine, H.: Fault tolerant training algo-
rithm for multi-layer neural networks focused on hidden unit activities. In
Neural Networks, 2006. IJCNN ’06. International Joint Conference on,
2006, pp. 1540–1545, 10.1109/IJCNN.2006.246616.

[15] Hammadi, N. C.; Ito, H.: A Learning Algorithm for Fault Tolerant
Feedforward Neural Networks. IEICE Trans. Information and Systems,
Issue 80, 1996: pp. 21–27.

[16] Rusiecki, A.: Fault tolerant feedforward neural network with median
neuron input function. Electronics Letters, Issue 41, vol. 10, May 2005:
pp. 603–605, ISSN 0013-5194, 10.1049/el:20058169.

[17] Kamiura, N.; Taniguchi, Y.; Isokawa, T.; and col.: An improvement in
weight-fault tolerance of feedforward neural networks. In Test Sympo-
sium, 2001. Proceedings. 10th Asian, 2001, ISSN 1081-7735, pp. 359–
364, 10.1109/ATS.2001.990309.

[18] Sequin, C.; Clay, R.: Fault tolerance in artificial neural networks. In
Neural Networks, 1990., 1990 IJCNN International Joint Conference on,
June 1990, pp. 703–708 vol.1, 10.1109/IJCNN.1990.137651.

[19] Phatak, D.; Koren, I.: Complete and partial fault tolerance of feedforward
neural nets. Neural Networks, IEEE Transactions on, Issue 6, vol. 2, Mar
1995: pp. 446–456, ISSN 1045-9227, 10.1109/72.363479.

[20] Tohma, Y.; Koyanagi, Y.: Fault-tolerant design of neural networks
for solving optimization problems. Computers, IEEE Transactions
on, Issue 45, vol. 12, Dec 1996: pp. 1450–1455, ISSN 0018-9340,
10.1109/12.545976.

[21] Zhou, Z.-H.; Chen, S.-F.; Chen, Z.-Q.: Improving tolerance of neural
networks against multi-node open fault. In Neural Networks, 2001. Pro-
ceedings. IJCNN ’01. International Joint Conference on, Issue 3, 2001,
ISSN 1098-7576, pp. 1687–1692 vol.3, 10.1109/IJCNN.2001.938415.

[22] Mahdiani, H. R.; Fakhraie, S. M.; Lucas, C.: Relaxed Fault-Tolerant
Hardware Implementation of Neural Networks in the Presence of Multiple
Transient Errors. IEEE Transactions on Neural Networks and Learning
Systems, Issue 23, vol. 8, Aug 2012: pp. 1215–1228, ISSN 2162-237X,
10.1109/TNNLS.2012.2199517.

[23] Latif-Shabgahi, G.; Hirst, A.; Bennett, S.: A novel family of weighted
average voters for fault-tolerant computer control systems. In European
Control Conference (ECC), 2003, Sept 2003, pp. 642–646.

[24] Emmerson, M.; Damper, R.: Determining and improving the fault
tolerance of multilayer perceptrons in a pattern-recognition application.
Neural Networks, IEEE Transactions on, Issue 4, vol. 5, Sep 1993: pp.
788–793, ISSN 1045-9227, 10.1109/72.248456.

[25] Ahmadi, A.; Sargolzaie, M. H.; Fakhraie, S. M.; aj.: A Low-Cost Fault-
Tolerant Approach for Hardware Implementation of Artificial Neural
Networks. In Computer Engineering and Technology, 2009. ICCET ’09.
International Conference on, Issue 2, Jan 2009, pp. 93–97, 10.1109/IC-
CET.2009.204.

