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Abstract—Almost all today’s electronic devices are equipped
with a processor. Different applications require and depend on
different properties of the processor. For example, the fast grow-
ing field of Internet of Things depends on a long operation time of
the devices when powered with batteries. Using general purpose
processors has proved ineffective which led to a growing usage of
Application-Specific Instruction-Set processors (ASIPs) which can
be optimized for specific applications using different modifications
of their properties (such as the number of registers, cache sizes,
instruction set modifications, etc.). A suitable processor configu-
ration can be hand-picked by a designer or by an automatic tool.
The goal of this paper is to introduce a tool able to find a suitable
processor configuration for multiple applications by constructing
a compromise Pareto-optimal frontier of processor configurations.
Experiments are based on a parametrizable RISC-V processor.
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I. INTRODUCTION

The area of embedded systems is growing in use and
importance in daily life due to the continuously increasing
popularity of the Internet of Things (IoT) [1]. These systems
are usually based on a processor that offers sufficient com-
puting performance as well as high flexibility which allows
the systems to be updated easily. One possibility is to use a
general purpose processor (GPP). These processors generally
offer high performance and flexibility allowing them to run a
number of different applications. Manufacturing costs of these
processors are quite low, but the processor power consumption
and its physical dimensions have to be considered as well.
Usually, embedded systems are designed for a long operation
time when powered by batteries. Therefore, the low power
consumption of the processor has to be considered [2] and
the need of decreasing the GPPs’ power consumption led
to increasing the development and popularity of Application
Specific Instruction-set Processors (ASIPs).

The advantage of ASIPs is that they are designed for a
specific application with different parameters such as power
consumption, performance and area (physical dimensions)
taken into account. For example, an ASIP optimized for
wireless communication was introduced in [3]. The ASIP
optimization is usually based on changing the key parameters
of the processor such as the number of registers, caches,
number of slots, computation units configuration or instruction
set modifications. The physical area of the processor can
be decreased by removing unnecessary instructions while the
performance can be increased by introducing new specific and
optimized instructions. In this paper, we call the settings of all
the mentioned parameters the processor configuration.

Processors can be modeled using different architecture de-
scription languages (ADLs) or hardware description languages
(HDLs) [4]. ADLs [5] provide a more abstract way of the
processor description There exist various tools for automatic
processor generation based on its abstract description. The
Synopsys ASIP Designer [6], [7] is a set of tools for ASIP
design from a user-defined architecture to RTL description.
The Cadence company provides configurable Xtensa LX7
Processor and its development tools [8]. In our experimental
work, we use the Codasip Studio provided by the Codasip
company [9]. Codasip Studio is a development tool for pro-
cessor design; the designer is able to describe the architecture
of a processor and its instruction set and then, to generate
a corresponding toolchain (compiler, simulator, etc.) Codasip
also offers predefined configurable processor cores (eg. RISC-
V [10] based Codix-Bk processor [11]).

In our previous work [12], we have proposed framework
for searching the most suitable configurations of processor
parameters and the compiler flags for a selected application.
The framework is based on the processor simulation and
the evaluation of the obtained results. A Pareto frontier of
the possible solutions is the main output of the proposed
system which can be used by a designer for making the
final decision. In some cases, there may be a requirement to
find a processor configuration that is optimized for multiple
different applications or for an entire application class. The
parameters of such a configuration then represent a trade-off
between the requirements of the individual applications. As
the results of the individual optimization processes come in
a form of discovered Pareto frontiers, we face a problem of
joining multiple Pareto frontiers that have been discovered
for the individual applications into a single set of suitable
solutions. We call this problem a Multidimensional Pareto
frontier intersection and the introduction to this problem as
well as our proposed solutions are the main topics of this paper.

The paper is organized as follows. Section II describes the
Pareto optimization task and presents the detailed description
of the Pareto frontier intersection. In section III, solutions
of the presented problem are proposed. Experimental results
are presented in section IV. Finally, section V presents our
conclusions and future research directions.

II. THE PARETO FRONTIER INTERSECTION

Multi-criteria optimization [13], [14] is a process of finding
a vector �x = (x1, ..., xn) ∈ X of decision variables (n is
the number of decision variables) that exists in state space X
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of a selected task, and which minimizes the vector �F (�x) =
(f1(�x), f2(�x), ...fN (�x)) of objective functions where N is the
number of objective functions, ∀i ∈ {1, ..., N}, fi(�x) ∈ R.
The state space size is usually limited with several constraints
gj(�x) ≥ 0, j = 1, 2, ...M . For most real problems, the
optimization objectives are often contradictory and finding a
single solution is usually not possible. Therefore, we may
prefer to search for a set of suitable solutions that fit the
objectives in an acceptable level and are not dominated by a
specific objective at the same time. One of the used approaches
is the Pareto optimization.

The underlying concept of the Pareto optimization is the
Pareto dominance [14]. A solution �u = (u1, u2, ...uN ) ∈ X is
Pareto dominant over a solution �v = (v1, v2, ...vN ) ∈ X when
∀i ∈ {1, ..., N}, fi(�u) ≤ fi(�v) ∧ ∃j ∈ {1, ..., N}, fj(�u) <
fj(�v). We say that a solution �u is Pareto dominant over a

solution �v when �F (�u) is better than �F (�v) with respect to
all the objectives fi(�v) and there exists at least one objective

fj(�v) for which �F (�u) is sharply better than �F (�v). A solution
is considered to be better than another one with respect to
an objective, when the value of the corresponding objective
function fi(�v) (further called the objective value) is lower
than the same objective value of the other solution. A solution
�u ∈ X is Pareto optimal when there is no other solution
�v ∈ X that is Pareto dominant over u. The set of all
Pareto optimal solutions is called a Pareto frontier. In the
processor optimization context, the objectives may represent,
for example, a processor speed and power consumption. Then,
the solutions represent different processor configurations which
are interesting for potential usage are included in the Pareto
frontier.

It may be often needed to construct a compromise Pareto
frontier of solutions meeting the same objectives for different
problem settings. In case of a processor, it may not be
practical to fabricate different massively optimized processors
for different application in the same domain. The goal then
may be to find a processor adequately optimized for multiple
applications in the same domain (for example a processor
usable in both a digital watch and a hearing aid) when we are
willing to tolerate some trade-offs in the objectives. We call
the problem of joining a set of different Pareto frontiers into
one frontier as Pareto Frontier Intersection. The result of this
process is a Pareto frontier representing compromise solutions
between different applications selected to be as optimal as
possible. The goal of this paper is to propose algorithms for
the construction of such a joint Pareto frontier. We consider
a joint Pareto frontier to be a set composed of solutions with
overall best objective values through all the problem settings.
In order to explain the principle of the joint Pareto frontier,
we introduce a formal description:

1) Let A be a set of problem settings.
2) Let C be a set of all possible solutions.
3) Let F be a set of all the objective functions.
4) All possible solutions meet all the objectives for all

parameters to some objective value o:
∀a ∈ A ∧ ∀f ∈ F ∧ ∀c ∈ C : ∃o{a,f}(c) ∈ R

5) G : R
m → R is a function that reduces all objective

values to a single value through the space of A× F :
∀c ∈ C ∧ ∀n1...nm ∈ A × F ∧ m = |A × F | :
∃G(on1

(c)..onm
(c)) = gc; gc ∈ R

6) O is an ordered sequence of reduced objective values of

all solutions:
O = {gc1 ...gcn |gcm ≤ gcm+1 ; gcm = G(cm);n = |C|}

7) First x values of the O sequence create the joint Pareto
frontier.

The description defines a set O that contains all the solu-
tions ordered by their joint objective values. Considering the
principles presented in the above sections, a solution is better
when its objective value is lower. By joining all the objective
values for all the parameters and using the resulting values to
order the solutions, we obtain the generally better solutions in
the beginning of the O sequence. A chosen number of solutions
from the front of the sequence then can be considered as the
joined Pareto frontier.

This problem has not been addressed very often in the
literature, especially not in a form of an automatic algorithm
as we propose. For example, paper [15] introduces a problem
of constructing a Pareto frontier optimizing hydraulic actuation
systems. It deals with a control error dependency on energy
consumption and using a genetic algorithm, it finds a Pareto
frontier. It considers two settings of this problem (a servo valve
and a servo pump concept) which leads to two Pareto frontiers
that are later joined manually and compared. The solution is
not then automated. The Pareto frontier intersection principle
has been also used in [16] to optimize competing concept
alternatives in the area of turbine engine performance. In this
article, the Pareto frontier intersection is considered differently
than in our article. It is a process of joining different solutions
considering the same objectives but with only one problem
setting, while we deal with a number of different problem
settings.

III. PROPOSED SOLUTION FOR PARETO FRONTIER

INTERSECTION

We have identified two ways to solve the described prob-
lem. The first one is based on the average value calculation
following the formal description. The second one extends the
number of dimensions of the state space.

A. Direct Application of the Proposed Formal Description
This algorithm follows the formal description of the joint

Pareto frontier in the Section II. This method computes the
Pareto frontier after all the objective values have been joined
for all the problem settings. All the objectives are then joined
by the function G and then, the Pareto optimal solutions
are found based on the new objective values. The vector F
of objective functions FI(�x), FII(�x), ..., Fn(�x), which have
different values for every setting, are joined using a vector
G (Equation 2) of functions gI(�x), gII(�x), ..., gn(�x):

F (�x) = G(FI(�x), FII(�x), ..., Fn(�x)) (1)

G(�x) = (g1(�x), g2(�x), ..., gN (�x)) (2)

where gz(�x) =
fz I(�x)+fz II(�x)+...+fz n(�x)

n (3)

while the g functions determine a way of joining the
objective values. These functions may use a weighted average,
median or arithmetic average which is used in our experiments
as shown in (3).

In case of the processor optimization, the objective func-
tions are the parameters such as the processor computing
power, power consumption or application memory consump-
tion. The processor area although remains the same regardless
of the considered application.
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B. Expanding the Number of Dimensions
This algorithm does not change the objectives in any way. It

creates a new state space with a higher number of dimensions
by adding the same number of dimensions to every problem
setting as the original state space had. Let us consider that the
numbers of dimensions of the original state spaces corresponds
to the number of objective functions and the number of state
spaces corresponds to the number of different problem settings
considered. For each problem setting, there is a state space of
solutions with N dimensions and there were n settings. The
new state space (and the new Pareto frontier constructed in that
space) then has N ∗n dimensions. The new objective function
F (x) will then be the following:

�F (�x) = (f1 I(�x), f2 I(�x), ..., fN I(�x),

f1 II(�x), f2 II(�x), ..., fN II(�x),

...

f1 n(�x), f2 n(�x), ..., fN n(�x))

(4)

The new Pareto frontier then includes all the problem
settings and all the objective functions. The particular objective
functions may be considered individually when searching for
the best solution. On the other hand, joining a high number of
problem settings may lead to a state space with an inconvenient
number of dimensions making the results evaluation difficult.
It may also happen that the majority of solution in the new
space will become a part of the new Pareto frontier.

In case of the processor optimization and joining Pareto
frontiers of different applications as the problem settings, the
new space will not have n∗N dimension but only n∗(N−1)+1
due to the fact that one of the objectives, the processor area
which is the same for all of the applications, is shared by all
the original spaces.

IV. EXPERIMENTAL EVALUATION

We evaluated the proposed approaches using our platform.
We have found the frontiers for several applications which we
have divided into application classes according to their specific
instructions utilization:

1) Integer addition – decoding a VOIP codec G.722.1
(decode), anisotropic diffusion image filtering (aniso diff),
decompressing a ZIP algorithm (zip), Dhrystone integer bench-
mark (dhry) and faces recognition (faces).
2) Division instructions – factorization of big integers (factor)
and knapsack problem solver (knapsack).
3) Multiply instructions – matrix product of two matrices
(matrix prod), sorting a matrix (matrix sort) and transposition
of a matrix (matrix transpose).
4) Unrelated – a group of unrelated applications contains
decipher data using the AES 128 cipher (aes), decode and
matrix prod.

As the test case, we used the Codix Berkelium [11] pro-
cessor which is a RISC-V processor implemented by Codasip
[9]. We have selected seven parameters of the Codix Berkelium
processor that may be changed. These parameters are governed
by the user specification (User-Level ISA Specification) of
the RISC-V processor [10]. The parameters (listed in Table
I) represent the total of 252 hardware configurations of the
processor which have to be taken into account during the
optimization process. Moreover, there are a lot of standard
flags of the used LLVM compiler [17] that can be set. We
have chosen only a small subset of compiler flags (shown in

Table II) that are frequently used for compiling applications.
Therefore, the total number is 9072 configurations.

TABLE I: The changeable parameters of the Codix Berkelium.
EXTENSION E true, false
EXTENSION M true, false
EXTENSION C true, false
ENABLE ICACHE true, false
ICACHE LINE SIZE 16, 32, 64, 128
ICACHE SIZE 4, 8, 16, 32, 64
ENABLE PARALLEL MUL true, false

TABLE II: The subset of flags for the LLVM compiler.
-o0, -o1, -o2, -o3, -os, -ofast optimization level
-ffunction-sections functions in its own sections
-fdata-sections data in its own sections
-funroll-loops unroll loops whose number of iterations

can be determined
-fno-inline-functions disable the inlining of functions
-ftrapv checks and traps the overflow for signed

arithmetic operations

We use four metrics during the evaluation of the processor
configurations as the objective functions: 1) the number of the
processor cycles used when running the application (metric
of performance), 2) overall number of the application in-
structions – metric of memory consumption, 3) overall power
consumption estimate of the application execution and the 4)
area estimation of the processor synthetized RTL design. The
last metric remains the same for all the applications evaluated
on the same processor configuration, which is suitable for
our algorithm of Expanding the number of dimensions. The
number of configurations on the frontier for the particular
applications is shown in the Table III.

TABLE III: The size of the individual Pareto frontiers.
Application # of configurations [-] # of conf. [%]

decode 11 0.12%
aniso diff 29 0.32%
zip 19 0.21%
dhry 16 0.18%
faces 20 0.22%
factor 14 0.15%
knapsack 18 0.20%
matrix product 10 0.11%
matrig sort 10 0.11%
matrix transpose 9 0.10%
aes 4 0.04%

Using the presented algorithms, we joined the constructed
frontiers in all the application groups. Table IV contains the
number of configurations on the joined Pareto frontier for
all the presented algorithms in absolute values as well as
percentages of the state space.

TABLE IV: The size of the merged Pareto frontiers.
Data pre-proc. (average) Dimensions expanding
s [%] [%] [-] [%]

Integer addition 26 0.27% 174 1.92%
Division instruction 26 0.27% 53 0.58%
Multiply instruction 10 0.11% 16 0.18%
Unrelated 12 0.13% 49 0.54%

The evaluation result is represented by a numeric rating
which represents the distance of the merged frontier from the
original one. To compute the rating, we can use a modified
Onion peeling algorithm. For each evaluated application, we
remove the layers of solutions (Pareto frontiers) from the
original state space until the set of the removed solutions
contains all the solutions that were part of the joined Pareto
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frontier. The number of removed layers then serves as the
resulting rating. The lower the rating is, the closer the joined
Pareto frontier is to the original frontier. The rating process
for a single application is illustrated in Algorithm 1.

Algorithm 1: Iterative evaluation algorithm.

Data: The application A against which the evaluation is
performed
A set M of configurations on the Pareto frontier
merged for the selected applications

Result: Rating R of the set M for the application A
i := 0;
set P := ∅;
while P ∩ M �=M do

calculate the Pareto frontier;
move all the configurations on the Pareto frontier to

the set P ;
i++;

end
R := i;

The ratings of the joined Pareto frontiers for the individual
applications are listed in Table V. The table contains all the
ratings for all the selected application groups and all the
presented algorithms. There are two interesting results in the
table: The Unrelated application group inhomogeneity is ob-
vious in the results for all the algorithms causing a significant
variance of the joined Pareto frontier ratings for the individual
applications. This is however an expected outcome for this
application group. A similar variance can be found in the
Integer addition application group results where the aniso diff
and the faces applications show significant difference. After a
closer examination, we found out that the complexity of the
aniso diff and faces applications is the cause of this anomaly.
Table V also contains average ratings of the joined Pareto
frontiers for the whole application groups. These average
ranks shows, that data preprocessing algorithm is better than
dimensions expanding algorithm for all application groups.

TABLE V: Comparison of merged Pareto frontier ratings.
Data pre-proc. (average) Dimensions exp.

Integer
addition

decode 70 92
aniso diff 90 143
zip 12 25
dhry 67 89
faces 61 133
Average 60 96

Division
instructions

factor 14 65
knapsack 9 28
Average 12 47

Multiply
instructions

matrix p 1 6
matrig s 3 7
matrix t 6 6
Average 3 6

Unrelated

aes 24 128
decode 19 27
matrix p 3 7
Average 15 54

V. CONCLUSION AND FUTURE WORK

In this paper, we followed our previous research focused
on finding an optimal configuration of an application specific
instruction set processor for a selected application. This task
involves finding a Pareto frontier of configurations of the
selected processor worth a further evaluation for a single

selected application. It shows up that it is economically incon-
venient to deploy different processors for different applications
but its is convenient to deploy a processor suitable for an
entire group of applications. For this reason, we continued our
research to develop a method of constructing a compromise
joined Pareto frontier for an application group. This paper
focuses on the algorithms capable of joining multiple Pareto
frontiers related to the individual applications to a single one
for the whole group. We have presented two algorithms – the
algorithm based on expanding the state space dimensions and
the algorithm based on data pre-processing (objectives) before
the construction of the joined Pareto frontier.

During our research and experiments with the proposed
algorithms, we have discovered multiple possible modifica-
tionss. We will explore these possibilities in detail in our future
research in order to increase our algorithms efficiency.
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