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Abstract—This research paper presents an analysis of elec-
tronic smart locks and explores the influences of faults on its
controller unit. Electronic smart locks often utilize stepper motor
as an actuator. Stepper motors, however, need a controller, which
is usually implemented in a processor. The aim of our research is
to examine the consequences of a failing controller processor. In
our previous research, we developed a platform for fault tolerance
testing with the ability to monitor the impacts on the mechanical
part. We also developed a framework for accelerated testing of
fault tolerance properties. The processor can be implemented
in an FPGA (Field Programmable Gate Array) in order to be
able to emulate HW faults inside the processor. In this paper,
the concept of testing a smart lock is presented alongside with
the first experimental results utilizing the direct generation of
invalid stimuli for the stepper motor. In our research, we found
out that random errors probably could not be used for an
unauthorized unlock, especially if the lock utilizes a mechanical
gearbox. Deeper logic and knowledge of the correct sequence of
steps used by the selected motor are needed to perform an attack
to unlock the lock. On the other hand, random sequences could
cause that lock not to be locked by falsifying the lock request
sequence. The second interesting fact is that x% of faults in the
valid sequence give the same rotation angle as (100−x)% of faults.

Keywords—Electronic Lock, Stepper Motor, FPGA, Fault Tol-
erance, Stimuli Generation, Reconfiguration.

I. INTRODUCTION

In today’s world, various electronic systems are more and
more used and we increasingly meet them in our everyday life.
Nowadays, smart devices [1] are on the rise, the goal of which
is to make our lives more efficient, simpler and more pleasant.
The smart device is a device that uses some communication
protocol for connecting to another device or network and
enables interaction or remote control. As an example smart
thermostat can serve, a smart car, smart speaker or a well
known smartphone. The smart electronic lock [2] is an example
of another smart device which we meet in our everyday life.
Connecting electronics with mechanical elements and a remote
server brings new possibilities for users to control these locks.
The smart electronic locks have many advantages, especially
since they can be controlled remotely. The use of electronic
locks is widely used in companies where they are combined
with the access system and allow, for example, easy adjustment
of the access for individual employees to various parts of the
company. Electronic locks also bring benefits for home use,
whether for short-term rentals of flats or for remote adding
access rights to a service technician or a housekeeper.

Electronic systems are exposed to various influences that
can cause faults in such devices, especially in various environ-
ments with an increased occurrence of charged particles, elec-

trostatic electricity, etc. However, faults in electronic systems
can also be induced artificially, usually with ulterior motives.
Intentional fault injection uses, for example, bumping attacks
which are aimed at data extraction from secure embedded
memory, which usually stores critical parts of algorithms,
sensitive data and cryptographic keys [3]. As an another
example, smart cards are often the target of software or
hardware attacks. The most recent attack is based on fault
injection which modifies the behavior of the application [4].
In the case of electronic locks, opening a lock by gaining
privileges or without privileges is particularly critical. Thanks
to unauthorized or accidental unlocking, property can be
damaged, financial losses can occur and even human health
or life can be in danger. Unauthorized acquiring permission
or unauthorized unlocking can be caused by various types of
attacks, whether to the server part of the whole system, or
directly to the lock installed on the door [5]. One of the ways
for unauthorized opening can be a deliberately induced fault,
which is not up to now an explored topic that we will deal
with in our work.

In our research, we are dealing with designing a fault-
tolerant system and evaluating the effects of faults on electro-
mechanical systems. We focus primarily on systems which
are built on SRAM-based FPGAs. The electronic lock is just
another example of such an electro-mechanical system, where
the occurrence of a fault can lead to undesirable consequences.
In this work, we plan to use gained knowledge and experience
and apply previously developed tools to analyze the impact
of faults on electronic locks. Electronic locks are usually
controlled by an embedded processor that can be implemented
in an FPGA which gives us the possibility for a quite easy
modification and fault simulation. The result of the research
then will not only be the evaluation of the impact of faults,
but also the evaluation of the possibility of using general
approaches to guarantee fault tolerance.

This paper is organized as follows. Electronic lock analysis
is done in Section II. The goals of our research are proposed
in Section III. Section IV introduces an evaluation platform for
monitoring the impact of faults on electro-mechanical appli-
cations and Fault Tolerance ESTimation (FT-EST) framework
for the accelerated evaluation of faults impact on electronic
design. Simulation tools for stepper motor simulation are the
topic of Section V. Section VI presents the use of universal
stimuli generator for input stimuli generation. Experiments
with stimuli generation for stepper motor are presented in
Section VII. Section VIII concludes the paper and presents
plans for our future research.
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II. ELECTRONIC LOCK ANALYSIS

Smart electronic locks are quite complex electronic devices
that use many of the latest technologies. The basis of the
lock can be summarized in three blocks - control module,
I/O module and motor module [6]. The control module is the
main core of the entire lock. Typically, a processor is used
because it performs a number of computationally intensive
operations - peripheral handling, locking decision algorithm
or the motor control. The lock is connected via I/O modules
with its peripherals, including simple sensors, displays, card
readers, or other network communication technologies like Wi-
Fi, Bluetooth, GSM, etc. The last but equally important block
is the motor module which performs the operation with the
mechanical part of the lock.

The motor can be a conventional brushed motor with
circular motion that requires a motor drive which operates the
motor as an actuator [7]. Another option is to use a different
type of motor that already offers precise angle control, linear
positioning or speed control. This type may be a servomotor
or stepper motor. The servomotor is used in devices where a
very precise position plays an important role (e.g. laser cutting
machines). In other less precise devices, the stepper motor is
sufficient. The stepper motor has to be turned into a known
position before it is activated, since it does not offer feedback
about its position. It is very often found in electronic locks [8]
[9] (we found it also in a car door lock), so we also focus on
it in our work.

The stepper motor is a DC electric motor whose full
rotation can be divided into several equal steps. The stepper
motor is controlled by input pulses (typically square pulses)
that precisely rotate the shaft position based on an angle
which is given by the number of motor steps. It consists of a
cylindrical rotor, a number of stators, a number of yokes, and
a set of coils [10]. Different types of stepper motors exist that
vary in their internal magnetic field configuration. In our work,
we have chosen a conventional bipolar stepper motor with a
permanent magnet in its rotor which operates on the attraction
or repulsion between the rotor and the stator electromagnets.
The cut section of such a motor is shown in Figure 1.

Fig. 1: The cut of stepper motor with a permanent magnet in
rotor. [11]

The particular model of this type of stepper motor, that
we have chosen, is 28BYJ-48 [12]. It is a small stepper
motor operating at 5V. It is the motor equipped with 1/64
transmission gearbox. It has 4 phases with a single step angle
of 5.625/64. It is needed to perform 4,096 steps (64 steps
without the gearbox) for the full rotation.

III. THE GOALS OF THE RESEARCH

Various tools for fault tolerance evaluation [13], [14], [15]
were developed during our previous work. In this work, we
propose the use of these tools for the evaluation of the impact
of faults on stepper motor, which is the core of an electronic
lock. We have identified three main goals that we are going to
achieve during our future research:

1) The evalution of faults injected directly into stepper motor
control signals and estimation of the risk of unauthorized
unlocking.
2) Implement the stepper motor controller with a processor
configured into an FPGA and evaluate: a) the impact of faults
injected into memory elements of processor and b) possibility
of unauthorized unlocking.
3) Verify the possibility of using standard fault tolerance
techniques for eliminating unauthorized lock unlocking.

During the solving of the goals we will use three levels
of evaluation (Figure 2) with various architectures of com-
ponent realization and interconnection. Figure 2a shows the
architecture, where all components are running on PC which
allows us rapid prototyping and evaluation. The problem is
that the results are not realistic because there is no real
electronic controller into which real faults can be injected. This
architecture will be used for monitoring the impact of faults in
stepper motor control signals. The second architecture based
on the interconnection of a PC and an FPGA is shown in Figure
2b. The electronic controller running on the FPGA allows
us to inject a real fault into the FPGA and realistic results
are obtained both for electronic output and the behavior of
mechanical part. The evaluation is quite slow due to the PC and
the FPGA communication. Moreover, communication brings
synchronization issues between the PC and the FPGA. The
last architecture, shown in Figure 2c, accelerates the evaluation
and allows us to perform a more exhaustive evaluation thanks
to the full implementation in the FPGA. The problem is that
the simulation of a mechanical part is impossible for more
complex electro-mechanical systems.

=MOTOR 
CONTROLLER

PC

SIMULATION

(a) All components running on PC.

=MOTOR 
CONTROLLER

PC

SIMULATION

FPGA

(b) The electronic controller running on FPGA and motor
simulation performed on PC.

=MOTOR 
CONTROLLER

FPGA

SIMULATION

(c) All components running on FPGA.

Fig. 2: Three level of evaluation with various speed and
accuracy.
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IV. THE EVALUATION PLATFORM

Two evaluation platforms were developed in our research
group. The first one [13] allow us to monitor the impact
of faults both on the electronic and mechanical part. This
platform corresponds to Figure 2b. The second one [14] is
a framework fully implemented in an FPGA which proposes
faster evaluation, but monitors just the impact of faults on the
electronic part. This platform can be used as a basis of the
architecture shown in Figure 2c. These tools are presented in
the following sections.

A. The Functional Verification-based Evaluation Platform

A previously developed platform for monitoring the impact
of faults on electro-mechanical system is presented in [13].
The platform is based on a functional verification technique
[16]. The concept and basic components are shown in Figure
3. The electronic control unit is implemented in an FPGA and
we use the ML506 evaluation board with Virtex 5 FPGA. The
fault injector, mechanical part simulation and software part
of the verification environment are running on a computer.
The mechanical part communicates with an FPGA through
the Ethernet interface. Faults are injected through the JTAG
interface directly to the FPGA.

Fig. 3: The genral architecture of the developed evaluation
platform.

The basic concept of the use of functional verification as a
tool for monitoring the impact of faults on electro-mechanical
system is presented in Figure 4. The difference compared to
conventional functional verification is that the Device Under
Test (DUT) is moved into an FPGA which allow us to inject
faults and monitor its impact. The use of the proposed platform
was demonstrated on a robot in maze case study, but this plat-
form is designed to be generally usable with various systems.
The versatility of the proposed platform is based especially
on the fact that the verification environment is available for
an evaluated system, because functional verification is usually
used during electronic systems development. Therefore, the
verification environment and the reference model (the most
important elements dependent on the evaluated system) are
available from the previous stage of system development and
can be used as a fault tolerance evaluation. The verification
scenario generation is usually a part of the verification en-
vironment or we can use our previously developed universal
generator [15]. An important condition for using the platform
is that an electronic controller can be configured into an FPGA.
Moving the DUT into the FPGA and proper communication
with the rest of verification environment ensure driver and
monitor components. These components are partly universal,
but they need to be customized for a particular DUT.

The mechanical part is also an important element, which
allows us to monitor the impact of faults not only on elec-
tronics, but also on mechanics. It is not important whether
it is a real mechanical part or its simulation. It is important
that sensors that provide feedback on the behavior of the
mechanical part are available. The values provided by these
sensors are processed on the verification environment, which
check if the system behaves according to its specification.
Usually, the use of simulation allows us to speed up testing and
is usually cheaper than the use of a real mechanical device.

DUT
(Electronic Part)

Reference Model

Input Stimuli 
Generation

=

Simulation of 
Mechanical Part

Driver Monitor

FPGA

Fault Injection OK?
FAIL?

Fig. 4: The general concept of the use of functional verification
for monitoring impact of faults.

In this work, we deal with monitoring the impact of
faults on the electronic lock, more precisely on the main
mechanical element, which is the stepper motor. In this case,
the verification environment is modified since no feedback is
used when the stepper motor is controlled, only control signals
ensuring the stepper motor correct operation are generated.
To monitor the behavior of a mechanical part, which is the
stepper motor, it is advantageous to use a measurement of the
continuous and resulting angle of rotation. The angle measure-
ment can be easily realized both in the case of experiments
with a real stepper motor (e.g. a stepper motor can rotate a
potentiometer), and in the case of simulation, which gives
us this information automatically. The use of the functional
verification for monitoring the impact of faults injected into the
stepper motor controller implemented in an FPGA is shown in
Figure 5.

Reference Model=

OK?
FAIL?

MOTOR 
CONTROLLER

Driver Monitor

FPGA

Fault Injection

MOTOR 
CONTROLLER

Driver Monitor

FPGA

Fault Injection

ANGLE?

Fig. 5: The use of functional verification for monitoring impact
of faults on stepper motor controller.

For the successful implementation of the above mentioned
concept of fault tolerance verification, we need the simulation
of the mechanical part, which is a stepper motor simulator. We
found a suitable stepper motor simulator that is described in
Section V.
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B. The FT-EST Framework

In our previous research paper [14], we developed a new
framework specialized on the acceleration of the evaluation
process. The framework also aims at minimizing the user
interactions needed to execute a test, as this framework is
originally intended to be a part of our fault tolerance design
automation toolkit. We call this tool the Fault Tolerance
ESTimation (FT-EST) framework. Results obtained through the
FT-EST can be automatically analyzed using our approach
presented in [17]. The FT-EST framework also utilizes the
concept of functional verification, which means the tested
component is instantiated on the actual HW (i.e. a Virtex 5
Xilinx FPGA in our case) and to hold a test, at least two
instances of the component must be made: 1) a golden unit,
which serves reference results and is not a subject to fault
injection; and 2) the tested unit, which we call the Unit Under
Test (UUT). Faults are injected particularly into the area of
the UUT occupied on the FPGA. The number of UUTs can
be increased in order to run the test in parallel for each unit.
The framework is prepared for this functionality, and, thus, the
multiple instantiation is achieved through automatic generation
and is completely seamless for the user. The framework utilizes
several acceleration techniques, for example:

• test of multiple component instances,
• stimuli are generated and outputs are compared on the

FPGA to maximize throughput,
• for each test, only the tested UUTs are repaired,
• tests are executed autonomously to minimize latency.

The FT-EST framework consists of the HW part, which is
synthesized and run on the FPGA, and also of the SW part,
which is executed on the PC and starts and stops the operation
of the HW part and also saves the results obtained from the
HW into a file. The HW part is written in VHDL and is usually
synthesized and uploaded to the FPGA together with the UUT
components. The HW part is composed of various componens
each of which has its function, making potential changes of
the framework much easier. The UUTs are instantiated inside
the Unit Instantiation Area (UIA). Input stimuli are generated
inside the Input Generation Unit (IGU), while the outputs are
compared in the Output Compare Unit (OCU) and detected
failures are captured in the Failure Capture Unit (FCU). The
experimentation on the HW part is autonomously driven by
the FSM inside of the eXperiment Control Unit (XCU). XCU
can be modified to achieve various experimentation flows. The
communication with the HW part of the framework can be
divided into two main blocks: communication registers are lo-
cated in the technology-independent Communication Interface
(CIF), while the Communication Module (CM) implements
the particular technology-dependent communication. In our
case, as we are using Xilinx technology in combination with
the JTAG (Joint Test Action Group) and Universal Serial
Bus (USB) interfaces, the CM is utilizing the ChipScope Pro
Integrated Controller (ICON) core [18] in cooperation with the
Virtual Input/Output (VIO) cores [19]. The SW part utilizes
the Fault Injector [20], which was previously developed in
our research group. The communication from the SW is
achieved through the ChipScope Tcl Engine Interface [21],
counterparting the CM. The experimental loop implements the
SEU cycle. The architecture of the framework is shown in
Figure 6.

While using the framework, for the exhaustive test of each
bit of the bitstream (i.e. the common use case), testing consists
of two cycles: 1) during the test cycle, all the stimuli in
the prescribed order are replayed on the inputs of the UUT,
resulting in the full test of the UUT; 2) during the SEU cycle,
one fault is injected and the impacts of the fault are tested by
executing the test cycle. Thus, for the exhaustive testing, the
number of SEU cycles corresponds to the number of tested
bits of the bitstream.

Fig. 6: Simplified architecture of the FT-EST system; the parts
highlighted in blue are dynamically and fully automatically
generated, while the parts highlighted in red are to be provided
by the designer to specify the experiment setup.

In this research, we would like to move the experimentation
fully to the FPGA to accelerate the evaluation. However, to
accelerate the evaluation of the critical bits representation,
HW implementation of the stepper motor simulation must
be designed. In such approach, each UUT is assigned one
simulator. The OCU monitors the UUTs outputs to distinguish
if, or for how long, the stepper motor was in a position
that could be considered as unlocked. This approach would
allow us to significantly lower the time needed for one test,
and, thus, result in a possibility to exhaustively evaluate each
bit of the bitstream belonging to the implementation of the
controller unit. Such approach would also allow us to utilize
the additional information obtained through the simulation in
the hardening of the system using our FT design automation
toolkit, as the in-HW mechanical simulation would allow us to
monitor the impacts on the mechanical part even while using
the accelerated framework, resulting in a faster evaluation
without compromising on accuracy of the results. It should
be noted that without the in-HW simulation, the FT design
automation toolkit would be fully dependent only on the actual
critical bits percentage in order to evaluate a particular design.
A possible implementation of HW simulation of the stepper
motor is described in Section V-B.

509



V. THE STEPPER MOTOR SIMULATION

The realization of the simulation is described in the fol-
lowing sections. We need two versions of the simulation:
1) the SW version that could be used with the evaluation
platform considering the mechanics which was described in
Section IV-A and also 2) the HW implementation that would
run on an FPGA for its usage with the FT-EST framework
which was described in Section IV-B.

A. Software Implementation

We decided to utilize MATLAB and Simulink [22] for
the simulation of a mechanical equipment such as a stepper
motor. Moreover, we do not need to detail the stepper motor
modelling because the required model is prepared in the
Simscape library [23], which is part of the Simulink package.
This model is generic for the whole class of stepper motors,
therefore, it is necessary to select a particular option which
corresponds with a real motor chosen by us. Thus we have to
ascertain our stepper-motor parameters for using it. Some of
them are in the corresponding datasheet [12] and the rest has
to be measured.

Fig. 7: MATLAB & Simulink: stepper-motor simulation dia-
gram.

It is necessary to model the whole system such as power
management and motor control besides the stepper motor itself
for a correct simulation. Our model for Simulink is shown
in Figure 7. Stimuli for the stepper-motor control, which are
generated outside (more in Section VI), are brought to the
model input port. The first part of this model is a voltage
controller which is responsible for converting logic inputs to
the electric impulses which excite the motor coils. An electric
power source for the motor is modelled as a constituent of
this voltage controller. A subsequent part is the stepper-motor
model itself with specific parameters. More accurately, it is
the 4-phase stepper motor with a permanent-magnet rotor.
The sequence of involving the 4 motor coils to perform one
rotation sequence is shown in Table I. the required output from
the whole model is the current angle of the motor turning.
Fortunately, this is an output from the model of the motor
too. For the possibility of a detailed analysis of the motor
behaviour, outputs are in the format of a time series which
means that data with a current motor rotation are provided by
time stamps. As a result, the current motor position in every
moment is known.

TABLE I: 8 steps required to perform 1 motor sequence.

STEP 1 2 3 4 5 6 7 8

COIL1 1 1 0 0 0 0 0 1
COIL2 0 1 1 1 0 0 0 0
COIL3 0 0 0 1 1 1 0 0
COIL4 0 0 0 0 0 1 1 1

B. Hardware Implementation

In order to perform more exhaustive experiments with
the motor we face a problem with time consumption of
the software simulation in MATLAB. Taking several minutes
for each simulation run, the time of exploring the entire
state space of the motor will be extremely long. As we are
going to perform more exhaustive experiments with different
parameters, we need to take this into account. To deal with the
problem, we decided to use hardware acceleration according to
the architecture shown in Figure 2c to speed up the simulation.
The motor simulation itself is also supposed to be implemented
in the FPGA in order to utilize its performance and also to
make communication between the controller and the motor
simulation as easy as possible in order to avoid any limitations
of the throughput.

The simulation may be implemented in different ways. We
may implement a simple processor design into an FPGA and
use it to run a simplified simulation as the computation of a
set of differential equations which are used in the MATLAB
library [23]. This approach is good for its fast development
and deployment in the experiments; however, it suffers from
a limited performance of the FPGA implemented processor.
Another approach may be to design a special computing unit
optimized to compute the specific equations with sufficient
speed. This approach may prove to be the fastest solution
possible. However, the design and the deployment period may
be far longer as it requires a special approach to optimize
needed mathematical operations and ensure their correct order.
The computation precision may also prove to be a problem as
floating point arithmetic units are costly to implement and they
may slow the whole computation to the level that neglects any
reached simulation speed up. In order to keep the performance
level we might need to use a fixed point arithmetic which
may lead to aforementioned problems with the computation
precision.

Another approach we considered is to utilize neural net-
works as we dispose of efficient FPGA implementation that
may be used to optimize the computation using the implemen-
tation massive parallelism. In this approach the motor will need
to be modeled using a feedback type neural networks as the
Hopfield networks or the Boltzmann machines [24]. However,
this approach may suffer from an inability to simulate inertia
related parameters of the motor. Also, the computation of
neural network may also suffer from limited precision due to
the usage of the fixed point arithmetic. The feedback design
of neural network may also cause the precision limits to
accumulate in the iterative computation of the network output
and the feedback.
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VI. STIMULI GENERATION

Input stimuli generation is a rather important process for
verifying the correct behavior of each designed system. By
applying different input stimuli, it is possible to check the
correctness of the design and detect possible implementation
errors during the development process. Advantageously, the
generation of stimuli can be used in the area of fault-tolerant
systems for verifying the impact of a fault on system behavior.

In stimuli generation for the stepper motor, we use our
previously designed universal stimuli generator which is de-
scribed in Section VI-A. The application of this generator to
the selected stepper motor is described in Section VI-B.

A. Universal Stimuli Generation

Universal stimuli generation (USG) is based on our design
which uses two input structures that define a general gram-
matical system and constraints. Constraints give the grammar
more expression power. Consequently, it is possible not only
to create stimuli defined by their grammar, but also to dynami-
cally control the entire process of the application of production
rules of the grammar during the generation. Together these
two input structures create our new grammatical system which
is called probabilistic constrained grammar (PCG). It is a
context-free grammar where the production rules have defined
probability of replacement, and the constraints that can dynam-
ically change this probability during the stimulus generation.
More information about this new grammar can be found in
our previous work [25]. The input stimulus is composed of
production rules of the grammar during the generation process.
Each system must have defined its own grammar. In each
generation step, the constraints are verified. The constraints
limit all possible solutions and only ensure a correct input
stimulus composition that is valid in a given combination of
generation steps. We have previously applied this universal
generator to generate assembly instructions for processors,
mazes for a robot controller, software fault tolerance, or
generate input values as an expected result for an arithmetic
logic unit. Now we use it to generate stepper motor stimuli.

B. Stimuli Generation for Stepper Motor

In the case of stepper motor verification, two types of
stimuli can be generated. The first type is the generation
of complete verification scenarios to evaluate the impact of
fault injection on the controller of the lock. The controller
then interprets the input stimuli to specific stepper motor
commands. However, since the controller for the lock is not
available at this time, we will not deal with this type in this
work. The second type is to generate affected stimuli directly
into the stepper motor and verify it without the controller. The
stimuli thus represent specific input values for the selected
stepper motor. In fact, the controller with a fault injection can
be replaced by the generator. As a result, we are able to find
out how the stepper motor behaves with different values on its
input pins using only a stimulus generator. We will deal with
this type in the following paragraphs.

We generate input stimuli for the available model of a
stepper motor that ispart of the MATLAB and Simulink
package. This model requires the voltage level on its inputs
for its 4 coils (0V or 5V) changing over time - stepping.

For this reason, we have to encode each step into a pattern.
Each pattern is composed of five values, where the first value
represents the time stamp in which the step occurs. The
remaining four values represent the voltage levels on the four
coils (COIL1 − COIL4). We use logical levels to define
the appropriate voltage (logical 0 = 0V, logical 1 = 5V). The
resulting pattern of the step of the stepper motor is as follows:

TIMESTAMP,COIL1,COIL2,COIL3,COIL4

Many steps must be defined (tens to thousands) to turn the
stepper motor around its entire axis one or more times. Several
steps obtained during the generation process define one input
stimulus. For such a proposed step pattern, it is necessary to
respectively create a PCG and production rules of the grammar
which will generate these steps. Some test scenarios do not
require deeper logic and, therefore, individual steps can be
stacked randomly without deeper continuity. However, in the
case of a valid continuous motor rotation in one direction (or
damaging such input by a fault), it is necessary to keep a
valid sequence of stepper motor coils. In the case of a 4-phase
stepper motor, 8 steps are required. If it is a stepper motor
with a gearbox, many more steps are needed.

The PCG for a 4-phase stepper motor is built to be able to
generate both a valid stimulus and its various modifications.
It also includes a completely random sequence of steps or
the possibility of prioritizing a particular logical value. The
correct continuity of timestamps and steps for a valid one-
way turn ensures constraints that define the valid sequences of
production rules that can be selected. Several parameters can
be set before creating the resulting PCG:

time - maximum timestamp value (end of generation).
minstep - minimum time between steps.
maxstep - maximum time between steps.
pcoil - probability of logical 0 or 1 for each coil.

There is no space to show concrete grammar and con-
straints, so at least we will describe the generation process. The
input structures, which contain the definitions of production
rules and constraints, are preprocessed first. Certain patterns
in the definition of structures are unpacked and supplemented
with specific values. The result of preprocessing is a complete
PCG. PCG is processed with our stimulus generator which
performs the replacement of the leftmost non-terminal of the
grammar. After each replacement, the constraints that can
affect any grammar rule are verified. The generation process
ends when the output string no longer contains any non-
terminal symbols that can be replaced. The output of the
generation is in our case a text file which forms the input
stimulus. The lines of the file represent the steps for the
stepper motor. This file is the input stimulus for stepper motor
simulation in MATLAB. The process of stimulus generation
is shown in Figure 8.

Fig. 8: The process of universal stimuli generation for a stepper
motor.
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VII. EXPERIMENTS AND EXPERIMENTAL RESULTS

As a first step towards meeting the goals of our research,
we performed experiments with stimuli generation for direct
control of the stepper motor. The aim of these experiments
is to verify the possibility of deliberately unlocking or the
impossibility of locking the electronic lock. The key part of
this verification is the stimuli generator on which the creation
of the required test scenarios that lead to this behavior depends.
For this reason, the set of probabilistic constrained grammars
with the possibility of parametrization have been designed. The
step pattern of the stepper motor, from which the stimulus is
composed, was shown in the previous section.

The production rules of the grammars have been designed
to generate:

1) The valid sequence of steps to rotate the stepper
motor in one direction several times around its entire
axis.

2) The valid sequence of steps with the percentage
representation of faults (1− 100%) that will invert a
certain number of ones and zeros in the stimulus (it
applies to patterns COIL1− COIL4).
For example 25% = 1

4 valid pattern bits is negated,
100% = all bits of all patterns are negated (negation
of Tab. I).

3) The random sequences of steps with the percentage
representation of ones and zeros in the stimulus.
For example 25% of ones and 75% of zeros.

We are able to generate the valid sequences which will
lead to the fact that the stepper motor performs the proper
motion necessary to unlock/lock the electronic lock. We can
also generate faulty sequences in order to detect stepper motor
behavior in the event of a malfunction.

The available MATLAB stepper motor model has been set
to match our real motor selected in Section II. The motor is set
without the gearbox to reduce the number of required steps.
For the simulation, time stamps of stimuli have been set so
that the first step of the motor starts at time 0 and the last step
of the motor ends at time 2.56. The interval between motor
steps has been set to 0.005. In this setting, there are always
512 steps in the final stimulus. This setting ensures a sufficient
number of rotations of the stepper motor around its entire axis
(up to 8 times for a valid sequence) and a sufficient time to
evaluate the impact of faults. The selected interval between the
steps is also large enough to stabilize the motor when the step
is changed, because the available stepper motor model also
takes these situations into account.

For our experiments, we generated one stimulus with
purely valid sequence of steps (FAULT 0%) and 1000 of
random stimuli for each modified sequence. It includes modi-
fication for valid sequences with probability of fault (FAULT
1%, 5%, 15%, 25%, 50%, 75%, 85%, 95%) and random
sequences of steps with different number of ones and ze-
ros (RAND 50%(’1’) : 50%(’0’), RAND 25%(’1’) : 75%(’0’),
RAND 75%(’1’) : 25%(’0’)). For these stimuli, we examined
the angle of rotation of the motor in degrees. Figures 9, 10 and
11 show three different views of the examined rotation of the
stepper motor. Suppose we need at least 6 turns around entire
axis of the stepper motor to open the lock. This corresponds
to 2160 degrees.

Figure 9 shows the maximum motor rotation during the
whole simulation. With increasing faults in the valid sequence,
the angle of rotation of the motor decreases. This is due
to the gradual interruption of continuity in the sequences of
steps for proper motor rotation. In the case of fault 50%, the
stepper motor behavior is the same as the random sequence and
its maximum rotation is 217 degrees. With increasing faults
causing a gradual shift of all values to its negated form in the
sequence of steps, the rotation of the motor is increasing again.
The effect of faults is symmetrical. It means that fault 25%
gives the same rotation as fault 75%, etc.

Fig. 9: Maximum stepper motor rotation angle during the
whole simulation.

The same behavior described in the previous paragraph can
also be seen in Figure 10 which shows the minimum motor
rotation during the whole simulation. In the case of fault 50%
or the random sequence of steps, the minimum rotation of the
motor is -237 degrees. It means the stepper motor was rotated
in the opposite direction. In other cases, the motor could rotate
in the opposite direction due to a fault (negative degree), but
eventually began to rotate properly.

Fig. 10: Minimum stepper motor rotation angle during the
whole simulation.

Finally, Figure 11 shows the rotation angle of the stepper
motor at the end of the simulation. In the case of fault 50%
or a random sequence of steps, the motor rotates uncontrolled
and alternates the positive and negative directions or stands in
place, so there is no significant one-way rotation.

Fig. 11: Stepper motor rotation angle at the end of the
simulation.
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Experiments have been presented to show that random
sequences of steps in our case will not be able to unlock the
lock. A deeper logic and knowledge of the correct sequence
of steps used by the selected motor are needed to perform the
attack to unlock the lock. On the other hand, random sequences
could cause that the lock will not be locked by falsifying the
lock request sequence. The second interesting fact is that x%
of faults in the valid sequence give the same rotation angle as
(100−x)% of faults. In the case of faults (0−15)% and faults
(75− 100)% in a valid sequence, it is possible to unlock the
electronic lock in many cases based on the unlock condition
that we have defined.

VIII. CONCLUSIONS AND FUTURE RESEARCH

In this work, we presented our first step towards testing
the reliability of the smart electronics lock. Our focus is on
electronics locks which use the stepper motor as the actuator
of the lock. Our research is divided into three phases. In the
first phase, the evaluation of the mechanical part is performed
purely on SW and simulation basis. The second phase uses
the combination of the HW implemented electronics and SW
simulation for the evaluation of impact of faults. The last phase
is the acceleration of the fault impact evaluation by the FT-EST
framework. Using this framework, we are able to accelerate
the evaluation by moving the simulation fully into HW. In this
paper, we proposed the experimental results obtained through
the simulation of the stepper motor in MATLAB. We generated
exciting stimuli for the coils of the stepper motor through
the universal stimuli generator. This generator is based on
a grammar system which allows us to generate both valid
and faulty input stimuli. In our experiments, we examined
the behavior of the stepper motor by monitoring the rotation
angle. From the experiments, we found out that random errors
probably could not be used to unauthorized unlock, especially
in cases where the lock uses a mechanical gearbox. To unlock
the lock, a knowledge of the selected stepper motor is needed,
but random step sequences may prevent a door to lock. The
interesting fact is that x% of faults in the valid sequence give
the same rotation angle as (100 − x)% of faults. We plan to
continue to fulfill the set goals, i.e. to use both the platforms
for monitoring the impacts of faults injected into the control
processor implemented into the FPGA.
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