
Automata Terms in a Lazy WSkS
Decision Procedure

Vojtěch Havlena, Lukáš Hoĺık, Ondřej Lengál(B), and Tomáš Vojnar

FIT, IT4I Centre of Excellence,
Brno University of Technology, Brno, Czech Republic

lengal@fit.vutbr.cz

Abstract. We propose a lazy decision procedure for the logic WSkS.
It builds a term-based symbolic representation of the state space of the
tree automaton (TA) constructed by the classical WSkS decision proce-
dure. The classical decision procedure transforms the symbolic represen-
tation into a TA via a bottom-up traversal and then tests its language
non-emptiness, which corresponds to satisfiability of the formula. On
the other hand, we start evaluating the representation from the top,
construct the state space on the fly, and utilize opportunities to prune
away parts of the state space irrelevant to the language emptiness test.
In order to do so, we needed to extend the notion of language terms
(denoting language derivatives) used in our previous procedure for the
linear fragment of the logic (the so-called WS1S) into automata terms.
We implemented our decision procedure and identified classes of formu-
lae on which our prototype implementation is significantly faster than
the classical procedure implemented in the Mona tool.

1 Introduction

Weak monadic second-order logic of k successors (WSkS) is a logic for describing
regular properties of finite k-ary trees. In addition to talking about trees, WSkS
can also encode complex properties of a rich class of general graphs by referring
to their tree backbones [1]. WSkS offers extreme succinctness for the price of non-
elementary worst-case complexity. As noticed first by the authors of [2] in the
context of WS1S (a restriction that speaks about finite words only), the trade-
off between complexity and succinctness may, however, be turned significantly
favourable in many practical cases through a use of clever implementation tech-
niques and heuristics. Such techniques were then elaborated in the tool Mona
[3,4], the best-known implementation of decision procedures for WS1S and WS2S.
Mona has found numerous applications in verification of programs with com-
plex dynamic linked data structures [1,5–8], string programs [9], array programs
[10], parametric systems [11–13], distributed systems [14,15], hardware verifica-
tion [16], automated synthesis [17–19], and even computational linguistics [20].

Despite the extensive research and engineering effort invested into Mona,
due to which it still offers the best all-around performance among existing
WS1S/WS2S decision procedures, it is, however, easy to reach its scalability
c© Springer Nature Switzerland AG 2019
P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 300–318, 2019.
https://doi.org/10.1007/978-3-030-29436-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-29436-6_18

Automata Terms in a Lazy WSkS Decision Procedure 301

limits. Particularly, Mona implements the classical WS1S/WS2S decision proce-
dures that build a word/tree automaton representing models of the given formula
and then check emptiness of the automaton’s language. The non-elementary com-
plexity manifests in that the size of the automaton is prone to explode, which
is caused mainly by the repeated determinisation (needed to handle negation
and alternation of quantifiers) and synchronous product construction (used to
handle conjunctions and disjunctions). Users of WSkS are then forced to either
find workarounds, such as in [6], or, often restricting the input of their approach,
give up using WSkS altogether [21].

As in Mona, we further consider WS2S only (this does not change the expres-
sive power of the logic since k-ary trees can be easily encoded into binary ones).
We revisit the use of tree automata (TAs) in the WS2S decision procedure and
obtain a new decision procedure that is much more efficient in certain cases. It is
inspired by works on antichain algorithms for efficient testing of universality and
language inclusion of finite automata [22–25], which implement the operations
of testing emptiness of a complement (universality) or emptiness of a product
of one automaton with the complement of the other one (language inclusion)
via an on-the-fly determinisation and product construction. The on-the-fly app-
roach allows one to achieve significant savings by pruning the state space that
is irrelevant for the language emptiness test. The pruning is achieved by early
termination when detecting non-emptiness (which represents a simple form of
lazy evaluation), and subsumption (which basically allows one to disregard proof
obligations that are implied by other ones). Antichain algorithms and their gen-
eralizations have shown great efficiency improvements in applications such as
abstract regular model checking [24], shape analysis [26], LTL model checking
[27], or game solving [28].

Our work generalizes the above mentioned approaches of on-the-fly automata
construction, subsumption, and lazy evaluation for the needs of deciding WS2S.
In our procedure, the TAs that are constructed explicitly by the classical pro-
cedure are represented symbolically by the so-called automata terms. More pre-
cisely, we build automata terms for subformulae that start with a quantifier (and
for the top-level formula) only—unlike the classical procedure, which builds a TA
for every subformula. Intuitively, automata terms specify the set of leaf states of
the TAs of the appropriate (sub)formulae. The leaf states themselves are then
represented by state terms, whose structure records the automata constructions
(corresponding to Boolean operations and quantification on the formula level)
used to create the given TAs from base TAs corresponding to atomic formulae.
The leaves of the terms correspond to states of the base automata. Automata
terms may be used as state terms over which further automata terms of an even
higher level are built. Non-leaf states, the transition relation, and root states are
then given implicitly by the transition relations of the base automata and the
structure of the state terms.

Our approach is a generalization of our earlier work [29] on WS1S. Although
the term structure and the generalized algorithm may seem close to [29], the
reasoning behind it is significantly more involved. Particularly, [29] is based on

302 V. Havlena et al.

defining the semantics (language) of terms as a function of the semantics of
their sub-terms. For instance, the semantics of the term {q1, . . . , qn} is defined
as the union of languages of the state terms q1, . . . , qn, where the language of a
state of the base automaton consists of the words accepted at that state. With
TAs, it is, however, not meaningful to talk about trees accepted from a leaf
state, instead, we need to talk about a given state and its context, i.e., other
states that could be obtained via a bottom-up traversal over the given set of
symbols. Indeed, trees have multiple leafs, which may be accepted by a number
of different states, and so a tree is accepted from a set of states, not from any
single one of them alone. We therefore cannot define the semantics of a state
term as a tree language, and so we cannot define the semantics of an automata
term as the union of the languages of its state sub-terms. This problem seems
critical at first because without a sensible notion of the meaning of terms, a
straightforward generalization of the algorithm of [29] to trees does not seem
possible. The solution we present here is based on defining the semantics of
terms via the automata constructions they represent rather then as functions of
languages of their sub-terms.

Unlike the classical decision procedure, which builds a TA corresponding to
a formula bottom-up, i.e. from the atomic formulae, we build automata terms
top-down, i.e., from the top-level formula. This approach offers a lot of space
for various optimisations. Most importantly, we test non-emptiness of the terms
on the fly during their construction and construct the terms lazily. In particu-
lar, we use short-circuiting for dealing with the ∧ and ∨ connectives and early
termination with possible continuation when implementing the fixpoint compu-
tations needed when dealing with quantifiers. That is, we terminate the fixpoint
computation whenever the emptiness can be decided in the given computation
context and continue with the computation when such a need appears once the
context is changed on some higher-term level. Further, we define a notion of sub-
sumption of terms, which, intuitively, compares the terms w.r.t the sets of trees
they represent, and allows us to discard terms that are subsumed by others.

We have implemented our approach in a prototype tool. When experiment-
ing with it, we have identified multiple parametric families of WS2S formulae
where our implementation can—despite its prototypical form—significantly out-
perform Mona. We find this encouraging since there is a lot of space for further
optimisations and, moreover, our implementation can be easily combined with
Mona by treating automata constructed by Mona in the same way as if they
were obtained from atomic predicates.

An extended version of this paper including proofs is available as [30].

2 Preliminaries

In this section, we introduce basic notation, trees, and tree automata, and give
a quick introduction to the weak monadic second-order logic of two successors
(WS2S) and its classical decision procedure. We give the minimal syntax of
WS2S only; see, e.g., Comon et al. [31] for more details.

Automata Terms in a Lazy WSkS Decision Procedure 303

Basics, Trees, and Tree Automata. Let Σ be a finite set of symbols, called
an alphabet. The set Σ∗ of words over Σ consists of finite sequences of symbols
from Σ. The empty word is denoted by ε, with ε �∈ Σ. The concatenation of two
words u and v is denoted by u.v or simply uv. The domain of a partial function
f : X → Y is the set dom(f) = {x ∈ X | ∃y : x �→ y ∈ f}, its image is the
set img(f) = {y ∈ Y | ∃x : x �→ y ∈ f}, and its restriction to a set Z is the
function f|Z = f ∩ (Z × Y). For a binary operator •, we write A [•] B to denote
the augmented product {a • b | (a, b) ∈ A × B} of A and B.

We will consider ordered binary trees. We call a word p ∈ {L, R}∗ a tree
position and p.L and p.R its left and right child, respectively. Given an alphabet Σ
s.t. ⊥ /∈ Σ, a tree over Σ is a finite partial function τ : {L, R}∗ → (Σ ∪ {⊥})
such that (i) dom(τ) is non-empty and prefix-closed, and (ii) for all positions
p ∈ dom(t), either τ(p) ∈ Σ and p has both children, or τ(p) = ⊥ and p has no
children, in which case it is called a leaf. We let leaf (τ) be the set of all leaves
of τ . The position ε is called the root, and we write Σ to denote the set of all
trees over Σ1.We abbreviate {a} as a for a ∈ Σ.

The sub-tree of τ rooted at a position p ∈ dom(τ) is the tree τ ′ = {p′ �→
τ(p.p′) | p.p′ ∈ dom(τ)}. A prefix of τ is a tree τ ′ such that τ ′

|dom(τ ′)\leaf (τ ′) ⊆
τ|dom(τ)\leaf (τ). The derivative of a tree τ wrt a set of trees S ⊆ Σ is the set
τ −S of all prefixes τ ′ of τ such that, for each position p ∈ leaf (τ ′), the sub-tree
of τ at p either belongs to S or it is a leaf of τ . Intuitively, τ − S are all prefixes
of τ obtained from τ by removing some of the sub-trees in S. The derivative of
a set of trees T ⊆ Σ wrt S is the set

⋃
τ∈T (τ − S).

A (binary) tree automaton (TA) over an alphabet Σ is a quadruple A =
(Q, δ, I, R) where Q is a finite set of states, δ : Q2 × Σ → 2Q is a transition
function, I ⊆ Q is a set of leaf states, and R ⊆ Q is a set of root states. We use
(q, r)−{a}→s to denote that s ∈ δ((q, r), a). A run of A on a tree τ is a total map
ρ : dom(τ) → Q such that if τ(p) = ⊥, then ρ(p) ∈ I, else (ρ(p.L), ρ(p.R))−{a}→ρ(p)
with a = τ(p). The run ρ is accepting if ρ(ε) ∈ R, and the language L (A) of A
is the set of all trees on which A has an accepting run. A is deterministic
if |I| = 1 and ∀q, r ∈ Q, a ∈ Σ : |δ((q, r), a)| ≤ 1, and complete if I ≥ 1 and
∀q, r ∈ Q, a ∈ Σ : |δ((q, r), a)| ≥ 1. Last, for a ∈ Σ, we shorten δ((q, r), a) as
δa(q, r), and we use δΓ(q, r) to denote

⋃{δa(q, r) | a ∈ Γ} for a set Γ ⊆ Σ.

Syntax and Semantics of WS2S. WS2S is a logic that allows quantification
over second-order variables, which are denoted by upper-case letters X,Y, . . .
and range over finite sets of tree positions in {L, R}∗ (the finiteness of variable
assignments is reflected in the name weak). See Fig. 1a for an example of a set
of positions assigned to a variable. Atomic formulae (atoms) of WS2S are of the
form: (i) X ⊆ Y , (ii) X = SL(Y), and (iii) X = SR(Y). Formulae are constructed
from atoms using the logical connectives ∧,¬, and the quantifier ∃X where X

1 Intuitively, the [·] operator can be seen as a generalization of the Kleene star to
tree languages. The symbol is the Chinese character for a tree, pronounced mù,
as in English moo-n, but shorter and with a falling tone, staccato-like.

304 V. Havlena et al.

Fig. 1. An example of an assignment ν to a pair of variables {X, Y } s.t. ν(X) =
{LR, R, RLR, RR} and ν(Y) = {ε, L, LL, R, RR} and its encoding into a tree.

is a finite set of variables (we write ∃X when X is a singleton set {X}). Other
connectives (such as ∨ or ∀) and predicates (such as the predicate Sing(X) for
a singleton set X) can be obtained as syntactic sugar.

A model of a WS2S formula ϕ(X) with the set of free variables X is an
assignment ν : X → 2{L,R}∗

of the free variables of ϕ to finite subsets of {L, R}∗

for which the formula is satisfied, written ν |= ϕ. Satisfaction of atomic formulae
is defined as follows: (i) ν |= X ⊆ Y iff ν(X) ⊆ ν(Y), (ii) ν |= X = SL(Y) iff
ν(X) = {p.L | p ∈ ν(Y)}, and (iii) ν |= X = SR(Y) iff ν(X) = {p.R | p ∈ ν(Y)}.
Informally, the SL(Y) function returns all positions from Y shifted to their left
child and the SR(Y) function returns all positions from Y shifted to their right
child. Satisfaction of formulae built using Boolean connectives and the quantifier
is defined as usual. A formula ϕ is valid, written |= ϕ, iff all assignments of its
free variables are its models, and satisfiable if it has a model. Wlog, we assume
that each variable in a formula either has only free occurrences or is quantified
exactly once; we denote the set of (free and quantified) variables occurring in
a formula ϕ as Vars(ϕ).

Representing Models as Trees. We fix a formula ϕ with variables Vars(ϕ) =
X. A symbol ξ over X is a (total) function ξ : X → {0, 1}, e.g., ξ = {X �→
0, Y �→ 1} is a symbol over X = {X,Y }. We use ΣX to denote the set of all
symbols over X and 	0 to denote the symbol mapping all variables in X to 0, i.e.,
	0 = {X �→ 0 | X ∈ X}.

A finite assignment ν : X → 2{L,R}∗
of ϕ’s variables can be encoded as

a finite tree τν of symbols over X where every position p ∈ {L, R}∗ satisfies the
following conditions: (a) if p ∈ ν(X), then τν(p) contains {X �→ 1}, and (b)
if p /∈ ν(X), then either τν(p) contains {X �→ 0} or τν(p) = ⊥ (note that the
occurrences of ⊥ in τ are limited since τ still needs to be a tree). Observe that ν
can have multiple encodings: the unique minimum one τmin

ν and (infinitely many)

Automata Terms in a Lazy WSkS Decision Procedure 305

extensions of τmin
ν with 	0-only trees. The language of ϕ is defined as the set of all

encodings of its models L (ϕ) = {τν ∈ Σ
X

| ν |= ϕand τν is an encoding of ν}.
Let ξ be a symbol over X. For a set of variables Y ⊆ X, we define the projection

of ξ wrt Y as the set of symbols πY(ξ) = {ξ′ ∈ ΣX | ξ|X\Y ⊆ ξ′}. Intuitively, the
projection removes the original assignments of variables from Y and allows them
to be substituted by any possible value. We define πY(⊥) = ⊥ and write πY if Y
is a singleton set {Y }. As an example, for X = {X,Y } the projection of 	0 wrt
{X} is given as πX(0) = {{X �→ 0, Y �→ 0}, {X �→ 1, Y �→ 0}}.2 The definition
of projection can be extended to trees τ over ΣX so that πY(τ) is the set of trees
{τ ′ ∈ Σ

X
| ∀p ∈ pos(τ) : if τ(p) = ⊥, then τ ′(p) = ⊥, else τ ′(p) ∈ πY(τ(p))}

and subsequently to languages L so that πY(L) =
⋃{πY(τ) | τ ∈ L}.

The Classical Decision Procedure for WS2S. The classical decision pro-
cedure for the WS2S logic goes through a direct construction of a TA Aϕ having
the same language as a given formula ϕ. Let us briefly recall the automata
constructions used (cf. [31]). Given a complete TA A = (Q, δ, I, R), the com-
plement assumes that A is deterministic and returns A� = (Q, δ, I,Q \ R),
the projection returns πX(A) = (Q, δπX , I, R) with δπX

a (q, r) = δπX(a)(q, r),
and the subset construction returns the deterministic and complete automaton
AD = (2Q, δD, {I}, RD) where δDa (S, S′) =

⋃
q∈S,q′∈S′ δa(q, q′) and RD = {S ⊆

Q | S ∩ R �= ∅}. The binary operators ◦ ∈ {∪,∩} are implemented through
a product construction, which—given the TA A and another complete TA
A′ = (Q′, δ′, I ′, R′)—returns the automaton A◦A′ = (Q×Q′,Δ×, I×, R◦) where
Δ×

a ((q, r), (q′, r′)) = Δa(q, q′) × Δ′
a(r, r′), I× = I × I ′, and for (q, r) ∈ Q × Q′,

(q, r) ∈ R∩ ⇔ q ∈ R ∧ r ∈ R′ and (q, r) ∈ R∪ ⇔ q ∈ R ∨ r ∈ R′. The language
non-emptiness test can be implemented through the equivalence L (A) �= ∅ iff
reachδ(I) ∩ R �= ∅ where the set reachδ(S) of states reachable from a set S ⊆ Q
through δ-transitions is computed as the least fixpoint

reachδ(S) = μZ. S ∪
⋃

q,r∈Z

δ(q, r). (1)

The same fixpoint computation is used to compute the derivative wrt a for
some a ∈ Σ as A − a = (Q, δ, reachδa

(I), R): the new leaf states are all those
reachable from I through a-transitions.

The classical WSkS decision procedure uses the above operations to con-
structs the automaton Aϕ inductively to the structure of ϕ as follows: (i) If ϕ
is an atomic formula, then Aϕ is a pre-defined base TA over ΣX (the particular
base automata for our atomic predicates can be found, e.g., in [31], and we list
them also in [30]). (ii) If ϕ = ϕ1 ∧ϕ2, then Aϕ = Aϕ1 ∩Aϕ2 . (iii) If ϕ = ϕ1 ∨ϕ2,
then Aϕ = Aϕ1 ∪Aϕ2 . (iv) If ϕ = ¬ψ, then Aϕ = A�

ψ. (v) Finally, if ϕ = ∃X. ψ,
then Aϕ = (πX(Aψ))D −	0 .

2 Note that our definition of projection differs from the usual one, which would in the
example produce a single symbol {Y �→ 0} over a different alphabet (the alphabet
of symbols over {Y }).

306 V. Havlena et al.

Points (i) to (iv) are self-explanatory. In point (v), the projection imple-
ments the quantification by forgetting the values of the X component of all
symbols. Since this yields non-determinism, projection is followed by determin-
isation by the subset construction. Further, the projection can produce some
new trees that contain 	0-only labelled sub-trees, which need not be present
in some smaller encodings of the same model. Consider, for example, a for-
mula ψ having the language L (ψ) given by the tree τν in Fig. 1b and all
its 	0-extensions. To obtain L (∃X.ψ), it is not sufficient to make the projec-
tion πX(L (ψ)) because the projected language does not contain the minimum
encoding τmin

ν of ν : Y �→ {ε, L, LL, R, RR}, but only those encodings ν′ such
that ν′(RLR) = {Y �→ 0}. Therefore, the 	0-derivative is needed to saturate the
language with all encodings of the encoded models (if some of these encod-
ings were missing, the inductive construction could produce a wrong result, for
instance, if the language were subsequently complemented). Note that the same
effect can be achieved by replacing the set of leaf states I of Aϕ by reachΔ�0

(I)
where Δ is the transition function of Aϕ. See [31] for more details.

3 Automata Terms

Our algorithm for deciding WS2S may be seen as an alternative implementation
of the classical procedure from Sect. 2. The main innovation is the data struc-
ture of automata terms, which implicitly represent the automata constructed
by the automata operations. Unlike the classical procedure—which proceeds by
a bottom-up traversal on the formula structure, building an automaton for each
sub-formula before proceeding upwards—automata terms allow for constructing
parts of automata at higher levels from parts of automata on the lower levels
even though the construction of the lower level automata has not yet finished.
This allows one to test the language emptiness on the fly and use techniques of
state space pruning, which will be discussed later in Sect. 4.

Syntax of Automata Terms. Terms are created according to the grammar
in Fig. 2 starting from states q ∈ Qi, denoted as atomic states, of a given finite
set of base automata Bi = (Qi, δi, Ii, Ri) with pairwise disjoint sets of states.
For simplicity, we assume that the base automata are complete, and we denote
by B = (QB, δB, IB, RB) their component-wise union. Automata terms A specify
the set of leaf states of an automaton. Set terms S list a finite number of the leaf

Fig. 2. Syntax of terms.

Automata Terms in a Lazy WSkS Decision Procedure 307

states explicitly, while derivative terms D specify them symbolically as states
reachable from a set of states S via 	0s. The states themselves are represented
by state terms t (notice that set terms S and derivate terms D can both be
automata and state terms). Intuitively, the structure of state terms records the
automata constructions used to create the top-level automaton from states of the
base automata. Non-leaf state terms, the state terms’ transition function, and
root state terms are then defined inductively from base automata as described
below in detail. We will normally use t, u to denote terms of all types (unless the
type of the term needs to be emphasized).

Example 1. Consider a formula ϕ ≡ ¬∃X. Sing(X) ∧ X = {ε} and its corre-
sponding automata term tϕ =

{
{πX({q0} &{p0})} −	0

}
(we will show how

tϕ was obtained from ϕ later). For the sake of presentation, we will con-
sider the following base automata for the predicates Sing(X) and X = {ε}:
ASing(X) = ({q0, q1, qs}, δ, {q0}, {q1}) and AX={ε} = ({p0, p1, ps}, δ′, {p0}, {p1})
where δ and δ′ have the following sets of transitions (transitions not defined
below go to the sink states qs and ps, respectively):

δ : (q0, q0)−{{X 	→0}}→q0, (q0, q1)−{{X 	→0}}→q1, δ′ : (p0, p0)−{{X 	→0}}→p0,
(q0, q0)−{{X 	→1}}→q1, (q1, q0)−{{X 	→0}}→q1 (p0, p0)−{{X 	→1}}→p1.

The term tϕ denotes the TA
(
(πX(ASing(X) ∩AX={ε})−	0)D

)� constructed
by intersection, projection, derivative, subset construction, and complement. ��

Semantics of Terms. We will define the denotation of an automata term t
as the automaton At = (Q,Δ, I, R). For a set automata term t = S, we define
I = S, Q = reachΔ(S) (i.e., Q is the set of state terms reachable from the
leaf state terms), and Δ and R are defined inductively to the structure of t.
Particularly, R contains the terms of Q that satisfy the predicate R defined in
Fig. 3, and Δ is defined in Fig. 4, with the addition that whenever the rules in
Fig. 4 do not apply, then we let Δa(t, t′) = {∅}. The ∅ here is used as a universal
sink state in order to maintain Δ complete, which is needed for automata terms
representing complements to yield the expected language.

Fig. 3. Root term states.

308 V. Havlena et al.

Fig. 4. Transitions among compatible state terms.

The transitions of Δ for
terms of the type +, &, πX , · ,
and S are built from the tran-
sition function of their sub-
terms analogously to how the
automata operations of the
product union, product inter-
section, projection, comple-
ment, and subset construc-
tion, respectively, build the
transition function from the
transition functions of their
arguments (cf. Sect. 2). The only difference is that the state terms stay annotated
with the particular operation by which they were made (the annotation of the set
state terms are the set brackets). The root states are also defined analogously as
in the classical constructions. In Figs. 3 and 4, the terms t, t′, u, u′ are arbitrary
terms, S, S′ are set terms, and q, r ∈ QB.

Finally, we complete the definition of the term semantics by adding the def-
inition of semantics for the derivative term S − 	0 . This term is a symbolic
representation of the set term that contains all state terms upward-reachable
from S in AS over 	0. Formally, we first define the so-called saturation of AS as

(S −	0)s = reachΔ�0
(S) (14)

(with reachΔ�0
(S) defined as the fixpoint (1)), and we complete the definition

of Δ and R in Figs. 3 and 4 with three new rules to be used with a derivative
term D:

Δa(D, u)=Δa(Ds, u) (15) Δa(u, D)=Δa(u, Ds) (16) R(D) ⇔ R(Ds) (17)

The automaton AD then equals ADs , i.e., the semantics of a derivative term is defined
by its saturation.

Example 2. Let us consider a derivative term t = {πX({q0} &{p0})}−�0 , which occurs
within the nested automata term tϕ of Example 1. The set term representing all terms
reachable upward from t is then the term

ts = {πX({q0} &{p0}), πX({q1} &{p1}), πX({qs} &{ps}),

πX({q1} &{ps}), πX({q0} &{ps})}.

The semantics of t is therefore the TA At with the set of states given by ts. ��

Properties of Terms. An implication of the definitions above, essential for ter-
mination of our algorithm in Sect. 4, is that the automata represented by the terms
indeed have finitely many states. This is the direct consequence of Lemma 1.

Lemma 1. The size of reachΔ(t) is finite for any automata term t.

Automata Terms in a Lazy WSkS Decision Procedure 309

Intuitively, the terms are built over a finite set of states QB, they are finitely
branching, and the transition function on terms does not increase their depth.

Let us further denote by L (t) the language L (At) of the automaton induced by
a term t. Lemma 2 below shows that languages of terms can be defined from the lan-
guages of their sub-terms if the sub-terms are set terms of derivative terms. The terms
on the left-hand sides are implicit representations of the automata operations of the
respective language operators on the right-hand sides. The main reason why the lemma
cannot be extended to all types of sub-terms and yield an inductive definition of term
languages is that it is not meaningful to talk about the bottom-up language of an
isolated state term that is neither a set term nor a derivative term (which both are
also automata terms). This is also one of the main differences from [29] where every
term has its own language, which makes the reasoning and the correctness proofs in
the current paper significantly more involved.

Lemma 2. For automata terms A1,A2 and a set term S, the following holds:

L({A1}) = L(A1) (a)
L({A1 +A2}) = L(A1) ∪ L(A2) (b)
L({A1&A2}) = L(A1) ∩ L(A2) (c)

L({A1}) = L(A1) (d)
L({πX(A1)}) = πX(L(A1)) (e)

L(S −�0) = L(S) −�0 (f)

Terms of Formulae. Our algorithm in Sect. 4 will translate a WS2S formula ϕ
into the automata term tϕ = {〈ϕ〉} representing a deterministic automaton with its
only leaf state represented by the state term 〈ϕ〉. The base automata of tϕ include the
automaton Aϕatom for each atomic predicate ϕatom used in ϕ. The state term 〈ϕ〉 is then
defined inductively to the structure of ϕ as shown in Fig. 5. In the definition, ϕ0 is an
atomic predicate, Iϕ0 is the set of leaf states of Aϕatom , and ϕ and ψ denote arbitrary
WS2S formulae. We note that the translation rules may create sub-terms of the form
{{t}}, i.e., with nested set brackets. Since {·} semantically means determinisation by
subset construction, such double determinisation terms can be always simplified to
{t} (cf. Lemma 2a). See Example 1 for a formula ϕ and its corresponding term tϕ.
Theorem 1 establishes the correctness of the formula to term translation.

Fig. 5. From formulae to state-terms.

Theorem 1. Let ϕ be a WS2S formula. Then L (ϕ) = L(tϕ).

The proof of Theorem 1 uses structural induction, which is greatly simplified by
Lemma 2, but since Lemma 2 does not (and cannot, as discussed above) cover all used
types of terms, the induction step must in some cases still rely on reasoning about the
definition of the transition relation on terms.

310 V. Havlena et al.

4 An Efficient Decision Procedure

The development in Sect. 3 already implies a näıve automata term-based satisfiability
check. Namely, by Theorem 1, we know that a formula ϕ is satisfiable iff L(Atϕ) �=
∅. After translating ϕ into tϕ using rules (18)–(22), we may use the definitions of
the transition function and root states of Atϕ = (Q, Δ, I, F) in Sect. 3 to decide the
language emptiness through evaluating the root state test R(reachΔ(I)). It is enough
to implement the equalities and equivalences (8)–(17) as recursive functions. We will
further refer to this algorithm as the simple recursion. The evaluation of reachΔ(I)
induces nested evaluations of the fixpoint (14): the one on the top level of the language
emptiness test and another one for every expansion of a derivative sub-term. The
termination of these fixpoint computations is guaranteed due to Lemma 1.

Such a näıve implementation is, however, inefficient and has only disadvantages in
comparison to the classical decision procedure. In this section, we will discuss how it
can be optimized. Besides an essential memoization needed to implement the recursion
efficiently, we will show that the automata term representation is amenable to opti-
mizations that cannot be used in the classical construction. These are techniques of
state space pruning: the fact that the emptiness can be tested on the fly during the
automata construction allows one to avoid exploration of state space irrelevant to the
test. The pruning is done through the techniques of lazy evaluation and subsumption.
We will also discuss an optimization of the transition function of Sect. 3 through product
flattening, which is an analogy to standard implementations of automata intersection.

4.1 Memoization

The simple recursion repeats the fixpoint computations that saturate derivative terms
from scratch at every call of the transition function or root test. This is easily countered
through memoization, known, e.g., from compilers of functional languages, which caches
results of function calls in order to avoid their re-evaluation. Namely, after saturating
a derivative sub-term t = S − �0 of tϕ for the first time, we simply replace t in tϕ

by the saturation ts = reachΔ�0
(S). Since a derivative is a symbolic representation

of its saturated version, the replacement does not change the language of tϕ. Using
memoization, every fixpoint computation is then carried out once only.

4.2 Lazy Evaluation

The lazy variant of the procedure uses short-circuiting to optimize connectives ∧
and ∨, and early termination to optimize fixpoint computation in derivative satura-
tions. Namely, assume that we have a term t1 + t2 and that we test whether R(t1 + t2).
Suppose that we establish that R(t1); we can short circuit the evaluation and immedi-
ately return true, completely avoiding touching the potentially complex term t2 (and
analogously for a term of the form t1 & t2 when one branch is false).

Furthermore, early termination is used to optimize fixpoint computations used to
saturate derivatives within tests R(S−�0) (obtained from sub-formulae such as ∃X. ψ).
Namely, instead of first unfolding the whole fixpoint into a set {t1, . . . tn} and only then
testing whether R(ti) is true for some ti, the terms ti can be tested as soon as they
are computed, and the fixpoint computation can be stopped early, immediately when
the test succeeds on one of them. Then, instead of replacing the derivative sub-term
by its full saturation, we replace it by the partial result {t1, . . . , ti} − �0 for i ≤ n.

Automata Terms in a Lazy WSkS Decision Procedure 311

Finishing the evaluation of the fixpoint computation might later be required in order to
compute a transition from the derivative. We note that this corresponds to the concept
of continuations from functional programming, used to represent a paused computation
that may be required to continue later.

Example 3. Let us now illustrate the lazy decision procedure on our running exam-
ple formula ϕ ≡ ¬∃X. Sing(X) ∧ X = {ε} and the corresponding automata term

tϕ =
{ {πX({q0} &{p0})} −�0

}
from Example 1. The task of the procedure is to

compute the value of R(reachΔ(tϕ)), i.e., whether there is a root state reachable
from the leaf state 〈ϕ〉 of Atϕ . The fact that ϕ is ground allows us to slightly sim-
plify the problem because any ground formula ψ is satisfiable iff ⊥ ∈ L (ψ), i.e.,
iff the leaf state 〈ψ〉 of Atψ is also a root. It is thus enough to test R(〈ϕ〉) where

〈ϕ〉 = {πX({q0} &{p0})} −�0 .
The computation proceeds as follows. First, we use (5) from Fig. 3 to propagate the

root test towards the derivative, i.e., to obtain that R(〈ϕ〉) iff ¬R({πX({q0} &{p0})} −
�0). Since the R-test cannot be directly evaluated on a derivative term, we need to
start saturating it into a set term, evaluating R on the fly, hoping for early termination.
We begin with evaluating the R-test on the initial element t0 = πX({q0}{p0}) of the
set. The test propagates through the projection πX due to (4) and evaluates as false
on the left conjunct (through, in order, (3), (6), and (7) since the state q0 is not a root
state. As a trivial example of short circuiting, we can skip evaluating R on the right
conjunct {p0} and conclude that R(t0) is false.

The fixpoint computation then continues with the first iteration, computing the �0-
successors of the set {t0}. We will obtain Δ�0(t0, t0) = {t0, t1} with t1 = πX({q1} &{p1}).
The test R(t1) now returns true because both q1 and p1 are root states. With that,
the fixpoint computation may terminate early, with the R-test on the derivative sub-
term returning true. Memoization then replaces the derivative sub-term in 〈ϕ〉 by the

partially evaluated version {t0, t1} − �0 , and R(〈ϕ〉) is evaluated as false due to (5).
We therefore conclude that ϕ is unsatisfiable (and invalid since it is ground). ��

4.3 Subsumption

The next technique we use is based on pruning out parts of a search space that are
subsumed by other parts. In particular, we generalize (in a similar way as we did for
WS1S in our previous work [29]) the concept used in antichain algorithms for efficiently
deciding language inclusion and universality of finite word and tree automata [22–25].
Although the problems are in general computationally infeasible (they are PSPACE-
complete for finite word automata and EXPTIME-complete for finite tree automata),
antichain algorithms can solve them efficiently in many practical cases.

We apply the technique by keeping set terms in the form of antichains of simulation-
maximal elements and prune out any other simulation-smaller elements. Intuitively,
the notion of a term t being simulation-smaller than t′ implies that trees that might
be generated from the leaf states T ∪ {t} can be generated from T ∪ {t′} too, hence
discarding t does not hurt. Formally, we introduce the following rewriting rule:

{t1, t2, . . . , tn} � {t2, . . . , tn} for t1 � t2, (23)

which may be used to simplify set sub-terms of automata terms. The rule (23) is
applied after every iteration of the fixpoint computation on the current partial result.

312 V. Havlena et al.

Hence the sequence of partial results is monotone, which, together with the finiteness
of reachΔ(t), guarantees termination. The subsumption relation � used in the rule is
defined in Fig. 6 where S �∀∃ S′ denotes ∀t ∈ S ∃t′ ∈ S′. t � t′. Intuitively, on
base TAs, subsumption corresponds to inclusion of the set terms (the left disjunct of
(24). This clearly has the intended outcome: a larger set of states can always simulate
a smaller set in accepting a tree. The rest of the definition is an inductive extension of
the base case. It can be shown that � for any automata term t is an upward simulation
on At in the sense of [25]. Consequently, rewriting sub-terms in an automata term
according to the new rule (23) does not change its language. Moreover, the fixpoint
computation interleaved with application of rule (23) terminates.

Fig. 6. The subsumption relation �

4.4 Product Flattening

Product flattening is a technique that we use to reduce the size of fixpoint saturations
that generate conjunctions and disjunctions of sets as their elements.Consider a term
of the form D = {πX(S0 & S′

0)} − �0 for a pair of sets of terms S0 and S′
0 where the

TAs AS0 and AS′
0

have sets of states Q and Q′, respectively.The saturation generates

the set {πX(S0 & S′
0), . . . , πX(Sn & S′

n)} with Si ⊆ Q, S′
i ⊆ Q′ for all 0 ≤ i ≤ n. The size

of this set is 2|Q|·|Q′| in the worst case. In terms of the automata operations, this fixpoint
expansion corresponds to first determinizing both AS0 and AS′

0
and only then using

the product construction (cf. Sect. 2). The automata intersection, however, works for
nondeterministic automata too—the determinization is not needed. Implementing this
standard product construction on terms would mean transforming the original fixpoint
above into the following fixpoint with a flattened product : D = {πX(S [&] S′)} − �0
where [&] is the augmented product for conjunction. This way, we can decrease the
worst-case size of the fixpoint to |Q| · |Q′|. A similar reasoning holds for terms of the

form {πX(S0 + S′
0)}−�0 . Formally, the technique can be implemented by the following

pair of sub-term rewriting rules where S and S′ are non-empty sets of terms:

S + S′ � S [+] S′, (29) S & S′ � S [&] S′. (30)

Observe that for terms obtained from WS2S formulae using the translation from
Sect. 3, the rules are not really helpful as is. Consider, for instance, the term
{πX({r} &{q})} − �0 obtained from a formula ∃X. ϕ ∧ ψ with ϕ and ψ being atoms.

The term would be, using rule (30), rewritten into the term {πX({r & q})}−�0 . Then,
during a subsequent fixpoint computation, we might obtain a fixpoint of the following
form: {πX({r & q}), πX({r & q, r1 & q1}), πX({r1 & q1, r2 & q2})}, where the occurrences

Automata Terms in a Lazy WSkS Decision Procedure 313

of the projection πX disallow one to perform the desired union of the inner sets, and
so the application of rule (30) did not help. We therefore need to equip our procedure
with a rewriting rule that can be used to push the projection inside a set term S:

πX(S) � {πX(t) | t ∈ S}. (31)
In the example above, we would now obtain the term {πX(r & q)} −

�0 (we rewrote {{·}} to {·} as mentioned in Sect. 3) and the fixpoint
{πX(r & q), πX(r1 & q1), πX(r2 & q2)}. The correctness of the rules is guaranteed by the
following lemma:

Lemma 3. For sets of terms S, S′ s.t. S �= ∅, S′ �= ∅ we have:

L ({S + S′})
= L ({S [+] S′})

, (a) L ({πX(S)}) = L ({πX(t) | t ∈ S}) . (c)

L ({S&S′})
= L ({S [&] S′})

, (b)

However, we still have to note that there is a danger related with the rules (29)–
(31). Namely, if they are applied to some terms in a partially evaluated fixpoint but
not to all, the form of these terms might get different (cf. πX({r & q}) and πX(r & q)),
and it will not be possible to combine them as source states of TA transitions when
computing Δa, leading thus to an incorrect result. We resolve the situation such that
we apply the rules as a pre-processing step only before we start evaluating the top-level
fixpoint, which ensures that all terms will subsequently be generated in a compatible
form.

5 Experimental Evaluation

We have implemented the above introduced technique in a prototype tool written in
Haskell.3 The base automata, hard-coded into the tool, were the TAs for the basic
predicates from Sect. 2, together with automata for predicates Sing(X) and X = {p}
for a variable X and a fixed tree position p. As an optimisation, our tool uses the
so-called antiprenexing (proposed already in [29]), pushing quantifiers down the for-
mula tree using the standard logical equivalences. Intuitively, antiprenexing reduces
the complexity of elements within fixpoints by removing irrelevant parts outside the
fixpoint.

We have performed experiments with our tool on various formulae and compared
its performance with that of Mona. We applied Mona both on the original form of the
considered formulae as well as on their versions obtained by antiprenexing (which is
built into our tool and which—as we realised—can significantly help Mona too). Our
preliminary implementation of product flattening (cf. Sect. 4.4) is restricted to parts
below the lowest fixpoint, and our experiments showed that it does not work well when
applied on this level, where the complexity is not too high, so we turned it off for the
experiments. We ran all experiments on a 64-bit Linux Debian workstation with the
Intel(R) Core(TM) i7-2600 CPU running at 3.40 GHz with 16 GiB of RAM. We used
a timeout of 100 s.

We first considered various WS2S formulae on which Mona was successfully applied
previously in the literature. On them, our tool is quite slower than Mona, which is
not much surprising given the amount of optimisations built into Mona (for instance,

3 The implementation is available at https://github.com/vhavlena/lazy-wsks.

https://github.com/vhavlena/lazy-wsks

314 V. Havlena et al.

Table 1. Experimental results over the family of formulae ϕpt
n ≡ ∀Z1, Z2. ∃

X1, . . . , Xn. edge(Z1, X1) ∧ ∧n
i=1 edge(Xi, Xi+1) ∧ edge(Xn, Z2) where edge(X, Y) ≡

edgeL(X, Y) ∨ edgeR(X, Y) and edgeL/R(X, Y) ≡ ∃Z. Z = SL/R(X) ∧ Z ⊆ Y .

Running time (sec) # of subterms/states

n Lazy Mona Mona+AP Lazy Mona Mona+AP

1 0.02 0.16 0.15 149 216 216

2 0.50 - - 937 - -

3 0.83 - - 2487 - -

4 34.95 - - 8391 - -

5 60.94 - - 23827 - -

for the benchmarks from [5], Mona on average took 0.1 s, while we timeouted).4 Next,
we identified several parametric families of formulae (adapted from [29]), such as, e.g.,
ϕhorn

n ≡ ∃X. ∀X1. ∃X2, . . . Xn. ((X1 ⊆ X ∧ X1 �= X2) ⇒ X2 ⊆ X) ∧ . . . ∧ ((Xn−1 ⊆
X∧Xn−1 �= Xn) ⇒ Xn ⊆ X), where our approach finished within 10ms, while the time
of Mona was increasing when increasing the parameter n, going up to 32 s for n = 14
and timeouting for k ≥ 15. It turned out that Mona could, however, easily handle
these formulae after antiprenexing, again (slightly) outperforming our tool. Finally, we
also identified several parametric families of formulae that Mona could handle only
very badly or not at all, even with antiprenexing, while our tool can handle them much
better. These formulae are mentioned in the captions of Tables 1, 2 and 3, which give
detailed results of the experiments.

Table 2. Experimental results over the family of formulae ϕcnst
n ≡ ∃X. X = {(LR)4} ∧

X = {(LR)n}.

Running time (sec) # of subterms/states

n Lazy Mona Mona+AP Lazy Mona Mona+AP

80 14.60 40.07 40.05 1146 27913 27913

90 21.03 64.26 64.20 1286 32308 32308

100 28.57 98.42 98.91 1426 36258 36258

110 38.10 - - 1566 - -

120 49.82 - - 1706 - -

Table 3. Experiments over the family ϕsub
n =

∀X1, . . . , Xn ∃X.
∧n−1

i=1 Xi ⊆ X ⇒ (Xi+1 = SL(X) ∨
Xi+1 = SR(X)).

Running time (sec) # of subterms/states

n Lazy Mona Mona+AP Lazy Mona Mona+AP

3 0.01 0.00 0.00 140 92 92

4 0.04 34.39 34.47 386 170 170

5 0.24 − − 981 − −
6 2.01 − − 2376 − −

Particularly, Columns 2–
4 give the running times
(in seconds) of our tool
(denoted Lazy), Mona, and
Mona with antiprenexing.
Columns 5–7 characterize the
size of the generated terms
and automata. Namely, for
our approach, we give the

4 Building an optimised and overall competitive implementation is a subject of our
further work. Our results with an implementation of a lazy decision procedure for
WS1S from [29] suggest that this is possible.

Automata Terms in a Lazy WSkS Decision Procedure 315

number of nodes in the final term tree (with the leaves being states of the base TAs).
For Mona, we give the sum of the numbers of states of all the minimal deterministic
TAs constructed by Mona when evaluating the formula. The “–” sign means a timeout
or memory shortage.

The formulae considered in Tables 1, 2 and 3 speak about various paths in trees.
We were originally inspired by formulae kindly provided by Josh Berdine, which arose
from attempts to translate separation logic formulae to WS2S (and use Mona to
discharge them), which are beyond the capabilities of Mona (even with antiprenexing).
We were also unable to handle them with our tool, but our experimental results on
the tree path formulae indicate (despite the prototypical implementation) that our
techniques can help one to handle some complex graph formulae that are out of the
capabilities of Mona. Thus, they provide a new line of attack on deciding hard WS2S
formulae, complementary to the heuristics used in Mona. Improving the techniques
and combining them with the classical approach of Mona is a challenging subject for
our future work.

6 Related Work

The seminal works [32,33] on the automata-logic connection were the milestones leading
to what we call here the classical tree automata-based decision procedure for WSkS [34].
Its non-elementary worst-case complexity was proved in [35], and the work [2] presents
the first implementation, restricted to WS1S, with the ambition to use heuristics to
counter the high complexity. The authors of [31] provide an excellent survey of the
classical results and literature related to WSkS and tree automata.

The tool Mona [3] implements the classical decision procedures for both WS1S
and WS2S. It is still the standard tool of choice for deciding WS1S/WSkS formulae
due to its all-around most robust performance. The efficiency of Mona stems from
many optimizations, both higher-level (such as automata minimization, the encoding
of first-order variables used in models, or the use of multi-terminal BDDs to encode the
transition function of the automaton) as well as lower-level (e.g. optimizations of hash
tables, etc.) [36,37]. The M2L(Str) logic, a dialect of WS1S, can also be decided by
a similar automata-based decision procedure, implemented within, e.g., jMosel [38]
or the symbolic finite automata framework of [39]. In particular, jMosel implements
several optimizations (such as second-order value numbering [40]) that allow it to
outperform Mona on some benchmarks (Mona also provides an M2L(Str) interface
on top of the WS1S decision procedure).

The original inspiration for our work are the antichain techniques for checking uni-
versality and inclusion of finite automata [22–25] and language emptiness of alternating
automata [22], which use symbolic computation together with subsumption to prune
large state spaces arising from subset construction. This paper is a continuation of our
work on WS1S, which started by [41], where we discussed a basic idea of generalizing
the antichain techniques to a WS1S decision procedure. In [29], we then presented
a complete WS1S decision procedure based on these ideas that is capable to rival
Mona on already interesting benchmarks. The work in [42] presents a decision proce-
dure that, although phrased differently, is in essence fairly similar to that of [29]. This
paper generalizes [29] to WS2S. It is not merely a straightforward generalization of the
word concepts to trees. A nontrivial transition was needed from language terms of [29],
with their semantics being defined straightforwardly from the semantics of sub-terms,
to tree automata terms, with the semantics defined as a language of an automaton

316 V. Havlena et al.

with transitions defined inductively to the structure of the term. This change makes
the reasoning and correctness proof considerably more complex, though the algorithm
itself stays technically quite simple.

Finally, Ganzow and Kaiser [43] developed a new decision procedure for the weak
monadic second-order logic on inductive structures within their tool Toss. Their app-
roach completely avoids automata; instead, it is based on the Shelah’s composition
method. The paper reports that the Toss tool could outperform Mona on two fam-
ilies of WS1S formulae, one derived from Presburger arithmetics and one formula of
the form that we mention in our experiments as problematic for Mona but solvable
easily by Mona with antiprenexing.

Acknowledgement. We thank the anonymous reviewers for their helpful comments
on how to improve the exposition in this paper. This work was supported by the Czech
Science Foundation project 17-12465S, the FIT BUT internal project FIT-S-17-4014,
and The Ministry of Education, Youth and Sports from the National Programme of
Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602.

References

1. Møller, A., Schwartzbach, M.: The pointer assertion logic engine. In: PLDI 2001.
ACM Press (2001). Also in SIGPLAN Notices 36(5) (2001)

2. Glenn, J., Gasarch, W.: Implementing WS1S via finite automata. In: Raymond,
D., Wood, D., Yu, S. (eds.) WIA 1996. LNCS, vol. 1260, pp. 50–63. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63174-7 5

3. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: new techniques for WS1S and
WS2S. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 516–520.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028773

4. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS, Department of
Computer Science, Aarhus University, January 2001. Notes Series NS-01-1. http://
www.brics.dk/mona/. Revision of BRICS NS-98-3

5. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: POPL 2011, pp. 611–622. ACM (2011)

6. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 43–59. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 8

7. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

8. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data struc-
tures. In: POPL 2008, 349–361. ACM (2008)

9. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Comput. Log. 22(4), 33 (2013)

10. Zhou, M., He, F., Wang, B., Gu, M., Sun, J.: Array theory of bounded elements
and its applications. J. Autom. Reasoning 52(4), 379–405 (2014)

11. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S systems
to verify parameterized networks. In: Graf, S., Schwartzbach, M. (eds.) TACAS
2000. LNCS, vol. 1785, pp. 188–203. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-46419-0 14

https://doi.org/10.1007/3-540-63174-7_5
https://doi.org/10.1007/BFb0028773
http://www.brics.dk/mona/
http://www.brics.dk/mona/
https://doi.org/10.1007/978-3-642-23702-7_8
https://doi.org/10.1007/3-540-46419-0_14
https://doi.org/10.1007/3-540-46419-0_14

Automata Terms in a Lazy WSkS Decision Procedure 317

12. Bodeveix, J.-P., Filali, M.: FMona: a tool for expressing validation techniques over
infinite state systems. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS,
vol. 1785, pp. 204–219. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-46419-0 15

13. Bozga, M., Iosif, R., Sifakis, J.: Structural invariants for parametric verification of
systems with almost linear architectures. Technical report arXiv:1902.02696 (2019)

14. Klarlund, N., Nielsen, M., Sunesen, K.: A case study in verification based on trace
abstractions. In: Broy, M., Merz, S., Spies, K. (eds.) Formal Systems Specification.
LNCS, vol. 1169, pp. 341–373. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0024435

15. Smith, M.A., Klarlund, N.: Verification of a sliding window protocol using IOA
and MONA. In: Bolognesi, T., Latella, D. (eds.) Formal Methods for Distributed
System Development. ITIFIP, vol. 55, pp. 19–34. Springer, Boston, MA (2000).
https://doi.org/10.1007/978-0-387-35533-7 2

16. Basin, D., Klarlund, N.: Automata based symbolic reasoning in hardware verifica-
tion. In: CAV 1998. LNCS, pp. 349–361. Springer (1998)

17. Sandholm, A., Schwartzbach, M.I.: Distributed safety controllers for web services.
In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 270–284. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0053596

18. Hune, T., Sandholm, A.: A case study on using automata in control synthesis. In:
Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 349–362. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46428-X 24

19. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over
unbounded domains. In: FMCAD 2010, pp. 101–109. IEEE Computer Science
(2010)

20. Morawietz, F., Cornell, T.: The MSO logic-automaton connection in linguistics. In:
Lecomte, A., Lamarche, F., Perrier, G. (eds.) LACL 1997. LNCS (LNAI), vol. 1582,
pp. 112–131. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48975-
4 6

21. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative
tree data structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 476–491. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22438-6 36

22. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 2

23. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 5

24. Bouajjani, A., Habermehl, P., Hoĺık, L., Touili, T., Vojnar, T.: Antichain-based
universality and inclusion testing over nondeterministic finite tree automata. In:
Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70844-5 7

25. Abdulla, P.A., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation meets
antichains (on checking language inclusion of NFAs). In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12002-2 14

26. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. Formal Methods Syst. Des. 41(1), 83–106
(2012)

https://doi.org/10.1007/3-540-46419-0_15
https://doi.org/10.1007/3-540-46419-0_15
http://arxiv.org/abs/1902.02696
https://doi.org/10.1007/BFb0024435
https://doi.org/10.1007/BFb0024435
https://doi.org/10.1007/978-0-387-35533-7_2
https://doi.org/10.1007/BFb0053596
https://doi.org/10.1007/3-540-46428-X_24
https://doi.org/10.1007/3-540-48975-4_6
https://doi.org/10.1007/3-540-48975-4_6
https://doi.org/10.1007/978-3-642-22438-6_36
https://doi.org/10.1007/978-3-642-22438-6_36
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1007/978-3-642-12002-2_14

318 V. Havlena et al.

27. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: alternative algo-
rithms for LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78800-3 6

28. De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imper-
fect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927,
pp. 153–168. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637 14

29. Fiedor, T., Hoĺık, L., Jank̊u, P., Lengál, O., Vojnar, T.: Lazy automata techniques
for WS1S. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
407–425. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
5 24

30. Havlena, V., Hoĺık, L., Lengál, O., Vojnar, T.: Automata terms in a lazy WSkS
decision procedure (technical report). Technical report arXiv:1905.08697 (2019)

31. Comon, H., et al.: Tree automata techniques and applications (2008)
32. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Inter-

national Congress on Logic, Methodology, and Philosophy of Science, pp. 1–11.
Stanford University Press (1962)

33. Rabin, M.O.: Decidability of second order theories and automata on infinite trees.
Trans. Am. Math. Soc. 141, 1–35 (1969)

34. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81
(1968)

35. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (prelim-
inary report). In: Fifth Annual ACM Symposium on Theory of Computing, STOC
1973, pp. 1–9. ACM, New York (1973)

36. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int.
J. Found. Comput. Sci. 13(4), 571–586 (2002)

37. Klarlund, N.: A theory of restrictions for logics and automata. In: Halbwachs, N.,
Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 406–417. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 35

38. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: a stand-alone tool and
jABC plugin for M2L(Str). In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp.
293–298. Springer, Heidelberg (2006). https://doi.org/10.1007/11691617 18

39. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: POPL 2014, pp.
541–554 (2014)

40. Margaria, T., Steffen, B., Topnik, C.: Second-order value numbering. In: GraMoT
2010. Volume 30 of ECEASST, pp. 1–15. EASST (2010)

41. Fiedor, T., Hoĺık, L., Lengál, O., Vojnar, T.: Nested antichains for WS1S. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 658–674. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 59

42. Traytel, D.: A coalgebraic decision procedure for WS1S. In: 24th EACSL Annual
Conference on Computer Science Logic (CSL 2015). Volume 41 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pp. 487–503. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2015)

43. Ganzow, T., Kaiser, �L.: New algorithm for weak monadic second-order logic on
inductive structures. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp.
366–380. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-
4 29

https://doi.org/10.1007/978-3-540-78800-3_6
https://doi.org/10.1007/11730637_14
https://doi.org/10.1007/978-3-662-54577-5_24
https://doi.org/10.1007/978-3-662-54577-5_24
http://arxiv.org/abs/1905.08697
https://doi.org/10.1007/3-540-48683-6_35
https://doi.org/10.1007/11691617_18
https://doi.org/10.1007/978-3-662-46681-0_59
https://doi.org/10.1007/978-3-642-15205-4_29
https://doi.org/10.1007/978-3-642-15205-4_29

	Automata Terms in a Lazy WSkS Decision Procedure
	1 Introduction
	2 Preliminaries
	3 Automata Terms
	4 An Efficient Decision Procedure
	4.1 Memoization
	4.2 Lazy Evaluation
	4.3 Subsumption
	4.4 Product Flattening

	5 Experimental Evaluation
	6 Related Work
	References

