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Cascaded Stripe Memory Engines for Multi-Scale
Object Detection in FPGA

Petr Musil , Roman Juránek, Martin Musil, and Pavel Zemčík

Abstract— Object detection in embedded systems is important
for many contemporary applications that involve vision and
scene analysis. In this paper, we propose a novel architecture
for object detection implemented in FPGA, based on the Stripe
Memory Engine (SME), and point out shortcomings of existing
architectures. SME processes a stream of image data so that
it stores a narrow stripe of the input image and its scaled
versions and uses a detector unit which is efficiently pipelined
across multiple image positions within the SME. We show how to
process images with up to 4K resolution at high frame rates using
cascades of SMEs. As a detector algorithm, the SMEs use boosted
soft cascade with simple image features that require only pixel
comparisons and look-up tables; therefore, they are well suitable
for hardware implemenation. We describe the components of our
architecture and compare it to several published works in several
configurations. As an example, we implemented face detection
and license plate detection applications that work with HD images
(1280 × 720 pixels) running at over 60 frames/s on Xilinx Zynq
platform. We analyzed their power consumption, evaluated the
accuracy of our detectors, and compared them to Haar Cascades
from OpenCV that are often used by other authors. We show
that our detectors offer better accuracy as well as performance
at lower power consumption.

Index Terms— Object detections, accelerator architectures,
field programmable gate arrays.

I. INTRODUCTION

OBJECT detection in embedded systems is an important
task that many applications of computer vision and

scene analysis benefit from. Industrial quality control systems
address various markers, traffic monitoring uses detection of
cars and license plates, biometric systems detect faces and
facial features, driver assistance systems detect cars and pedes-
trians. The detection is especially important in applications
that directly rely on it, such as recognition or tracking, and in
these applications, the speed, accuracy, power consumption,
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and/or robustness of detection matters most. In this paper,
we address object detection implemented in embedded hard-
ware. We focus on boosted detectors which analyze sub-
windows of an input image by a classifier composed from
weak classifiers based on simple image features such as
Haar [1] or Local Binary Patterns (LBP) [2]. Multi-scale detec-
tion is solved by scaling and processing of the input image
in multiple resolutions – image pyramid. Embedded object
detectors are often implemented directly in software using
libraries such as OpenCV [3]. While this approach is easy and
straightforward, it often is quite slow as detection is computa-
tionally demanding task and embedded processors tend to be
simpler and slower than desktop CPUs. Another approach is
to implement a custom detection algorithm exploiting various
acceleration resources of the target platform – CPU [4],
GPU [5] or Field Programmable Gate Array (FPGA) [2],
[6]–[11] units. This is advantageous in many areas where
the deployment of standard PC-based or embedded software
solution is not possible, e.g. because of resource consumption,
physical dimensions, industrial or military conditions, etc.

The object detection in embedded devices typically belongs
to one of the three detection method categories. 1/ AdaBoost-
based detectors – cascades of boosted classifiers [1] or soft
cascades [12]. They typically use Haar image features [6], [9],
[10], [13], or LBP [2]. 2/ Support Vector Machines (SVM)
with Histograms of Oriented Gradient features (HOG) [7],
[8], [14]–[16]; and 3/ Other methods implementing detection
with background subtraction [17], keypoints [18], neural net-
works [19], or custom detection algorithms [20]. Most works,
including thin one, belong to the first category, we give the
detailed review of them in Section III.

In this paper, we propose a simple and easy to use building
block for FPGA that solves the object detection using state
of the art boosted soft cascade classifier. We focused on
implementation of the detection algorithm in the FPGA that
efficiently utilizes the hardware resources and provides high
performance. To produce classifiers for our hardware we used
an existing, previously published algorithm [21]. The solution
is multi-scale so it can detect objects of wide range of sizes.

It is suitable for various industrial applications, such as
license plate detection, face detection, etc. The classifiers we
use are especially suitable for hardware implementation since
they are based only on pixel comparisons, look-up tables
and integer-only calculations. Our architecture is extensively
configurable, and it offers high image throughput even with
high resolution inputs. In our main applications, which are
detection of faces and license plates, we use processing
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Fig. 1. Comparison of Haar Cascade detector model (a) and Soft Cascade (b) that we use in our architecture. The main difference is that Soft Cascade does
not contain stages and accumulates the response throughout the classifier. Another difference is that in Soft Cascade case the evaluation of the response can
be terminated after every weak classifier.

of HD images (1280 × 720 pixels), but we also present a
configurations for processing images with resolutions up to
4K (UHD, 3840 × 2160 pixels). IP Core for face detection
and other resources are available online. Our contributions are
specifically:
• Advanced memory architecture for image representation

in block RAM (BRAM) which allows for simple and fast
data random access suitable for fast feature extraction.

• Cascading of detector blocks which allows for increasing
the input image resolution and the total performance.

• Multi-scale object detection directly in FPGA enabled by
cascading od SMEs, without using external components

• Re-usable detector block that can be easily incorporated
into other architectures using standard interfaces.

• Efficient streaming and pipelining and advanced control
that fully utilizes the engine resources.

The paper is organized as follows. We start with a
brief description of sliding window-based object detection in
Section II, where we introduce the framework common to
many object detection methods. And we explain the difference
between cascade and soft cascade classifiers. We continue
with a review of existing works on object detection with
boosted detectors in FPGA in Section III. Section IV contains
analysis of existing solutions and describes improvements
of the architecture proposed in this paper. In Section V,
we describe the soft cascade classifier model that we use
in our architecture. We also briefly describe the classifier
training algorithm. The proposed architecture is detailed in
Section VI, where we describe the components of the detector.
In Section VII, we compare the accuracy of our detectors to
detectors from OpenCV, that are widely used by other authors,
and compare our architecture to others works. Wa also analyze
power consumntion of our architecture.

Finally, in Section VIII, we present remarks on the perfor-
mance of the presented architecture.

II. DETECTOR MODEL

Let us first describe a framework for object detection
that sliding window-based methods have in common [1], [14],
[21], [22]. We assume the input image I to be a grayscale
raster and a classifier H (x) a function that accepts or rejects
the image patch x and returns a confidence estimation.

A. Detection on a Single Image

The detection function D(I, H, a) classifies every fixed-size
patch of the input image I by the classifier H . A patch is
defined by its location (m, n). Its size (u, v) is fixed, defined
during classifier training stage. We use x = I(m, n, u, v) for
patch extraction from the location (m, n). The detection func-
tion (1) returns the set of locations accepted by the classifier
and scaled by factor a, and the classification confidence.

D(I, H, a) ∈ {([m, n, u, v] · a, H (x))} (1)

B. Multi-Scale Detection

The detection process is illustrated in Figure 2. From the
input image I, a pyramidal structure I (see Equation (2)) with
k scaled versions is created, such that I j is I j−1 downscaled by
factor S < 1. In our architecture, we use S = 5

6 , which results
approximately in a pyramidal representation with 4 scales per
octave.

I = {I0, I1, . . . Ik−1} (2)

The scale of j -th image in I can be retrieved as s j = S j ;
therefore, I0 corresponds to the original image. The result of
the detection on I, see Equation (3), is simply union of the
results on individual images.

D(I, H, S) =
⋃

j

D(I j , H, S j ) (3)

The set D(I, H, S) is then processed by a non-maxima
suppression (NMS) algorithm to suppress nearby detections
and produce the final results for the image. We use a simple,
overlap-based, NMS algorithm [22] which finds clusters of
overlapping detections and keeps only the strongest detection
from each cluster. However, other algorithms, such as mean-
shift [14], could be used as well.

The main work in the detection process is done by the
classifier H which scores the individual image windows.
The classifier cascade introduced by Viola and Jones [1]
(or sometimes called Haar cascade), is a widely used model,
see Figure 1a. The classifier cascade analyzes the input image
patch x by a sequence of progressively more complex stages
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TABLE I

OVERVIEW OF STATE-OF-THE-ART ARCHITECTURES. IN Length COLUMN WE REPORT THE NUMBER OF FEATURES AND NUMBER
OF STAGES FOR CASCADES IN BRACKETS. ∗(SELF-ORGANIZING MAP NEURAL NETWORK)

Fig. 2. (top) The detection process on pyramidal image representation I .
The detection window of size u × v (yellow), is used for classification of
every position m, n in image (example in red). The result of detection on
each image is a set of locations D(I, s) accepted by the classifier (green).
(bottom) The final detection result after non-maxima suppression.

composed from weak classifiers based on simple image fea-
tures. After evaluating of a stage, the image patch can be either
rejected (classified as background) or passed to the subsequent
stage. The soft cascade, shown in Figure 1b, is not explicitly
divided into stages and the rejection decision is made after
evaluating each weak classifier. In this work we use the soft
cascade model based on Local Binary Patterns (LBP) or Local
Rank Differences (LRD) features and we describe this model
in detail in Section V.

III. RELATED WORK

Current cutting edge object detection algorithms are based
on deep learning and convolutional neural networks (CNN).
Generally, they achieve high detection accuracy in comparison
to linear classifiers (such as Adaboost or SVM) [34], [35].
On the other hand, the computation of convolutional layers

is very demanding; the number of operations required for
evaluation is several orders of magnitude higher compared
to linear classifiers. Furthermore, the neural networks usually
require large amount of intermediate results, increasing mem-
ory requirements during inference. Another issue is the number
of network parameters which can easily reach many milions.
Furthermore, the memory requirements of CNN-based detec-
tors are prohibitive for FPGA implementation. Current state-
of-the-art FPGA architectures is that why can process only
small images [36] and they are very slow [37],or they must
use clusters of very large and expensive FPGAs [38]. For these
reasons, linear classifiers are still favorable for implementation
in FPGAs and embedded devices in general especially when
processing of large images is required.

Table I summarizes important works in the field of embed-
ded object detection from last ten years. Here we analyze the
approaches the authors used.

Lai et al. [23] proposed a parallel hardware architecture
based on Haar cascades. They achieved a detection speed up
to 143 frames per second (FPS) at VGA resolution. Due to
high demands on FPGA resources they limited the cascade to
only first three stages (52 features), which led to low detection
accuracy. Their implementation is therefore suitable as a pre-
processing unit rather than full object detector. Cho et al. [6]
implemented a Haar cascade-based face detection algorithm.
They implemented various versions with one or three parallel
classifiers to accelerate the processing speed. The disadvantage
is high memory demand to perform multiscale detection on a
pyramid of integral images.

Huang and Vahid [9] developed a method to generate
a Haar feature-based object detectors. They aimed at auto-
matic generation of detectors with a required precision for
FPGAs of various sizes. This approach allowed to reduce
resource requirements of integral image memory and hard-
ware complexity against universal implementation of detector.
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Brousseau and Rose [26] improved Haar cascade-based detec-
tor in FPGA by preloading of neighboring pixels, allowing
parallel evaluation of classifiers in adjacent scanning windows.
They also proposed a very complex evaluation control mecha-
nism, allowing to rearrange execution of classifiers to coalesce
the memory accesses.

Zemcik et al. [2], proposed an approach based on
WaldBoost detection algorithm with LBP or LRD features.
This approach implements stripe memory with block readout
and image scaling but it is limited by fixed performace and by
small image resolution, if the multi-scale detection is required.

Several authors proposed detection engines based on mas-
sive parallel execution of large number of features, increas-
ing overall performance at the expense of the resource
consumption. Jin et al. [27] proposed a design of fully
pipelined classifier for high-speed face detection with LBP
cascades. The features in each stage are executed in parallel.
Kadlcek and Fucik [11] proposed an automatic classifier
synthesis for the FPGA. Their method generates a fast image
preprocessing unit with LBP features, processing complete
detection window per clock cycle. High expense of FPGA
resources allows for implementation of only limited number
of weak classifiers.

Most of the works implement AdaBoost Cascade of clas-
sifiers with Haar features for face detection [6], [9], [23].
But, for example Kyrkou et al. [7] detected traffic signs
and cars. Some authors solve pedestrian detection with
SVM [28]–[30], [32].

IV. DESIGN CHOICES

In this section, we analyze significant works from the point
of efficient hardware implementation and we summarize the
outlines for the design of our architecture.

When it comes to hardware implementation, Haar features
are not a good choice for several reasons. Haar feature
is evaluated as a convolution of image and a mask. Each
feature in the detector can cover a different and potentially
large number of pixels, which means many memory accesses.
Without using an integral image, this cannot be implemented
to run in constant time, which is an important feature for
pipelining in hardware. Using of integral image increases
memory requirements as each pixel requires higher bit depth
[6], [7], [9], [23]. When using integral image, each feature
can be evaluated by referencing from 6 to 9 pixels, depending
on the shape of the feature [6]. Reading these values from
BRAM, unfortunately, means non-uniform memory access
which cannot be executed in a single clock cycle; therefore,
most of the works implement the sliding window as a register
array with FIFO line buffers stored in BRAM. This allows
for parallel access of pixels in the window and evaluation of
multiple features in parallel. However, this also leads into a
huge multiplexer network (20 × 20 search window requires
400:1 multiplexer [6], [23]), that occupies many resources in
FPGA. The resource consumption increases dramatically with
the size of the detection window and thus such architectures
are constrained to use only small and fixed window sizes to
save resources. Huang and Vahid [9] solves this drawback by
limiting feature positions and simplifying the multiplexers.

Zemcik et al. [2] substitutes Haar features with LBP
which replaces shift registers and delay lines by a set of
BRAM memory blocks with organization that allowed for
the multiplexing to be replaced by a simple block addressing
technique. This approach has another advantage in pipelining
of feature evaluation. It allows simultaneous processing of
multiple image windows in the stream and thus full utilization
of the pipeline, which is not possible with standard scanning
window approach [9], [13]. In general, the hardware detectors
based on LBP features [11], [15], [27] achieves higher perfor-
mance than Haar feature based detectors which is summarized
in section VII.

Multi-scale detection is, in most cases, solved by storing the
input image in RAM and scaling by an algorithm or circuitry
independent on the detection unit [9]. Downscaled images
are then passed to the detector from RAM one after another.
Brouss and Rose [26] uses resolution so small that the image
fits BRAMs in the FPGA. Kyrkou et al. [7] combines image
downscaling to half resolution and upscaling the detector
window. Scaled version of the image is stored in BRAM.
Granat et al. [13] scales the image features in the classi-
fier and addresses the integral image at its original scale.
Zemcik et al. [2] scales image on the fly and stores only a
narrow image stripe in BRAM. Some works [8], [11], [30] do
not solve multi-scale detection and detects objects of a fixed
size; therefore, their architectures are more simple and exhibits
apparently higher performance.

As a basic building block in our architecture, we use
an improved architecture by Zemcik et al. [2]. Specifically
we improved the performance of pipelining, image scaling
algorithm, the bit depth of the image and we extended it with
cascading capabilites, described below. Our architecture differs
from the others in several aspects. We use soft cascade instead
of cascade of classifiers(see in Section II). Soft cascade is
usually more efficient in terms of the number of extracted
features [22]. We use features that do not need integral image
and that can be evaluated directly from the input image – LBP
and LRD [39].

In our approach, the sliding window is not stored in FPGA
registers. Instead, Stripe Memory Engine (SME) is used to
store a narrow stripe of the input image in BRAM, see in VI-A.
The stripe must be higher than the of classifier window (we use
classifiers with height up to 24 pixels and stripe height is
32 pixels). In the classifier window, we limit geometric size
of the features to 6× 6 pixels which allows uniform reading
of a fixed size pixel blocks from SME in one clock cycle.
Juránek et al. [40] shows that limitation of feature block size
does not have adverse effects on detector accuracy. Image is
represented on 8 bits per pixel which saves resources compared
to integral image where even 20 and more bits per pixel need
to be used [7], [23]. The detector size is limited only by the
height of the detection window but not by the width, which
can be of virtually any size. We also do not use RAM to
store the input image; instead, the image is scanned as it
comes from the source and its scaled versions are generated
on the fly (see in VI-D). Many image scales are stored in the
same SME. The stripe memory, due to its organization, allows
the evaluation of multiple scanning windows simultaneously
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and enables efficient pipelining and scheduling of the detector
evaluation process. Moreover, dual-port BRAM allows us to
implement two pipelines and therefore up to two features can
be extracted in a clock cycle.

Another contribution of this work is that our detection
engine can be cascaded in order to increase the performance
and the image resolution using Stripe Memory Cascades
(see in VI-F). It is basically a chain of SMEs where one
SME sends the image data to the subsequent one. The number
of instances is only limited by available resources. In practi-
cal setup, one instance can hold few high-resolution image
scales and the other the rest low-resolution scales; therefore,
the maximum image resolution is bigger compared to one
instance solution. Moreover, both instances run in parallel and
thersefore the performance is also increased. The number of
instances in the cascade is limited only by available resources.

All of these differences – detector based on simple image
features, image representation in SME, cascading and efficient
pipelining – contribute to low resource requirements and
overall performance of the proposed architecture.

V. CLASSIFIER MODEL

The main part of the detection is the evaluation of the
classifier H (x) on image patches. It consists of the feature
extraction and the classifier response accumulation, which we
describe in the following text.

A. Feature Extraction

Given an image patch x, a feature extraction is a function
y = f (x, π), y ∈ N which extracts a value from x based on
the parameters π . As a feature extraction function, we use
Local Binary Patterns (LBP) with

π = (x, y, w, h)

or Local Rank Differences (LRD) [39] with

π = (x, y, w, h, a, b)

where x ,y,w,h define the feature position and the size in the
patch x and a,b are indices of two distinct cells in the LRD
case.

The feature response f (x, π) is evaluated from values
of 3 × 3 cells whose positions and sizes are defined by
the parameters π . The cell values c = C(x, x, y, w, h) are
obtained as a sum of pixel values in the respective cell. The
two feature types we use, LBP and LRD, differ in how the
values c are processed.

B. Local Binary Patterns (LBP)

In general, LBP is based on comparison of pixels from
a circular neighborhood to the central pixel and generating
binary code [41], forming the feature output. Extended ver-
sions attempt to reduce the number of possible output values
by rotating the resulting bit pattern or by restriction of the
number of 0-1 and 1-0 transitions in the code [42].

In this work, we use a simplistic variant of LBP which takes
3× 3 cell values and generate 8 bit code form comparison of

the central cell to the border cells. Mathematically, the calcula-
tion can be written as Equation (4) where > operator compares
all values of a vector to a scalar value, resulting in binary
vector. Weights w correspond to powers of two

w = [1, 2, 4, 8, 0, 16, 32, 64, 128],
so the dot product effectively sets the bits in the result. The
zero weight, w5, corresponds to the central cell c5 which is
used as a basis for the comparison. The range of the resulting
values of lbp(c) is [0; 255].

lbp(c) = (c > c5)w
� (4)

Equation (5) shows how the feature value is calculated, given
an image patch x and parameters π .

f (x, π) = lbp(C(x, x, y, w, h)) (5)

C. Local Rank Differences (LRD)

Features based on local ranks proved to be successful in
object detection tasks [39]. LRD uses scheme similar to LBP –
processing of 9 values in 3×3 cells. It calculates the ranks of
two distinct cells and outputs their difference. Mathematically,
the function can be described as Equation (6), where a and b
are indices of two distinct cells. The resulting value of the
lrd(c, a, b) values is in [−8; +8] range.

lrd(c, a, b) =
∑

c > ca −
∑

c > cb (6)

Equation (7) shows how the feature value is calculated, given
an image patch x and parameters π .

f (x, π) = lrd(C(x, x, y, w, h), a, b) (7)

D. The Classifier

A classifier H is represented as a sequence of T weak
classification functions

hi = (πi , θi , ai ), i ∈ 1, 2, . . . T (8)

where π are parameters for feature extraction, θ rejection
threshold, and a look-up tables with response values. Given
an image patch x, the response of the classifier of length t ,
Equation (9), is a sum of predictions produced by the individ-
ual weak classifiers.

Ht(x) =
t∑

i=1

ai ( fi (x, πi )) (9)

The sample x can be rejected (classified as background) after
evaluating k < T weak classifiers when Hk(x) < θk . And it is
classified as detected object only if all T weak classifiers were
evaluated. HT (x) is then used as classification confidence. The
evaluation is summarized in Algorithm 1.

The number of features evaluated on a sample is, therefore,
not fixed as each image patch can be rejected by different
number of weak classifiers. The number of weak classifiers
varies depending on the image patch content. We can statisti-
cally evaluate the average number of weak classifiers required
for classification of a patch – t̄ . The value can be viewed as
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Algorithm 1 Evaluation of Classifier H on the Sample x
1: procedure H (x)
2: h = 0
3: for t ← 1, T do
4: (x, y, w, h, a, b) = πt � Decode parameters
5: c = C(x, x, y, w, h) � Extract cells
6: g = lrd(c, a, b) � Or g = lbp(c)
7: H = H + at (g) � Accum. the confidence
8: if H < θt then
9: return (�reject �, 0) � Reject x

10: return (�accept �, H ) � Accept x

computational effort required for classifier evaluation. It can be
calculated on a dataset using (10) by counting the number of
evaluated weak classifiers W and classified image patches P .

t̄ = W

P
(10)

The value largely depends on the task and training data.
Usual values values are 2 < t̄ < 5 [40]. Lower values means
faster detectors. For illustration purposes, later in this paper,
we use t̄ = 2.5 which is a realistic value e.g. for face detec-
tion [40]. The value is especially important since it directly
influences the performance of the proposed architecture,
see Section VI.

In practise, the classifier of length T with LBP features is
represented by three matrices F, A and T, where F is 4× T
matrix with feature extraction parameters πt = (x, y, w, h),
A is 256 × T matrix with lookup tables at , and T is 1 × T
matrix with rejection thresholds θt for each weak classifier.
The t-th column of the matrices correspond to parameters ht .
Note that in the case of LRD features, the size of F is 6× T
and the size of A is 17 × T , since LRD has six parameters
πt = (x, y, w, h, a, b) and 17 output values for indexing.
In Section VI we use matrix F as a part micro program of
the detection engine A and T are stored as lookup tables.

E. Classifier Training

Detectors in this work are trained by WaldBoost algo-
rithm [21]. But other algorithm producing a sequence of
feature parameters and associates them with the corresponding
response values can be used as well, e.g. [12]. The detailed
description of the training algorithm is out of the scope of this
paper since we focus mainly on the hardware implementation
of the detection process. We kindly refer reader to the original
paper [21]. Here we only provide informal description of the
algorithm for reader to understand how it works.

The input of the algorithm is a pool of feature parameters,
target false negative rate α, and a large set of training
instances. E.g., when training a face detector, the training
instances are image patches representing faces. The parameter
α represents tradeoff between the final detector speed and its
accuracy. Higher values of α (e.g. α = 0.2) produces fast
detectors with low value of t̄ , since they can reject background
samples more rapidly. Low values (e.g. α = 0.01) produces
slower detectors with higher t̄ . We analyze this tradeoff in
Section VII on the task of face detection.

The training algorithm works in rounds, training weak
classifiers one by one in s greedy manner. On the beginning
of a round t , the algorithm loads background samples from a
large set of images (not containing the target patterns) using
the already trained classifier (i.e. weak classifiers from h1
to ht−1). For each feature in the pool, weak learner trains
confidence values in lookup tables using AdaBoost [43].
In this step, the values are quantized to the resolution required
by the FPGA. This is better than ex-post quantization (after
the classifier is trained) since it allows training algorithm
to adapt on errors caused by the computation with reduced
precision [2], [24]. Then, the weak classifier minimizing
exponential loss function [1], [43] is selected as ht . Based
on the distribution of Ht , for target and background samples,
θt is selected so that as much as possible background samples
may be rejected while discarding as few as possible target
samples for the next round and satisfying target false negative
rate α.

For the detector training in this work, we use our custom
training software which produces detectors suitable for hard-
ware, taking into account all possible quantization effects of
the input image and values in lookup tables.

VI. THE ARCHITECTURE

We propose a hardware architecture that implements the
key steps of sliding window object detection – image scaling,
feature extraction, and classification of image patches. In the
following text, we describe the design of the detector and its
interface, and compare it to the equivalent software imple-
mentation in order to validate it. Figure 5 shows the overall
schematic description of the detector.

A. Stripe Memory

The key part of our architecture is a Stripe Memory
Engine (SME) which stores the active part of the input image
and its scaled variants in multiple BRAMs, see Figure 5 for an
illustration. When a new line is read from the image source,
the data in SME are updated and scaled on the fly. The number
of scales stored in SME is limited by the total width of SME
raster, which is 4 096 pixels in this paper.

The architecture of SME is optimized for reading a block of
pixels in a single clock cycle, so all data required for feature
extraction are available in constant time. The data access is
done in two stages. First, a fixed-size block aligned to certain
position is retrieved from BRAMs to registers. Then, from this
intermediate block, a sub-block with any size and alignment
is retrieved by simple addressing. We store the image stripe
in multiple BRAMs organized in a way that each BRAM is
referenced only once when reading an aligned, fixed size block
of pixels. BRAMs create a pattern of size U×V, and each
BRAM stores B pixel block. This is illustrated in Figure 3 for
U = 2, V = 3 and B = 6. This requires U · V BRAMs to
store the image stripe. Such an organization allows for reading
B ·U × V pixel blocks (aligned to B pixels horizontally) in a
single clock cycle by referencing all BRAMs.

Although SME can be configured almost arbitrarily, it is
limited by the size of BRAM in the target platform.
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Fig. 3. An example of SME in 2× 3 organization and 6px blocks (U = 2,
V = 3 and B = 6) stored in 6 BRAMS (color coded). Aligned block A of
size 12× 3 pixels can be retrieved from the memory in one clock cycle.

Fig. 4. Circuit for feature extraction. The input is 6 × 6 pixel block from
which, depending on feature parameters w, h, 3× 3 cells are extracted. The
resulting cells are used to calculate LRD or LBP features.

For practical applications, we use 4096 × 32 pixel raster,
U = 4, V = 8, B = 4 and pixels represented on up to 9 bits.
On our target FPGA, the SME takes 32 BRAMs with 36 kbit
capacity. This organization allows us to retrieve 16× 8 pixel
blocks aligned to 4 pixel position. The, for feature extraction,
we take 6 × 6 pixel sub-block or 8 × 8 sub-block for image
scaling.

B. Feature Extraction Unit

The detection engine implements LBP and LRD image
features. The size of the feature cells is limited to w ≤ 2,
h ≤ 2, and thus the feature area is limited to a maximum
6× 6 pixels. The position x, y is not limited in any way.

The block diagram of feature extractor is shown in Figure 4.
The input is the 6× 6 pixel block read from SME according
to the absolute feature position in image (taking into account
position of analyzed window). DSP blocks extracts all possible
variants of c from the SME. One of the variants is selected for
evaluation according to the feature parameters w, h from π .
The ranks of elements a and b are calculated as the number of
positive comparisons of an element ca (resp. cb) to all other
elements in c. The ranks are subtracted to obtain the LRD
feature value. Evaluation of an LBP feature is similar – parallel
comparison of the central element c1,1 to the elements at the
boundary. The response of a weak classifier is obtained from
the look-up table a associated with the extracted feature.

It should be noted that the circuit is designed to extract both
LRD and LBP features simultaneously; however, in case that
only one feature type is used, the circuitry for the other type
is optimized-out during synthesis.

C. Detector Control

The detector implements Algorithm 1. For every position
(m, n) in SME image a sequence of instructions is executed.
Each instruction reads the 6 × 6 pixel block from SME,
extracts 3 × 3 cells c, evaluates the feature function and

accumulates the response value read from table A. Then,
the window is rejected or passed to the next stage based
on the threshold value from T. Everything is driven by the
parameters from the instruction code. In case of rejection, new
position is scheduled for evaluation. When all the instructions
are finished, the window coordinates and the confidence value
are sent to output.

The detector itself is controlled by a programmable automa-
ton driven by a 32-bit instruction set. An instruction encode
parameters for feature extraction – particularly the feature
parameters from matrix F and sequence number identifier t
for addressing matrices A and T. We use 8 bits to encode
each coordinate of feature position (x, y), 2 bits for (w, h),
and 4 bits for each from (a, b). Note, that values a and b are
present in the instruction code even for LBP-based detectors
where they are unused. In the matrix A, we store the response
values on 9 bits and the thresholds in T table on 18 bits.

The detector microcode contains a sequence of up
to 1 024 instructions; it means the length of the clas-
sifier is T ≤ 1024. The number of instructions can be
decreased or even increased, having linear impact on the mem-
ory requirements. Current implementation requires 1 BRAM
for storing instructions, 1 BRAM for thresholds and 5 BRAMs
for A and T in LRD case (64 BRAMs in LBP case) 2 BRAMs
are occupied by instructions for static execution scheduler
(see VI-D).

The evaluation of the classifier is pipelined. The pipeline
is 14 clock cycles long and thus up to 14 positions are
evaluated simultaneously. Thanks to the memory architec-
ture described above, the pipeline can be utilized to 100 %
which is impossible to achieve by previous scanning window
approaches [9], [13]. We use two-port BRAM in SME, so we
use two pipelines to double the performance. However, a small
portion of memory accesses from the second pipeline needs
to be reserved for image scaling and for storing the incoming
image lines and the down-scaled data back to the SME –
we leave one out of every 4 clock cycles for the scaling
unit to generate the scaled images, and therefore the overall
performance is p̄ = 1.75 features extracted per clock cycle.

D. Image Scaling

Besides the original image, SME stores scaled variants of
the image. The scaling is done on-the-fly over few last image
lines. We use a block-based approach for scaling with fixed
factor S = 5

6 , where 6 × 6 pixels blocks from a base scale
are transformed to 5×5 pixels blocks in the subsequent scale.
We implemented the separable, integer version of Lanczos [44]
scaling algorithm for 8 bit images.

The process of downscaling and detector execution on
individual SME lines is statically scheduled and driven by
the microcode stored in BRAM. The classifier operations are
performed to every line but every scale has a different number
of lines to process. Moreover, the scaling is a block operation
which is performed every 6-th line. This can cause occasional
bursts of detector executions. The static scheduling allows us
to distribute the execution of detector and scaling to avoid

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 04,2021 at 14:57:36 UTC from IEEE Xplore.  Restrictions apply. 



274 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 1, JANUARY 2020

Fig. 5. (Top) Block diagram of detector. The SME unit, which stores the image and produces downscaled images and two detection pipelines, driven by
microcode program. (Bottom) Illustration of the stripe memory that we use for image representation and source of data for detector evaluation is shown, too.
Incoming line (blue) is stored as a last line in the buffer. When possible, 6× 6 blocks on the bottom of the buffer are scaled and stored as 5 × 5 blocks in
subsequent scales. See the text and Figure 3 for details on how the data are stored in FPGA BRAMs.

this execution bursts and ensure regular processing of image
stream.

The maximum height of scanning window is given by height
of SME minus size of block produced by scaling unit, which
is 27px (32-5px in our case). This height is sufficient for many
of detection tasks and also standard detectors uses similar
dimensions – 21× 21 or 24× 24 pixels [1], [21].

E. Detector Interface

From the outside view, the detector is a computational
block with one input, one configuration interface and two
outputs. The input reads a stream of incoming image data
of the given resolution. The configuration interface itself
is composed from the detector definition (instructions and
associated look-up tables), input image size, and sizes of
scaled versions. The first output is a stream of the image
data from the smallest scale in the SME. This output is used
as an input for another detector instance. The second output
contains detection results – coordinates and scale of detected
objects. For both image input and output, we use AXI Stream
Video interface for configuration the AXI-Lite interface and
AXI Stream for detection results. This interfaces simplify
integration of the detector to applications.

F. Stripe Memory Cascades

A single detector block is limited by the width of SME
(4 096 pixels in our case) and by the performance of feature
extraction, which is p̄ = 1.75 features/Hz (i.e. 350 M features/s
with 200 MHz clock). From the performance point of view,
it is not efficient to build the detector with a wider window
(buffer) to hold more image scales, because the limitation of
feature extraction speed would still remain. Our design allows
for a more efficient solution – cascaded connection of detector
blocks which we call Stripe Memory Cascade, illustrated
in Figure 6. In the cascade, one detector instance generates
scaled version of image and passes it to the subsequent
instance. No limitation exists on the number of instances,
except for the resources available on the target platform.

TABLE II

EXAMPLES OF CASCADE CONFIGURATIONS, THEIR PREDICTED

PERFORMANCES, AND RESOURCE REQUIREMENTS. VALID
FOR DETECTOR OF SIZE 21 × 21 PX, t̄ = 2.5,

AND f = 200 MHz

All instances operates in simulataneously, effectively increas-
ing the speed of the feature extraction. Output streams from
all the instances are simply merged to form the output of the
cascade.

Table II shows several configurations of cascaded instances,
their performance, and resources they require. The naming
convention we use for the configurations encodes the resolu-
tion processed and the number of detector block instances, e.g.
VGA/1 is configuration for processing of VGA image with one
detector block instance and it is similar to what was proposed
by Zemcik et al. [2]. Versions HD/2, HD/3 and HD/4 are
configurations for HD image with different performance and
resource requirements due to different assignment of image
scales to detector instances. Versions FHD/4 and UHD/7 are
for Full HD and 4K images. The versions for LBP and LRD
differs mainly in memory requirements because LBP requires
more BRAMs for classifier definition as described earlier in
this paper.

G. Speed Analysis

The theoretical maximum throughput (in frames per second)
for one instance of the detector unit can be estimated using
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TABLE III

COMPARISON OF THREE DIFFERENT CASCADE DESIGNS, ALL FOR HD RESOLUTION. THE VALUES ARE SHOWN FOR DETECTOR OF SIZE
21× 21 PX WITH AVERAGE t̄ = 2.5 FEATURES PER POSITION, AND f = 200 MHz Clock. It Can Be Observed That

Trade-Off Between the Number of Instances and Desired Detection Performance Exists

Fig. 6. Cascading of detector instances. Each detector takes scaled input
image from the previous one, the output coordinates and classifier response
of detected objects are merged into one stream. Each detector is configured
separately.

Equation (11) where f is the operating frequency, p̄ the
number of features extracted in one clock cycle, t̄ is the
average number of weak classifiers evaluated per window,
and P represents the number of positions to evaluate in the
image and its scaled versions assigned to the detector. The
numerator of Equation (11) represents the total number of
features extracted by the detector, the denominator is the
average number of features that must be extracted on an
image. As explained in Section VI-C, in our architecture
has p̄ = 1.75. The value of t̄ is the property the particular
classifier, the average number of features that needs to be
extracted from the image in order to decide the class of one
analyzed window (see Section V). It reflects the average case
and it can change locally with irregularities in data that are
hard to predict. We use t̄ = 2.5 for illustration purposes which
is a realistic value for face detection. See Section VII with the
analysis of detectors we use.

F = f · p̄

P · t̄ (11)

The throughput of the whole cascade of detectors is limited
by the slowest unit in the chain and it depends largely
on sizes of images processed by the individual instances.
In the Table III, we show breakdown of HD/* variants
from Table II). Each version processes 20 image scales, the

difference is in the manner how the scales are assigned to the
detectors in the chain, and in the length of the chain.

Let us focus, for example, on the HD/2 version, with two
instances of detector. The first instance contains four image
levels (resolutions from 1 280 pixels to 742 pixels of width)
and we estimate around 5.4 M features need to be calculated
on those four levels on average. Therefore, the speed of the
first instance is around 64 FPS, calculated using Equation (11).
The second instance contains the rest of the image scales
(resolutions from 619 pixels to 42 pixels of width) and its
speed is estimated to 233 FPS. The total speed of the HD/2
is therefore 64 FPS as it is the minimal framerate from all
detectors in the chain.

H. Validation

During the design phase, we developed a software imple-
mentation of the detection algorithm which uses the same input
data as the hardware implementation (look-up tables, instruc-
tions, thresholds, etc), and is based on the same image scaling
algorithm. The architecture was validated by comparison of the
results produced by the software implementation to the results
produced by our architecture on a large set of images. The
results were identical; therefore, we assume that the subtle
differences in implementation in software and hardware are
acceptable.

VII. RESULTS AND EVALUATION

In our applications we use Xilinx Zynq SoC with ARM CPU
and FPGA. This combination allows for simple configuration
of the detector and post processing of the results. However,
if required, everything can be fixed and implemented in FPGA
only. The design was written completely in VHDL with
only few platform-dependent blocks (such as 36 kbit BRAM
capacity); thus, it could be relatively easily adapted to various
FPGAs, even from different vendor.

We built a prototype of a smart camera with HD CMOS
image sensor and Zynq SoC Z-7020 chip. The camera captures
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image at 60 FPS and passes it through the HD/2 detector. The
detection results are processed on ARM core (non-maxima
suppression, filtering) and the image along with the coordi-
nates of detected objects are streamed through the network.
We demonstrate the architecture on the detection of frontal
faces and detection of license plates. As an example of our
technology, we provide an IP Core of version VGA/1 and
HD/2 detector with built-in face detector.1 This IP Core takes
approximately 15 % of Zynq Z-7020 resources.

A. Detector Evaluation

Properties of WaldBoost detectors were experimentally eval-
uated many times on various problems [21], [40], [45], [46].
We tested our architecture in two example scenarios – face
detection and license plate detection. These two applications
are important in surveillance tasks. However, the detector can
be used for detection of other rigid objects as well - cars [47],
pedestrians [28] etc. We compare our detectors to the pre-
trained detectors from OpenCV which implement Haar and
LBP Cascades used by other state-of-the-art architectures.
We report Receiver operating curve (ROC) – the tradeoff
between false positive rate (the number of false detections
generated per one image) and miss rate (the ratio of missed
objects). Figure 9 shows a few images from each of the tasks.

Detection of Frontal Faces

We trained frontal face detectors on a large dataset of faces
and compared them to OpenCV cascade detectors widely
used by other authors as a baseline [6], [9], [26], [31].
The detector window size (u, v) was set to 24 × 24 pix-
els and the detector length to T = 1024. We trained
four detectors with different target false negative rate α ∈
{0.01, 0.05, 0.1, 0.2}, see Section V-E for details. From
OpenCV, we used haarcascade_frontalface_alt,
as it gives the best results from the built-in detectors. We
tested the detectors on our set of 102 high resolution images
with 1 857 annotated frontal faces (which is bigger and more
challenging than MIT-CMU usually used for testing of frontal
face detectors). The results in Figure 7 show that our detector
(with α = 0.1) gives almost 10× less false positives compared
the detectors from OpenCV at the same recall level. The
recall of OpenCV detectors is 94 % as reported by others [2],
[6]–[11]. Table IV summarizes the speed and recall tradeoffs
of the detectors trained with different value of α and their
predicted performance in FPS when executed in version HD/2
architecture. 60 FPS margin is satisfied by classifiers with
α ≤ 0.1.

Detection of License Plates

In law enforcement applications, such as speed measure-
ment, detection of licence plates is a crucial step where
accuracy and speed matters very much. We trained a license
plate detector on a proprietary database of images taken by

1All resources can be downloaded from https://github.com/PetrMusilCZ/
WaldBoost_FPGA after review.

Fig. 7. Accuracy evaluation of our detectors (WaldBoost) and comparison
to OpenCV detectors (Haar and LBP cascade) for frontal face detection (top)
and license plate detection (bottom). WaldBoost gives lower false positives at
the same accuracy level.

TABLE IV

SPEED ANALYSIS OF OUR FACE DETECTORS ON HD/2. FAST DETECTORS

HAVE SLIGHTLY LOWER ACCURACY. THE IMPORTANT VALUE

IS t̄ , WHICH DIRECTLY INFLUENCE THE PERFORMANCE
OF OUR ARCHITECTURE

speed enforcement cameras. The dataset contains 30 000 auto-
matically obtained samples of axis aligned license plates.
The test set contains 1 000 images with manually corrected
annotations. The dataset covers a wide range of conditions
– day, night, sun, rain, snow and fog. For our experiments,
the detector window size (u, v) was set to 84 × 12 pixels
and the detector length was T = 1024. Accuracy evaluation
in Figure 7 shows that the detection rate of WaldBoost detector
is over 99 % when a false alarm occurs on one out of one
hundred images. Detector speed measured on the test set is
t̄ = 2.7, corrensponding to 62 FPS in HD/2. This is more
than sufficient for this kind of application. For comparison,
we trained Haar and LBP cascade from OpenCV on the same
data using tools installed with the library. As Figure 7 suggests,
our detector outperforms OpenCV detectors by a large margin.

B. Power Consumption Comparison

Table V shows estimation of power consumption of different
platforms executing the face detection algorithm with Wald-
boost classifier (t̄ = 2.5, α = 0.1) on 1280 × 720 images.
On CPU, GPU, and Tegra, we used an OpenCL implemen-
tation of the detection algorithm from Herout et al. [5].
The critical steps were implemented in OpenCL and com-
piled for the target platform, efficiently exploiting SSE/AVX
instructions and multi-thread execution on CPU and computing
cores as well as texturing units on GPU. For the Intel CPU,
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Fig. 8. Comparison of classifications per cycle (wpc) and resource requirements of the architectures from Table I. Yellow color encodes proposed architectures
from this paper, red color preprocessing units, blue color the rest of the architectures. Marker shape encodes feature type used by the architecture (◆ stands
for HOG, ✚ for Haar features, and ■ for LBP/LRD features).

TABLE V

POWER CONSUMPTION COMPARISON. FPGA-BASED DETECTOR IS MORE

POWER EFFICIENT COMPARED TO PC AND GPU SOLUTIONS

we report maximum thermal design power (TDP). In case
of GPU and SoC, the accurate chip power consumption is
available. Power consumption of the FPGA was estimated
using Xilinx Power Estimator, assuming the worst case with
a 100% toggle rate (i.e. when signals flips every clock cycle).
For the measurement purposes, we synthesized the HD/2 in
the different FPGA of the same family without the ARM core,
so the results are not influenced by the power consumption of
the ARM which is, in fact, not required during the detection.
For all platforms, we report the metric which expresses energy
consumed by the platform per one frame (Joules/Frame). The
Table V shows that the FPGA design requires approximately
five-times less energy than SoC Nvidia Tegra.

C. Comparison to Other Architectures

Table I shows the comparison to other architectures in terms
of the maximum image resolution, detection algorithm and
features, scanning window size, and type of detected object.

Due to our unique stream memory cascades, the detector
can process images at very high resolution (up to 4K) while it
is still capable of detection of very small objects. This property
may be important e.g. when surveillance camera covers a large
area. The most state-of-the-art architectures are capable of
processing up to 1Mpix images.

The advantage of the proposed architecture, comparing to
others, is the optional size of the detection window, which is

limited only by the height of SME, while the width remains
unlimited and freely adjustable. In other architectures [6], [9],
[13], [26] the changing of window size means re-synthesizing
of the whole design and, what is worse, larger windows takes
more resources for multiplexer networks required for reading
out the pixels. This is completely avoided in the proposed
solution.

We compare our architecture to other similar ones. However,
they are realized by different FPGA technology, have different
input sizes, classifier strides in image and other parameters;
these parameters are discussed in Section VIII. To make
comparison possible, we characterize all the architectures by
number of processed scanning windows per clock cycle (wpc)
which gives raw performance measure independent on the
used technology, frame rate and other parameters. Table VI
summarizes performance and resource requirements of our
architecture and compares it to the other published works.
Plots in Figure 8 show the dependency of resource con-
sumption on the wpc classification for some architectures.
Various proposed configurations of cascade instances (from
Table II) are plotted in each graph. It can be observed that
overall performance increases with number of cascaded SME
instances which proves its benefit.

The resource consumption and performance of configuration
HD/2 is comparable to Kadlcek and Fucik [11] and Lai
et al. [23], anyway, their design achieves only low detection
accuracy caused by very short detector and limits their possible
usage for preprocessing purposes only. Our architecture, on the
other hand, works as fully featured object detector while pro-
viding sufficient performance even at high image resolutions.
In summary, the graphs on Figure 8 and Table VI shows the
performance superiority of LBP/LRD feature based detectors
to Haar and HOG based detectors.

The solution by Jin et al. [27] and Kyrkou et al. [15]
achieves very high wpc, comparable to our FHD/4 and
HD/2 configurations, but they require multiple-times more
resources against our solution, even for only low image resolu-
tion. Comparing to work of Zemcik et al. [2], the architecture

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 04,2021 at 14:57:36 UTC from IEEE Xplore.  Restrictions apply. 



278 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 1, JANUARY 2020

TABLE VI

COMPARISON OF CRITICAL PARAMETERS OF THE PUBLISHED ARCHITECTURES REPORTED BY THE AUTHORS TO THE PROPOSED ARCHITECTURE. SOME
WORKS DO NOT REPORT ALL PARAMETERS OR REPORT slices (SL) OR logical elements (LE). *SUITABLE ONLY FOR PREPROCESSING PURPOSES

Fig. 9. Examples of detected objects on selected images from testing datasets for face detection (top) and license plate detection (bottom).

we improved, we achieved higher performance, wpc, and
maximum image resolution due to a cascading nature of our
design.

SVM based classifiers using HOG features presented by
Said and Atri [30] and Martelliet al. [8] achieves high
framerate mainly due to detection stride, where they process
only every x-th image row and column, effectively making
the image x× smaller, which reflects into low throughput.
Moreover, they can only detect objects with fixed size 128×64
pixels as they do not solve multi-scale detection. This is why
their architecture performs so well with so limited resources.
However, to detect smaller objects, they need to upscale the
image, and for multi scale detection, pyramidal representation
need to be created, increasing the search space and slowing
down the detection.

The proposed architecture achieves the highest performance
(represented by wpc) compared to the others and also has a
relatively low resource consumption as is evident from the
Table VI and graphs on the Figure 8.

VIII. DISCUSSION

The unique feature of the proposed architecture is the
cascading nature of detector blocks, where one block passes

re-scaled image data to the subsequent block in the chain. The
total speed is then limited by the slowest element in the chain.
It is therefore possible to conveniently exchange resources for
throughput.

In the architecture description, we were addressing the situ-
ation when all image windows and scales are processed – a full
search. This is quite computationally demanding and, in many
applications, unnecessary. The performance of the detection
can be improved by several application-dependent methods.
Scanning every n-th position in the image can increase the
throughput proportionally to n. This can be used especially
when detector window is large – e.g. in the license plate detec-
tion scenario above, we can scan every second or even third
position often without serious impact on detection accuracy,
while increasing throughput two or three times. In scenarios
where the size of detected objects is known, or where we
do not need to detect very small objects, image pre-scaling
can be applied before it is passed to the detector. Moreover,
the detector can be controlled to scan only certain scales.
It can be controlled what lines are passed to the detection
unit and overall performance can be improved by using only
lines from certain image areas. This can be important e.g.
in license plate detection where only license plates in the
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central part of the image are important for the application.
During the development we always considered clock frequency
f = 200 MHz, however, the frequency can be increased,
especially when the design is simple and takes little resources,
to improve the throughput. Another way how to increase clock
frequency is to prolong the detector pipeline.

IX. CONCLUSION

In this paper, we proposed and described in detail a
novel architecture for object detection in FPGA. Our archi-
tecture uses detectors trained by WaldBoost algorithm with
LBP or LRD image features, as opposed to AdaBoost Cas-
cades used in other architectures. The key features of the archi-
tecture are simple representation of the detector by microcode,
memory representation of the input image in Stripe memory
Engine, cascading of detector units to scale performance, and
parallel processing of image patches. We presented several
configurations of detector cascades and analyzed their prop-
erties in detail. For research purposes, we provide an IP core
for face detection in VGA and HD resolution. In the future,
we will improve our architecture in order to include decision
tree based detectors that promises better detection speed and
accuracy.
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