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Abstract
Captured network traffic increased on its importance as
a data-source for law enforcement crime investigation be-
cause everything is becoming internet connected and a sus-
pect’s phone or computer communication might yield cru-
cial evidence. There are many points in the Internet Service
Provider’s infrastructure where the network traffic might
be captured. One of them is satellite connection, DVB-S2,
which use Generic Stream Encapsulation (GSE) to carry IP
traffic. Current tools for network traffic forensic analysis do
not support GSE. In this paper, we describe GSE and how we
implemented support for GSE into OUR TOOL.

CCSConcepts •Applied computing→Network foren-
sics; • Networks→ Network monitoring; Network protocols;
Transport protocols; Application layer protocols; • Social
and professional topics →Computer crime.

Keywords network traffic forensics, generic streaming en-
capsulation, network forensic and analysis tool
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1 Introduction
The digital forensics is becoming a domain of filed opera-
tives employed in Law Enforcement Agencies (LEA) that
are tasked to investigate crimes. Their data-source might
vary, like seized mobile phones, computers, or other stor-
age devices. Long-running investigation cases use a lawfully
intercepted network traffic as a valued data-source [2].
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Although the analysis of network communication was
not considered the primary area of digital forensics, its im-
portance has increased as most of the devices are Internet-
enabled. Performing network forensic analysis requires ad-
equate tool support [13, 14]. A typical network forensics
analysis tool provides features that aid an investigator to
reveal evidence in network communication [1]. Instead of
giving comprehensive information on network protocol de-
tails, the forensic tool is expected to provide contents of
transmitted files, perform a keyword search, extract user
credentials, and more [2, 20].
A network analysis tool, without a solid foundation ca-

pable of processing a wide range of network, application,
and encapsulation protocols, is usable for only a limited
use-case or requires expert knowledge of operators to pre-
process the data to suit the tool. The field operatives are
experienced criminal investigators but usually not computer
experts. Therefore, tools they use need to be straight-forward,
provide top-to-bottom analysis, and require as few expert
knowledge as possible.

The overlay networks are becoming widely used by Inter-
net Service Providers (ISPs) that are interconnecting various
public places, businesses, campuses, or regular home inter-
net connections. Technologies can be fiber-optic, metallic
ethernet, 3G, 4G, 5G or satellite connection DVB-S2 that uses
GSE to encapsulate IP traffic [6, 8–11].
We chose to implement support for GSE on demand of

the Czech LEA, and to demonstrate the extensibility of OUR
TOOL to support not only new application protocols but
protocols on all network layers, even those that can occur
on Link or Application layer — like GSE. LEA officers prefer
open-source network forensic and analysis tools (NFATs) [1,
12], even though they might be poorly documented, out-of-
date, and even abandoned [13].

1.1 Problem Description
The GSE is nowadays commonly used for data encapsulation
on satellite networks. As its name suggests, it is a generic
method of encapsulation and can occur on any network layer
and that even recursively. The LEAs struggle to perform
network forensics on data captured with GSE encapsulation
because commonly used tools for network forensics cannot
process this encapsulation.

1.2 Contribution and Paper Structure
This paper introduces a GSE from a network forensic point
of view.We survey NFATs, and Network Security Monitoring

1
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(NSM) tools in search of overlay network, and mainly GSE
decapsulation capabilities. It is important to note that no
other tool intended for a high-level network traffic analysis
for LEAs do support GSE.
Consequently, we provide a detailed description of OUR

TOOL architecture and atop of it, we describe how the GSE
is efficiently processed.
This work might be used by advanced network forensic

practitioners that write their own single-purpose tools to
dissect network communication and analyze it as well as
those that use network forensic tools for their daily routines
and do not require deep insight into processing techniques.

2 Related Work
Network forensic practitioners commonly use two types of
tools — the NSM and the NFAT [13]. This section mainly
focuses on tunneling protocols support in related tools and
their usability for network forensic investigation conducted
by LEA officers.

NSM tools are intended for a high-level insight into the
network communication. Such tools are usually fast and
scalable; thus can process high volumes of network data
on high-speed networks up to hundreds of gigabits. These
tools provide information typically from lower layers, i.e.,
Internet and Transport, and only partially from Applica-
tion, where they parse only well-known protocols; rarely
they support overlay networks. Also, these tools are guided
strictly by standards and usually do not include heuristics or
more in-depth analysis to extract additional content. They
operate online, and most cannot process malformed or in-
complete communication. The incomplete communication
is a typical case when interception is done on commodity
hardware inside ISP infrastructure. Therefore, these tools
are used mostly by network operators for measurements,
accounting, and incident detection. NSM tools provide the
bottom-up approach showing dissected packets and letting
the investigator conduct expert analysis.
The most commonly known NSM tool is Wireshark [28]

that supports following encapsulation protocols: GSE, GRE,
Ayiya, GTPv1, L2TP, SSTP, PPTP, IPIP, IPsec, 6in4, etc. It
supports the broadest range of network and application pro-
tocols. Wireshark defines an API that can be used to extend
its functionality by a new protocol dissector. Note, that it is
the only tool supporting GSE!

Some NSM tools can be integrated, and more sophisticated
analysis can be done programmatically, like TShark [28],
TCPDump [25], TCPFlow [27], NfDump [19], Suricata [24]
(Teredo, GRE), Zeek [30] (Ayiya, Teredo, GTPv1, GRE), Mo-
loch [17] (GRE) that can analyze live or intercepted com-
munication. They can be parts of scripts that can do one or
more tasks, but still can not be compared to NFAT carving
and analytical capabilities.

NFAT Our focus is to provide a tool for LEA operatives to
extract forensically important information mostly from the
application layer of communication. This intent perfectly
fits into the category of NFATs that is intended for in-depth
traffic analysis, that is mainly performed offline on captured
communication. NFATs provide the same amount of informa-
tion as NSM tools but also add extra information extracted
from the application layer. They conduct a thoughtful analy-
sis of the traffic and use the extracted data to infer informa-
tion that helps the investigator. The information is usually
provided in a synoptic, easily navigable user interface be-
cause NFATs are intended to be used even by field operatives
without specialized training.

Popular NFATs are NetworkMiner [18] (GRE, 802.1Q, PP-
PoE, VXLAN, OpenFlow, SOCKS, MPLS, and EoMPLS), Py-
Flag [3, 21], XPlico [29] (L2TP, VLAN, PPP), NetIntercept [5].
No NFAT supports GSE as far as we know.

3 OUR TOOL in Depths
In this section, we present OUR TOOL a network analysis
desktop application created for Windows platform. We dis-
cuss the low-level network traffic processing parts to be able
to explain the extension of GSE decapsulation support. The
tool is composed of two parts:

OUR FRAMEWORK (backend, details see Sec. 3.1) is
network traffic processing engine that provides all
kinds of functionality starting from capture file load-
ing, going through traffic processing, extraction and
ending with traffic analysis.

OUR TOOL (frontend, details see Figs. 10, 11) is a visu-
alization tool that depends on the backend for process-
ing part, but extending it with analytic capabilities to
interpret extracted data.

For a high-level overview of the tool, architecture see Fig. 1.
Note, OUR FRAMEWORK is a separate set of .NET assem-
blies that have no dependency on OUR TOOL and can oper-
ate separately. However, the framework does not have any
CLI and therefore has to be incorporated into an application.
On the other hand, OUR TOOL has a direct dependency on
the OUR FRAMEWORK and is compiled with it, e.g., it uses
types that are defined in OUR FRAMEWORK.

3.1 OUR FRAMEWORK
OUR FRAMEWORK is the backend and it is responsible for
parsing and preparing all information gathered. For instance,
it identifies used protocols, to overcome fragmentation (L3)
and segmentation (L4). In its current version, it does not sup-
port live capture but can process standard input file formats
such: libPCAP, Microsoft Network Monitor cap, and PCAP-ng.

Link Layer Once an input file is loaded, it is processed
frame by frame (L2). The lowest used protocols type (e.g.,
LINKTYPE_ETHERNET (IEEE 802.3), LINKTYPE_IEEE802_11

2
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Figure 1. The figure describes the abstraction of OUR TOOL and OUR FRAMEWORK architecture. The upper part of the
diagram above the line represents visual parts of the tool. Below the line, components of OUR FRAMEWORK are drawn in a
hierarchical view.

(IEEE 802.11), LINKTYPE_PPP, etc.) is stored in the ‘pcap_fi-
le_header’ structure, and we use it to load the first protocol
parser. A good overview of the Link-Layer header type values
is provided by [26].
Next, we utilize the frame header and its Logical Link

Controller header (LLC) where the main field is a unique
identifier of the L3 protocol (e.g., IPv4, IPv6).

Note, sometimes it might not be stored in the capture file.
Link layer usually does not carry any forensically significant
information; thus it is generally omitted and LINKTYPE_RAW,
LINKTYPE_NULL link layer types are used.

Internet Layer Similarly, both IPv4 and IPv6 contain an
identification of an upper layer. (Note, IPv4 names the field
‘protocol’; IPv6 names it ‘Next Header’) which allows us to
choose an appropriate L4 parser. As long as the protocol/next
header is present, we can parse the communication deter-
ministically, usually up-to (including) the transport layer.

Transport Layer The transport layer carries no informa-
tion about the subsequent protocol; therefore, the continuing
application layer needs to be identified by other means to
be correctly processed. We can do this identification using
several methods (e.g., port-based classification, deep-packet
inspection, probabilistic and statistical methods based on
machine learning). Typical encapsulation with protocol ex-
amples is presented on Fig. 2.

3.2 Conversation Tracking
This section provides a comparison of ISO/OSI and TCP/IP
models with denoted layer names and samples of typical
protocols used on particular layers. The logical approach
to process network data is to create a forest of trees with

Figure 2.
JP: Draw own figure with supported protocols

This figure provides the comparison of ISO/OSI and TCP/IP
models with denoted layer names and samples of typical
protocols used on particular layers.

roots based on identifiers extracted from the lowest layer of
the network encapsulation model and continue with upper
encapsulation levels. This way, conversations on all levels
are created, which also sets boundaries, and specific traffic
can be targeted for analysis and information extraction. Each
level of encapsulation has its specifics that are to be heated
for correct processing.

Besides, each layer has its specifics that need to be taken
into account before processing ongoing layer.

3
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IPv4 (L3) fragmentation can occur, and packets need
to be defragmented before further processing. Frag-
ments are identified by Fragment Offset and bit More
Fragments (MF) set in Flags field. As long as MF bit is
set, defragmentation process has to buffer packets and
further process them in bulk, because fragments do
not carry headers from upper layers, thus cannot be
processed separately and in parallel.

TCP (L4) segmentation occurs regularly. Segments are
agnostic to processing mechanisms, carry all required
headers and can be processed in a semi-parallel man-
ner. The position of a segment in transmission buffer
is defined by the difference of initial sequence number
(SYN packet’s SEQ) and the particular segment’s SEQ.

Application messages are not implicitly denoted be-
cause each application protocol has its structure and is
not parsed on this level of processing. To obtain at least
some level of abstraction, we can deduce boundaries
of application messages from the transport layer. E.g.,
TCP’s field Flags contains the PSH bit that is set when
the last segment of a particular application message
is created. In other words, when flush() is called on
network socket which is typically done to notify the
kernel that message is to be dispatch right away.

Our unique mechanism of processing network communi-
cation [CITATION REMOVEDDUE TO DOUBLE-BLIND RE-
VIEW], mainly L4 segregation shown that evenmalformed or
corrupted captures could be used as data-source and carving
modules can extract otherwise lost information. We accom-
plish this during the last processing step, that creates L7PDUs,
which are the approximations of application messages.

3.3 OUR TOOL Architecture
OUR TOOL was designed to be modular and modules to be
inter-operable, but also to work as self-contained libraries to
be used by other tools. This way, we have created a frame-
work for network forensics and analytic application support-
ing forensic investigation.
Fig. 1 describes the decomposition of the tool to small

interconnected building blocks/modules. In the bottom part,
the architecture of OUR FRAMEWORK processing network
communication that is interconnected with OUR TOOL by
OURFrameworkAPI. This API enables easy incorporation of
OUR FRAMEWORK with any additional software that may
use it as a platform. Furthermore, this part is divided into
two groups, the execution and model parts.

Execution part, on the left-bottom side of OURFramework-
API, consists of modules that by their composition ensures
polymorphic behavior and extensibility. Each new network-
ing protocol that is to be supported requires the creation of
its tracking building block and connection into the process-
ing pipeline. The communication interface between building

blocks is defined by their interfaces that buffer inputs and
outputs that encapsulates data in models.
Model part consists of blocks below DbContext. Models

serve as data carriers for parsed, extracted state information,
e.g., for L3 conversation it is source and destination IP address
with a collection of other models representing Frames. Mod-
els are persisted with DbContext and also accessible through
it to higher layers.
To ensure fast parallel processing on a single computa-

tion node with shared memory, i.e., an application running
a single process, we used Task Parallel Library (TPL). This
approach enables the creation of functional blocks that im-
provemodularity. Each block processes immutable data; thus,
all blocks might run in parallel and together create an ori-
ented graph, a Data Flow1. The OUR FRAMEWORK com-
bines buffering blocks that interconnect execution blocks to
maximize the utilization of resources due to different time
complexities of data processing in the functional blocks. Also,
this introduces a back-pressure mechanism that is used as
memory management to slow down faster blocks that might
otherwise overwhelm the system and caused resource deple-
tion and by that, a disk swapping or an application crash.

3.4 Capture File Processing
In OUR FRAMEWORK, capture file processing is initiated
by a method call of AddCapture in OURFrameworkAPI. In
current implementation, the tool processes captured traffic
in formats libPCAP, PCAP-ng and MNM Cap (Microsoft Net-
work Monitor). Fig. 3 describes a sequence of execution calls
and model passing through execution pipeline, a layer by
layer to describe logical processing in an abstracted manner.
Modules are designed to ensure concurrent processing

thus do process immutable data. Majority of modules also do
run in parallel instances to increase a degree of parallelism
further. This design also enables with some modifications of
processing pipeline to scale up and run the data flow graph
in a distributed environment. That is achieved with TPL
Data Flow which also enables to change interconnection of
execution block to extend the processing of capabilities to
process new network encapsulations (tunneling protocols).
The rest of this section describes processing blocks and

their interconnections denoted on Fig. 4.

ControllerCaptureProcessor
ControllerCaptureProcessor block is used to oversee captured
traffic processing. This module interconnects particular func-
tional and buffering block to a processing pipeline reflecting
typical network layered encapsulation. Processing data flow
pipeline is created a new for each job. That leads to segrega-
tion of data potentially originated from multiple cases and
guarantees that no data might be reconstructed into false
evidence. The processing has two reading phases.

1https://msdn.microsoft.com/cs-cz/library/hh228603(v=vs.110).aspx
4
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Figure 4. The figure describes the scheme of the functional and buffering block based on TPL Data Flow. This schema describes
the decomposition of processing units to perform actions like reading frames from capture files, tracking conversations on L3,
L4 levels and furthermore on L7 application layer with the approximation of application messages and application protocol
identification.

Firstly, a path to file or files with captured communication
is passed to the CaptureProcessorBlock that takes care of pars-
ing of particular PCAP file format and retrieving raw frames.
The output of this block is PmCapture object collection meta
information about the capture file and frames encapsulated
in objects of PmFrame. PmFrame is obtained in the sequential
streamed one-way passage of capture file and contains only
information about its position in the capture file.

Secondly, additional meta information used in further pro-
cessing without actual payload is filled in the second read
by IndexMetaFramesBlock. This segregation is due to a way
how frames are stored in various PCAP file formats. Some
formats (e.g., MNM) contains a frame table with this meta-
information in place and spares the first PCAP read. Execu-
tion of IndexMetaFramesBlock block, which is a non-blocking
read from PCAP file with parsing of (L2), L3, L4 layers, is
done with the maximal level of parallelism. Layer 2 might
be omitted in case that PCAP is captured without it.

L3L4ConversationTracker
L3L4ConversationTracker takes care of the creation of con-
versations on particular levels inside the ProcessPacketBlock.
A PmFrame(s) (packets) with the same IP source and destina-
tion address compose a L3Conversation. This L4 conversation
if furthermore a collection of smaller L4 conversations that
composes PmFrame(s) (datagrams) with the same IP source
and destination address and TCP or UDP source and desti-
nation ports and L4 protocol type (i.e., either UDP or TCP).
In the time when conversations on layer L3 and L4 are

created, meta-information in the form of PmFrames is still
kept in memory. Because of that, complementary to the con-
versation creation, conversation statistics are generated as
well. Statistics on both levels are updated by data processed
from each PmFrame passing through ProcessPacketBlock.
Because the processing model in OUR FRAMEWORK is

based on IP communication, all non-IP communication is
tracked in special aggregation conversations. These conver-
sations have invalid IP addresses as identifiers, i.e., 0.0.0.0

5
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and [::] on L3 level, and invalid endpoints on L4, i.e., 0.0.0.0:0
and [::]:0 as both source and destination. Similarly, L3 con-
versations containing an unknown transport protocol are
aggregated into first L4 conversation with valid IP addresses
but invalid transport ports, i.e., 0 port number.

L7ConversationTracker
L7ConversationTracker is a core of our reassembling engine
currently supporting TCP and UDP transport protocols. Vari-
ous TCP heuristics [16] are used to separated IP flow commu-
nication, i.e., L4 conversations to finer-grained units based
on application session. We call them L7 conversations.
This module processes incoming datagrams in parallel

respecting the following scheme. For each newly processed
L4 conversation creates a new Task and stores it into a dic-
tionary keyed by an L4 conversation key. All consequently
processed datagrams will be forwarded into this task. Tasks
run in parallel on multiple cores and are scheduled by the
TaskScheduler inside Common Language Runtime (CLR),
which makes them much lighter than regular OS threads
because they are running on existing threads stored in the
ThreadPool. After a task is done or paused, the thread is
returned into the ThreadPool, and a new task is immedi-
ately executed on it. This way, the overhead is minimal, and
parallel processing improves performance rapidly.

Based on the transport protocol type, appropriate reassem-
bler is selected, and the datagram is passed to it for the
processing. Reassemblers incorporate heuristics [16] for ad-
vanced network traffic processing capable of accurate pro-
cessing of even malformed, or missing frames.

UDP reassembler uses timeouts to separate consequen-
tial UDP sessions. Because of a lack of information
from UDP protocol, application messages are created
as an ordered sequence of L7 PDUs. Each L7 PDU con-
tains only one datagram.

TCP reassembler is more complex and uses properties
of TCP protocol like sequence numbers, flags (mainly
SYN, FIN, RST, PSH) in combination with timeouts.
Based on TCP properties, approximations of applica-
tion messages are created in the form of the ordered
sequence of L7 PDUs. Each L7 PDU contains one or
more datagrams composing the application message.

TCP Reassembler This solves an issue with the ambiguity
of L4 conversations captured in one or many simultaneously
processed captures. Typically this happens when static ports
are used at server and client side. In a case when a packet loss
corrupts capture, it may happen that multiple TCP sessions
would be merged into one because from a network point
of view, communication would match the regular schema.
A TCP finite state machine would process this merged com-
munication and report missing data but would lack further

information. That would result in ambiguity in determina-
tion who was communicating, whether there were one or
more identities involved.
Both reassemblers (TCP and UDP) produce L7 Conversa-

tions that contain collections of data and non-data frames.
Non-data frames are frames without payloads that serve for
signaling purposes like TCP ACKs, or frames with payloads
that are malformed, or retransmitted. These frames do not
participate in final stream creation, but their presence is
either way recorded for auxiliary forensic intents.

L7PDUs Data frames are stored inside L7 PDUs. One L7
PDU represents a data stream that is an approximation of an
application message. An application message is considered
to be a sequence of datagrams containing one user action,
e.g., the user sends a message on online chat, or an email, or
downloads a picture, etc. Although, one application message
can span across multiple L7 PDUs, scarcely, one L7 PDU would
contain multiple application messages. This also serves as a
check-pointing mechanism in case that module extracting
data from the application protocol is unable to parse the data
stream due to corruption or unknown content correctly. We
observed that this happens a lot when proprietary applica-
tion protocols are involved because of their volatile nature
and closed specification.

Storage Blocks
Storage blocks are used to assure asynchronous persistence
of gathered meta-information in the form of outputs of all
functional blocks, i.e., L3, L4, L7 Conversations with statis-
tics, L7 PDUs and Frames. Data is stored in SQL database
in bulk operations to achieve higher performance with a
cost of delay introduced with buffering. Buffering and data-
base storing operations run in separate tasks. This way, both
services run in parallel and do not block one-another un-
der ideal circumstances. Storage buffering is highly memory
consumptive; therefore, in case that database is slower then
processing, back-pressure mechanism protects processing
pipeline against memory deprivation lowering its perfor-
mance.
Bulk insert operations increase performance, but at the

same time increases the complexity of processing logic. The
first limitation is loosed database consistency because it is not
guaranteed that all dependencies are stored before an object
that depends on them. In other words, a L4 conversation has a
dependency on a L3 conversation that it belongs to. But they
both are stored separately in different storage blocks, thus, in
a given point in time it may happen that only L4 conversation
is stored and L3 conversation is not yet present in the database.
For this reason, unchecked retrieve ofmeta-information form
database may occur after all captured communication is
processed. In the case when meta-data is required sooner,
referential integrity needs to be validated explicitly because
bulk operations bypass foreign-key constraints.
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For bulk operations to be possible, all foreign keys need
to be known before a first item is stored in a database. To
achieve this, GUIDs [15] provided by a system call are used as
object identifiers and guaranteed to be unique. This approach
also spares one database trip to retrieve otherwise database
generated IDs. Because ID generated during meta-data ob-
ject construction and this same object is passed through the
processing pipeline, all layers that need to satisfy dependen-
cies can do so. That is also the reason why storage blocks are
connected in the processing pipeline last, see Fig. 4, and all
objects created in lower layers are passed to upper ones.
The processing is finished when all storage blocks are

completed. That signals that all data are stored in the data-
base successfully, and consistency is acquired. The control
is returned back through ControllerCaptureProcessor to the
application code that called OURFrameworkAPI. There are
no objects directly transferred between the application and
framework. Thus the DbContext, i.e., the connection point
to the database, has to be used to retrieve the data.

Currently, there are two persistence providers supported.
The first is the SQL server adapter that is the default for the
Entity Framework that provides full-fledged capabilities. The
second option is mostly for ad-hoc, swift investigation or
development that stores all data in memory. We have imple-
mented this in-memory provider to be fully interoperable
with the default one.

4 Decapsulation of Overlay Network
Communication

Available network technologies provide ways to encapsu-
late various network protocols inside carrier traffic. This
approach practically establishes an overlay network on top
of an existing network infrastructure. The virtual topology
of such an overlay network is usually different than the phys-
ical topology. Encapsulation methods can aim to maintain
security Confidentiality, Integrity, and Availability (CIA) triad.
As already explained, the goal of OUR TOOL is to offer an
extensive forensic analysis of captured traffic. To fulfill this
goal and provide a broader range of use-cases, our research
and development further focused on the processing of en-
capsulated traffic. This section, therefore, outlines several
encountered challenges and explains how the analysis of
encapsulated satellite traffic was solved.

4.1 Generic Stream Encapsulation
Network protocol Generic Stream Encapsulation (GSE) was
defined by the Digital Video Broadcasting Project (DVB) and
it offers a way to transport IP traffic over generic physical
layer, usually over DVB physical infrastructure [8, p. 6]. GSE,
as a native IP encapsulation protocol on DVB bearers, was
introduced with the second-generation satellite transmission
system called DVB-S2 (Figure 5). Generic data transmission

DVB-S2, GSE

Site A Site B

Figure 5. This example scenario is presenting a professional
application of DVB-S2 and GSE. This architecture offers
point-to-point or point-to-multipoint connections over a
satellite link in both directions. Traffic between Site A and
Site B is carried using Generic Stream Encapsulation. The
figure is based on the GSE implementation guidelines [6,
p. 11].

on the first generation of DVB standards was formerly pos-
sible using theMulti-Protocol Encapsulation (MPE) on MPEG-
TS packets. However, MPE suffered significant overhead.
GSE is also included in Satlabs System Recommendations
for DVB-RCS terminals [23].

Outline ofGSEProcedures Operation of GSE allows trans-
mission of variable size generic data encapsulated into base-
band frames. GSE can encapsulate not only IPv4 traffic, but a
wide range of other protocols including IPv6, Ethernet, ATM,
MPEG, and others. It supports addressing using 6-Byte MAC
addresses, 3-Byte addresses, and even a MAC address-less
mode [8, p. 6]. Encapsulation and decapsulation procedures
performed by the DVB broadcast bearers are transparent
to the rest of the network topology and the carried traffic.
Shall a network layer PDU be transmitted over a satellite
connection, GSE packets serve as a data link layer (Figure 5).
This GSE layer provides encapsulation, fragmentation, and
slicing. Created GSE packets are then carried in baseband
frames (e.g. DVB-S2) on the physical layer (Figure 6). The re-
ceiving side performs a reassembly process, integrity check,
and a final decapsulation of transmitted PDUs [4].

Moreover, it is also possible to transport GSE packets over,
for example, standard IP network infrastructure. In this case,
the DVB-S2 traffic can be carried like a generic payload on
the application layer with the use of User Datagram Proto-
col (UDP) as a transport layer. Therefore, given UDP data-
grams carry DVB-S2 baseband frames, which further carry
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Figure 6. The figure shows the encapsulation of network
layer PDUs into GSE packets and transmission of GSE pack-
ets inside physical layer baseband frames. GSE packets and
baseband frames consist of a header (shown as a grey block)
and a data field (shown as white space). GSE packet car-
rying the last fragment also contains CRC-32 (shown as a
block with pattern). The figure is based on GSE protocol
specification [8, p. 10].

ICMP

GSE

IPv4

DVB-S2

UDP

IPv4

Ethernet

Lower IP 
network

Upper IP 
network

Overlay 
technology

Data link 
layer

Figure 7. Example of IP traffic encapsulated in GSE layer,
which is carried by another IP traffic. The resulting virtual
topology can be characterized as an established overlay net-
work.

GSE packets encapsulating selected protocol communication.
This approach effectively establishes an overlay network in-
frastructure, because IP traffic can practically carry GSE
packets, which can carry another layer of IP traffic. At this
point, the UDP/IP layer below GSE can be considered the
carrier (encapsulating) traffic while, for example, the IP layer
above GSE can be described as the carried (encapsulated)
traffic. This approach is presented in Figure 7.
According to specifications and recommendations pub-

lished by SatLabs, implementation of a receiver with Eth-
ernet interface can be divided into demodulation/decoding
device, and a device focused on baseband processing. In such
case, L3 Mode Adaptation Receiver Header can be prepended
to received data [22, p. 10]. The receiving device would then

process DVB-S2 L3 Mode Adaptation Receiver Header, DVB-
S2 baseband frame, and GSE packets to analyze transmitted
communication.

Fragmentation, Slicing, Padding and Reassembly Pro-
cess As noted earlier, GSE procedures can encapsulate dif-
ferent protocol data units in one or more GSE packets. In
general, GSE packets have variable length, and they can be
sent in different baseband frames individually or in a group.
Therefore, fragmentation, slicing, padding and reassembling
can occur. In this context, fragmentation refers to a situation
when a PDU and Extension Header is fragmented into mul-
tiple GSE packets (Figure 6). Slicing indicates a case when a
GSE packet itself is divided into several contiguous baseband
frames [8, p. 8]. Noted slicing, therefore, refers to physical
layer fragmentation, which shall be transparent to the GSE
layer [6, p. 27]. Concerning DVB-S2 applications, GSE slic-
ing (fragmentation into baseband frames) does not occur [6,
p. 31].
Shall a single PDU be fragmented into several GSE pack-

ets, each packet is assigned a Fragmentation Identifier (Frag
ID) label in the GSE header [8, p. 17]. Frag ID is used to
match fragments belonging to the same original PDU. This
approach enables the simultaneous transmission of frag-
ments from up to 256 different original PDUs. GSE packets
carrying a complete PDU and GSE packets with PDU frag-
ments can be distinguished using start and end flags in the
GSE header. The protocol of carried PDU is indicated by
Protocol Type/Extension field in the GSE header of the first
fragmented packet and every not fragmented packet. The
packet with the last PDU fragment further carries a CRC-32
field used to check integrity after the reassembly process
(Figure 6). It is important to note that for example DVB-S2
allows multiplexed transmission of multiple streams, each
identified by its Input Stream Identifier (ISI ) [6, p. 32] in base-
band header [7, p. 20]. The reassembly process has to be
carried out independently for each received stream [8, p. 21].
Some of the possible GSE packet formats are presented in
the technical specification [8, pp. 31–32].
Concerning GSE addressing modes noted earlier, an ad-

ditional fourth mode called label re-use can be used when
multiple GSE packets are carried in a single baseband frame.
Shall label re-use be indicated, current GSE packet without
address belongs to the same address as the last previously
processed GSE packet. More detailed analysis of GSE proto-
col is beyond this paper’s scope. GSE packet format is defined
in the protocol specification [8, p. 12]. Further information
can be found in standards, recommendations, and guidelines
covering GSE and DVB-S2, [8], [9], [10], [6], [11].

Implementation Outline Our main goal was to success-
fully decapsulate and process GSE protocol used as an over-
lay network technology (Figure 7). Main challenges were
represented by correct decapsulation of fragmented traffic
including timeout detection and also including support for
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recursive encapsulation. As outlined earlier, this approach
represents the transmission of following protocols layered
on top of each other:

• upper IP as an overlay network layer,
• GSE packets transmitted inside a DVB-S2 baseband
frame with Mode Adaptation Header,

• lower IP and UDP as a network and a transport layer,
• Ethernet as a data link layer.

Designed extension of object model concerning the pro-
cessing of encapsulated communication (Figure 8) is quite
straightforward and reflects above-described protocol layers.
Instance of BaseBandFrame composes of ModeAdaptation-
HeaderL3, BaseBandHeader, and several user packets. These
user packets are, in this case, GSE packets. Instance of GseP-
acket includes GseHeader and carries the encapsulated PDU.
Properties of these instances store values of specific protocol
fields from the processed frame, e.g., address label, length,
fragment ID, encapsulated protocol type, checksum, etc. All
designed model classes make use of factory methods for
parsing corresponding instances from network traffic. These
Parse methods, therefore, take an instance of PDUStream-
Reader, which is responsible for providing a correct sequence
of bytes belonging to the lower PDU, as described above.

Because GSE packets can represent fragments of the encap-
sulated PDU,GsePacket class implements IFragment interface
utilized during reassembly procedures. With the challenge of
correct reassembly and decapsulation, a new type of network
traffic frame was introduced. Class PmFrameEncapsulated in-
heriting from PmFrameBase represents a frame encapsulated
in one or more carrier datagrams. Carrier datagrams can
be either baseband frames or encapsulation packets. The in-
stance of PmFrameEncapsulated has references to individual
fragments which form the given frame.
Processing of GSE-encapsulated communication is man-

aged by L7DvbS2GseDecapsulatorBlock (Figure 9) dynami-
cally connected to the frame processing pipeline, which was
described in Figure 4. This TPL block aims to decapsulate
frames fromGSE packets used as an overlay network technol-
ogy. Connection to the pipeline is established using Broad-
castBlock, which is capable of forwarding L7Conversations
from the L7ConversationTrackerBlock to the StoreL7Conver-
sationBlock (as in the standard pipeline topology presented
in Figure 4) and also to the noted L7DvbS2GseDecapsulator-
Block (Figure 9). Due to the possible amount of false positive
detections of GSE layer, decapsulation procedures are op-
tional. Main OUR TOOL application settings include such
option to enable Decapsulation during capture file import for
communication of Generic Stream Encapsulation (GSE) inside
DVB-S2 baseband frames with Mode Adaptation Header L3
sent as Layer 7 PDU. Shall this option be enabled, Controller-
CaptureProcessor instantiates and connects L7DvbS2GseDe-
capsulatorBlock to the pipeline.

BaseBandHeaderModeAdaptationHeaderL3 GsePacket

<<Interface>>

IFragment

GseHeader

PmFrameEncapsulated

PmFrameBase

1..*Fragments

BaseBandFrame

0..*
UserPackets

0..* DecapsulatedFromFrames

EncapsulatedFrames

0..*

PDU

Figure 8. Extension of object model focused on the process-
ing of GSE-encapsulated frames (simplified).

L7ConversationBroadcaster

L7DvbS2GseDecapsulator

DecapsulatedFrames

StoreL7ConversationBlock

L7ConversationTrackerBlock

L7Conversation

L7Conversation L7Conversation

PmFrameEncapsulated

Database

L7Conversation

Figure 9. Scheme illustrating the connection of
L7DvbS2GseDecapsulatorBlock to the frame process-
ing pipeline using BroadcastBlock placed between
L7ConversationTrackerBlock and StoreL7ConversationBlock.
Standard pipeline topology is shown in Figure 4.

Because GSE packets, which can encapsulate IP traffic, can
be transmitted inside another UDP/IP, recursive encapsula-
tion can happen. In such an edge case, several GSE overlay
networks could be created on top of each other. That im-
plies that a frame decapsulated from GSE packets must be
separately processed and analyzed for the presence of an-
other GSE layer. The challenge of recursive encapsulation
is handled by ControllerCaptureProcessor, as well. Shall the
frame processing pipeline finish with some decapsulated
frames, another pipeline is established, and these decapsu-
lated frames are further processed.
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The decapsulation procedure performed by L7DvbS2Gse-
DecapsulatorBlock is following. Instantiated PDUStreamReader
handles reading bytes of the input conversation and then
parsing of a GSE layer is attempted. Upon successful detec-
tion of GSE layer, DVB-S2 baseband frames are passed to
the GseReassemblingDecapsulator. It outputs frames which
have type PmFrameEncapsulated and are ready for further
processing.

The GseReassemblingDecapsulator manages decapsulation
of frames encapsulated inside GSE packets, which are car-
ried in baseband frames. The decapsulator is capable of re-
assembly procedure according to the specification [8, p. 21].
Reassembling distinguishes single input stream and multiple
input streams based on ISI explained earlier. The reassembly
procedure utilizes GseReassemblyBuffer for each fragment ID
and for each stream identifier processed. The decapsulator,
therefore, decapsulates frames from GSE packets in base-
band frames. In the case of GSE fragmentation, given GSE
packet (fragment) is added to the corresponding reassembly
buffer. Upon successful reassembly, the carried frame is then
decapsulated, too. Each GseReassemblyBuffer holds a counter
of processed baseband frames, which is used to detect a PDU
reassembly time-out error, as defined in the specification [8,
p. 22].

4.2 Evaluation
Every layer of decapsulated traffic is subject to further net-
work forensic analysis performed by the OUR TOOL. GUI
with frame content informs the user whether the current
frame in encapsulated or not. It is also possible to navigate
the frame content view between individual carrier (encap-
sulating) and encapsulated frames as shown in Figure 10
and Figure 11.

The implementation has been evaluated on publicly avail-
able data 2 and results were compared to the reference Wire-
shark implementation. The OUR TOOL reconstructed the
communication as we demonstrate on Fig. 10 and 11..
Results are supported by a set of integration tests that

verify correct processing of GSE traffic in future releases and
prohibits regression bugs to be introduced [LINK REMOVED
DUE TO DOUBLE-BLIND REVIEW].

4.3 Limitations
Our main goal was to process GSE traffic used as an overlay
network technology. Therefore, the current implementation
of GSE decapsulation does not support processing of DVB-S2
baseband frames directly as a physical layer. The decapsula-
tion procedure also does not take GSE labels into account,
because OUR FRAMEWORK does not support tracking mul-
tiple L1 conversations. Stream ID and fragment ID is cor-
rectly utilized during GSE reassembling. However, neither
stream ID is used to separate L1 conversations. To conclude,

2https://wiki.wireshark.org/DVB-S2 (last accessed 2019-04-17).

Figure 10. View of the frame content of the OUR TOOL
presenting a frame carrying eight other encapsulated frames.
It is possible to navigate between encapsulated frames using
shown links labeled with GUID of the target frame.

Figure 11. Frame content view of OUR TOOL (as in Fig-
ure 10) analyzing a frame that was decapsulated from an-
other frame of lower layer.

we focused on processing IP traffic encapsulated in GSE in-
side DVB-S2 baseband frames with Mode Adaptation Header
L3 sent as Layer 7 PDU of UDP/IP.

5 Conclusion
We have implemented proof-of-concept support of GSE for
OUR TOOL. All source codes are open-source and publicly
available on [Link removed due to double-blind review]. The
OUR TOOL becomes the first of NFATs with support of GSE.
Our implementation was evaluated against the only known
implementation in NSM tool — Wireshark. This way, we
enrichedOUR TOOLwith carving capabilities by the support
of a new data-source and demonstrated its extensibility to
support new protocols on all network layers.
OUR TOOL is publicly available [LINK REMOVED DUE

TO DOUBLE-BLIND REVIEW] for all network forensic prac-
titioners to use, including open-source source codes to be
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modified, or be incorporated into other tools the investiga-
tors use.
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