
Received November 4, 2019, accepted November 29, 2019, date of publication December 10, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2958605

Formal Methods for Exact Analysis
of Approximate Circuits
ZDENEK VASICEK , (Member, IEEE)
IT4Innovations Centre of Excellence, Brno University of Technology, 60190 Brno, Czech Republic

(e-mail: vasicek@fit.vutbr.cz)

This work was supported by the Czech Science Foundation under Project 19-10137S.

ABSTRACT Approximate circuits are digital circuits that are intentionally designed in such a way that
the specification is violated in terms of functionality in order to obtain some improvements in power
consumption, performance or area, in comparison with fully functional circuits. To design the approximate
circuits, the synthesis tools rely on the availability of a procedure checking, whether the synthesized circuits
meet a specification and/or provides information about circuit quality. Compared to the traditional circuit
design flow, the nature of the approximate circuits involves replacing the strict functional equivalence
checking with a more advanced approach that enables us to quantify or guarantee the degree of similarity.
The most common technique is to employ a circuit simulator for analysing responses for all input vectors.
This approach allows us to simultaneously perform checking and quality assessment, but the exhaustive
enumeration of the input vectors is tractable only for a small number of inputs. To avoid excessive run-
times, a subset of all possible input vectors is typically used for complex circuits. This causes us, however,
to lose the ability to guarantee that the quality of the synthesized circuits is within an acceptable range
given in the specification. The main goal of this paper is to show how to adopt formal methods such as
binary decision diagrams and satisfiability solvers for exhaustive analysis of approximate circuits without
explicit enumeration of all input vectors. We survey the methods for exact computation of the most important
error parameters used in the context of approximate computing, propose improved algorithms and provide
a detailed analysis of their performance. The methods are benchmarked on a large set of key approximate
circuits consisting of nearly 2,000 unique arithmetic instances with 8-, 12-, 16-, and 32-bit operands which
helps us to identify the best algorithm and method for computation of a desired error parameter.

INDEX TERMS Approximate computing, approximate circuits, binary decision diagrams, error metrics,
error analysis, formal methods, satisfiability solvers, quality assessment.

I. INTRODUCTION
Recently, approximate computing has been introduced as
a technique for addressing the relentless rise in demand
for energy-efficient systems. The concept of approximate
computing exploits the idea of accepting a certain level of
inaccuracy in computations in order to reduce complexity
and improve other parameters of digital systems (such as
power consumption, speed, etc.) The key motivation behind
approximate computing is the inherent error resilience of
many real-world applications. The inherent error resilience
in fact means that it is not always necessary to imple-
ment precise and usually area-expensive circuits. Instead,

The associate editor coordinating the review of this manuscript and

approving it for publication was Dušan Grujić .

much simpler, approximate circuits may be used in a given
application without introducing any significant degradation
in results produced by this application.

The approximate computing has been applied on the whole
digital system stack andmany different approaches have been
introduced in the last decade from hardware- to application-
level. A good survey of existing techniques can be found,
for example, in [1]–[3]. Technology-independent functional
approximation currently represents the most popular tech-
nique on how to introduce approximations to hardware com-
ponents. Apart from that, voltage over-scaling or overclock-
ing can be applied to introduce errors. The idea of functional
approximation is to implement a slightly different function
to the original one, provided that the accuracy is kept at a
desired level and the power consumption or other electrical

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 177309

https://orcid.org/0000-0002-2279-5217
https://orcid.org/0000-0002-7949-8766

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

parameters are optimized adequately. The functional approx-
imation can be performed manually, but the current trend is to
develop fully automated functional approximation methods
that can be integrated into computer-aided design tools for
digital circuits. The goal is to obtain a tool performing an
automatic approximation of digital circuits independent of
their structure. A list of the available methods can be found,
for example, in [3].

The problem is that the automated synthesis of approxi-
mate circuits is, in fact, a multi-objective optimization prob-
lem in which a circuit satisfying user-defined constraints
and showing the desired trade-off between the quality and
other electrical parameters is sought in the space of all possi-
ble implementations. The circuit approximation is, however,
in principle an incompletely specified problem. It means that
the target logic function implementing the required behavior
is unknown a priori. As we cannot specify the problem,
we cannot easily employ standard synthesis tools to design
such circuits. Hence, the approximate methods are typically
constructed as iterative methods performing a design space
exploration. In each iteration, several candidate approximate
circuits are generated and evaluated in terms of functional
(quality) and non-functional requirements (electrical parame-
ters) [4]–[6]. While there are common approaches on how to
estimate and evaluate the electrical parameters (area, delay,
and power consumption), determining the quality of a can-
didate approximation is, in general, a nontrivial problem,
especially when we consider the fact that it must be done
not only as quickly as possible because of its integration into
an iterative design process, but also as accurately as possible
in order to obtain an optimal, or at least a close to optimal,
approximation.

The quality of approximate circuits can be calculated
by means of a circuit simulator. The circuit simulator is
employed to determine responses for all input vectors that are
then used for error computation. Unfortunately, the exhaus-
tive enumeration of the input vectors is tractable only for
a small number of inputs. Researchers typically cope with
the limited scalability by using a subset of all possible input
vectors. This causes us, however, to lose the ability to guar-
antee that the quality of the synthesized circuits is within an
acceptable range given in the specification. Using a subset of
all possible input vectors can cause a substantial difference
between the estimated and real error [7], [8]. Hence, various
analytical and formal approaches have been proposed and
applied for exact quantification of the error of the approx-
imate circuits [9]–[19]. In this paper, we will focus on the
formal approaches because they do not make any assumption
on the structure of the approximate circuits and they can be
applied to determine almost every error metric.

Unfortunately, the formal algorithms developed for exact
error analysis of approximate circuits are typically presented
without a detailed evaluation. It is thus not clear which
algorithm performs better and which one is worse. In addi-
tion, the authors typically evaluate neither the scalability nor
robustness. The situation gets complicated especially when

completely different approaches are used (e.g. methods based
on binary decision diagrams vs. those utilizing satisfiability
solvers). There is no clue on how to choose the most conve-
nient approach.

A. GOALS AND CONTRIBUTIONS OF THIS WORK
The goal of this work is to summarize the current state-of-
the-art related to the formal error analysis of approximate
circuits and conduct a comprehensive analysis of the pro-
posed error analysis methods on a set of benchmark circuits.
The goal is to evaluate the performance, robustness, and
scalability of each method. In particular, we focus on the
mainstream formal methods based on satisfiability (SAT)
solvers and Binary Decision Diagrams (BDDs). In addition,
the simulation-based method is evaluated.

The work in this paper extends the basic notions given
in [15] and makes the following key contributions:

1) We provide an extensive performance analysis of sev-
eral approaches for determining the error of approxi-
mate circuits. An exhaustive simulation, a formal anal-
ysis based on BDDs and a formal analysis based on
satisfiability solvers is investigated. The methods are
benchmarked on a set consisting of nearly 2,000 differ-
ent approximate arithmetic circuits.

2) We present a complete overview of the error metrics
proposed in the literature in order to evaluate the quality
of approximate circuits. For each metric, a correspond-
ing computation algorithm is derived. The algorithms
are formulated at an abstract level which helps us to
understand the theoretical computational complexity
and receive a universal recipe on how to determine the
error regardless of the used formal apparatus.

3) We present novel algorithms for determining the worst-
case Hamming distance, the mean squared error and
the worst-case relative error. In addition, an improved
algorithm for computing the absolute worst-case error
is proposed.

4) For each error metric, the best algorithm and formal
approach is identified. In addition, we discover the
importance of the worst-case absolute error metric and
its role as an indicator of the complexity of error
analysis.

B. PAPER ORGANIZATION
Section II introduces the problem of determining the error of
approximate circuits and surveys existing work related to this
research problem. Properties of various methods for exact as
well as approximate analysis of approximate circuits are dis-
cussed in this part. Section III provides an overview of various
error measures typically employed in the literature and con-
tains a formal definition of the corresponding error metrics.
In addition, notation used within this paper is summarized.
Section IV firstly presents an overview of the methods for
the exact error analysis and discusses their computational
complexity. Then, the algorithms for computation of the error
metrics are derived. The performance of the algorithms is

177310 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

FIGURE 1. Example of 2-bit approximate multiplier F̂ a) Truth table and b)
corresponding gate-level implementation.

experimentally evaluated in Section V. Finally, conclusions
are given in Section VI.

II. RELATED WORK
A. EVALUATING FUNCTIONALITY OF APPROXIMATE
CIRCUITS
Arithmetic circuits are a natural target for approximation
methods. Our intuition suggests avoiding introducing any
approximations in the more significant bits; however, this
does not have a rational reason. Figure 1 shows a 2-bit
approximate multiplier where the last row of the Truth table
(i.e. the case when both inputs are equal to three) is modified
in such a way that the correct product nine was replaced
with seven [20]. This modification enables us to reduce some
logic and remove the most significant bit associated with
the weight 24. Despite that, the error magnitude is relative
low; it equals 9 − 7 = 2. This example demonstrates that
we cannot simply look at the isolated bits and their signifi-
cance (weight), and the whole context should be investigated
instead. This makes the error analysis non-trivial and compu-
tationally complex.

The function of approximate circuits is typically expressed
using one or several error metrics. In addition to the error
magnitude, the average-case, as well as the worst-case situa-
tion, should be analyzed. Among others, mean absolute error
and mean square error are the most familiar metrics related
to the average-case analysis. Selection of the right metrics is
a key step of the whole design. When an arithmetic circuit
is approximated, it is necessary to base the error quantifica-
tion on an arithmetic error metric since the error magnitude
could have a significant impact on the target application. For
general logic, where no additional knowledge is available and
where there is not a well-accepted error model, Hamming dis-
tance or error rate is typically employed. In signal processing
applications, peak signal-to-noise ratio (PSNR) is typically
used to evaluate the impact of a given algorithm on the signal
quality. As the PSNR is defined via the mean squared error,
it suggests using mean squared error as a quality indicator.
The complexity of determining the most suitable metrics,

however, was demonstrated by Miao et al. who presented a
formal proof showing that for signal processing applications
the quality-optimal approximate addition is achieved by lim-
itingmaximum error magnitude while accepting a larger error
rate [21].

In some cases, neither the Hamming distance nor the
arithmetic metrics provide a satisfactory assessment of the
quality of approximate circuits. Hence, various problem-
specific error metrics have been introduced. For example,
a data-independent metric denoted as distance error was pro-
posed to model the error introduced by the approximations
of the median and sorting networks [22], [23]. The authors
proposed measuring the distance between the rank of the
returned element and the rank expected by the specification.
Other metrics were proposed to quantify the functionality of
approximate circuits when used in the sequential circuit [24].
In particular accumulated worst-case error and accumulated
error rate have been introduced. These metrics are motivated
by the fact that the worst-case computed for the approximate
component in isolation may differ substantially from the
accumulated worst-case when the component is used in a
sequential circuit.

In addition to the functionality, we can investigate param-
eters related to the testability of the approximate circuits.
During the manufacturing process, various physical defects
can affect the integrated circuits and may be the cause of
faults leading to observable errors. The errors due to faults
may affect outputs, but these errors may be still tolerable
because the defect circuit does not violate the specification.
From this point of view, we can investigate the complexity
of the testing in terms of the number of input combinations
required to test a given approximate circuit [25]. Thanks to
fewer required test vectors, we can achieve test-cost reduction
and improvements in yield.

B. EXACT ERROR ANALYSIS OF APPROXIMATE CIRCUITS
The functionality of approximate circuits can in principle be
quantified by comparing the truth table of the approximate
and accurate implementations. The most straightforward
method for enumerating the truth table of an approximate
implementation is to use a circuit simulator. The simulator-
based approach is flexible as it can be used to compute an
arbitrary error metric independently of the structure or prin-
ciple of the analyzed approximate circuit. The exact error can
be obtained by means of an exhaustive simulation analyzing
responses for all possible input vectors. The exhaustive sim-
ulation is, however, time-consuming because the number of
input vectors grows exponentially with the number of inputs.
As wewill show in Section V, this approach is thus applicable
for circuits having up to 32 inputs (e.g. arithmetic circuits
with two 16-bit operands). It is very important to choose a
suitable simulator to maximize the performance. Otherwise,
the simulation can become impractical even for 8-bit circuits.
This can easily happen when a Matlab circuit model is used
instead of a gate-level description and a less generic, but more
efficient gate-level simulator. Twenty-five hours are reported

VOLUME 7, 2019 177311

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

when analyzing 14-bit adders in [26] and more than 19 years
are estimated when performing the exhaustive simulation
of 20-bit adders [9].

So as to avoid excessive run-times and enable the analysis
of complex circuits, many authors simplify the problem and
evaluate the functionality of approximate circuits by applying
a subset of all possible input vectors. They perform, for
example, Monte Carlo simulation to measure the error of
the output vectors with respect to the exact solution [5],
[10], [27]. Similar to the exhaustive simulation, the approach
can be time-consuming depending on the chosen number of
vectors and a particular simulator. To provide an example,
six seconds were required to perform the Monte-Carlo sim-
ulation of various 32-bit adders and 8-bit multipliers on a
machine with 2.66 GHz CPU [10]. When a subset of all
possible input vectors is evaluated, the error is only estimated.
The actual error value can be underestimated, as well as
overestimated, depending on the chosen vectors. The lack
of any formal guarantee then decreases the credibility of the
approximate circuits. It has been mathematically derived that
the difference between the values obtained using the Monte-
Carlo approach and the exact error may be substantial. For
the truncated adders characterized by the maximum carry
chain length k , for example, the difference increases expo-
nentially with k and is equal to 12% for k = 10 [7]. For the
32-bit block-based approximate adders, the Monte-Carlo
method with the sample size equal to 10K and 100K exhibits
the relative error larger than 33% and 11.2%, respectively [8].

In order to address the inaccuracy of the Monte-Carlo
simulation, various statistical and analytical methods have
been proposed [7]–[9], [11], [12]. The common feature of
these techniques is that the error is expressed as a function
of circuit parameters like the number of inputs, the number
of truncated bits, carry-chain length, the number of sub-
components, etc. The inputs are treated as random variables
and various theorems of probability theory are applied to
exactly describe, or at least estimate, the error statistics and
the probability mass function of the error [9]. The accu-
rate mathematical formulation of the error is possible only
for some error metrics and those approximate circuits that
typically exhibit a regular structure. Hence, some analytical
methods are limited to a particular variant of approximate
circuits such as truncated multipliers or broken-array mul-
tipliers [12]. Others are applicable to a broader range of
circuits such as approximate adders consisting of sub-adder
units [8], [26] or multipliers recursively constructed from
smaller multipliers [9], [12]. The analytical models are fast
but the complexity of their derivation increases with the
increasing model granularity due to the presence of non-
trivial conditional probabilities. This means that it is currently
impossible to construct an accurate yet simple mathematical
model for circuits described at the level of gates.

The limitations of the previously mentioned methods can
be overcome by using formal methods such as satisfia-
bility (SAT) solvers, Binary Decision Diagrams (BDDs)
and other techniques used to verify hardware systems.

The formal approaches do not make any assumptions regard-
ing the structure of the approximate circuits. They can be
applied to determine almost every error metric and they
always produce the exact error value. Except for some
pathological cases of circuits, the formal techniques are
fast and allow for the analysis of circuits having hundreds
of inputs. Instead of the common functional equivalence
checking, however, relaxed functional equivalence checking
is requested stressing the fact that the approximate circuits
match the specification up to some bounds with respect to
a chosen error metric. As the exact error analysis becomes
more and more important, many different techniques have
been recently proposed to address the problem of relaxed
equivalence checking in the approximate computing. The first
technique for formal analysis of approximate circuits was
based on a SAT solver combined with an ILP solver [10].
Due to a limited applicability (an algorithm for analysis of
the worst error was proposed only) and scalability coming
from the usage of ILP, the researchers then focused mainly on
the usage of BDDs. Several BDD-based methods were intro-
duced to calculate a broader spectrum of error metrics [10],
[13]–[15]. At present we have a variety of more efficient
algorithms based on SAT solvers [16], [17]. Besides these
main-stream approaches, some other techniques have been
developed. For example, methods based on model checking
were introduced for an error analysis of sequential circuits
that contain approximated combinational components [24].
Due to scalability issues, the results were presented for small
sequential multipliers based on an 8-bit adder and some
less complex circuits only. In addition, Symbolic Computer
Algebra (SCA) has been used to determine various error
metrics [18], [19]. The latter approach uses Algebraic Deci-
sion Diagrams (ADDs) that has the ability to determine the
mean relative error for which no other formal technique
exists. The usage of SCA, however, suffers from limited
scalability. The results were presented for 8-bit and 16-bit
adders only. The analysis of multipliers seems to be
intractable even for 8-bit instances. The problem of the SCA
on harder circuit instances is that the polynomial representa-
tions may lead to an enormous remainder describing the dif-
ference between an approximate and reference circuit whose
further analysis is intractable.

The knowledge of exact error is important not only for
time-critical and dependable systems, but also for not so
critical applications such as image processing, where a low
average error but excessive worst-case error can produce
unacceptable results [28]. Obviously, the lack of formal proof
limits the application of approximate computing in prac-
tice. However, there are also other reasons that increase the
demand for fast yet exact error assessment. If an error anal-
ysis is employed within the optimization algorithm (i.e. the
error is used to guide the search through the search space
as in [13], [16]), the analysis method must be simple in
order to compute it because it is called very frequently.
In addition, the computed value must be credible to allow for
discovery of energy-optimal solutions and avoid premature

177312 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

convergence due to discrepancies between calculated and real
error [6]. Finally, the high-level-synthesis methods typically
rely on the availability of a library of pre-characterized basic
building blocks [11], [29]. The accuracy of these methods
thus depends on the quality of the error parameters available
in the library.

Our work focuses on the usage of the formal techniques
for error computations, but the proposed algorithms can also
be adopted for automatic test pattern generation (ATPG).
In fact, the problem formulations of SAT and ATPG are
closely related [30]. It is the task of an ATPG-algorithm to
generate a test for every fault in the circuit according to
some fault model. The ATPG problem have been investigated
intensively for many decades and many powerful approaches
have been proposed. However, the conventional ATPG algo-
rithms, when not aware of the approximation, do not dis-
tinguish whether a particular fault is tolerable or not. This
can lead to a rejection of fabricated circuits that can still be
considered as non-faulty because of approximation. Several
works dealing with the approximation-aware ATPG exist in
the literature. In [31], for example, a SAT solver is used to
identify and remove all faults that no longer need to be tested
because they can be tolerated under the given error metric.
While [31] considers worst-case arithmetic error and bit-flip
error, the authors of [25] target mean absolute error and mean
squared error. Looking at the structure of the architecture for
filtering of the redundant faults proposed in the latter work,
we can identify a common approximate miter circuit used to
quantify the error (see Figure 4 and 5).

III. PRELIMINARIES
The following paragraphs introduce the notation that will be
used for the remainder of this paper. They also summarize
the most frequent error metrics employed in the literature and
provide an overview of three Boolean problems relevant to
this paper. For each metric, a formal definition is provided.
These definitions are later used to derive practical algorithms
for error analysis.

A. NOTATIONS AND BASIC DEFINITIONS
Let f : Bn → Bm be an n-input m-output Boolean function
that describes correct functionality (specification) and f̂ :
Bn → Bm be an approximation of it, both implemented
by two circuits, namely F and F̂, where B = {0, 1}. For
simplicity and without loss of generality, we assume that
both F and F̂ have the same number of outputs. Let fi denote
the i-th (counted from zero) output of an m-output Boolean
function f .
Definition 1: Let JPK denote the Iverson bracket defined

as JPK = 1 iff the proposition P is satisfied and JPK = 0
otherwise.
Considering definition 1, it holds that

Jf (x) 6= f̂ (x)K =
m−1∨
i=0

fi(x)⊕ f̂i(x), (1)

TABLE 1. The most typical measures and the corresponding error metrics
for analysis of approximate circuits.

where∨ and⊕ denote common logicOR andXORoperation,
respectively.
Definition 2: Let nat(x) represent a function nat : Bm →

Z returning a decimal value of the m-bit binary vector x.
Typically, a natural binary representation is considered, i.e.

nat(x) =
∑m−1

i=0 2ixi.
Definition 3: Let x, y ∈ Bn be two Boolean vectors.

We say that x is lexicographically smaller than y, denoted
x < y, if there exists an k , 0 ≤ k < n, such that yk > xk
and xi = yi for all i < k .
Considering definition 2, it holds that nat(x) < nat(y).

B. ERROR MEASURES
Different error measures can be adopted to quantify the
difference between the outputs produced by a functionally
correct design F and an approximate design F̂. The mea-
sures considered in this paper are summarized in Table 1.
In particular, Boolean equivalence (EQ), Hamming distance
(HD), arithmetic error distance (ED), squared error distance
(ED2) and relative error distance (RED) are included. Each
measure can be used to define error metrics for the worst-
case and average-case scenario. While the Hamming distance
measures the number of different bits regardless of their
significance, the arithmetic error considers the significance of
each bit. The metrics are independent each other. A high error
rate, for example, does not imply a high worst-case absolute
error and vice versa.

C. GENERAL-PURPOSE ERROR METRICS
General-purpose error metrics that are not related to the
magnitude of the output of a correct or approximate circuit
are applicable to any approximate circuit independently, and
whether the analyzed target is a logic or arithmetic circuit.
Definition 4: Error rate, sometimes referred to as error

probability, is defined as the fraction of inputs vectors for
which the output value differs from the original one:

eprob(f , f̂) =
1
2n

∑
∀x∈Bn

Jf (x) 6= f̂ (x)K. (2)

Definition 5: The worst-case Hamming distance denoted
also as bit-flip error [32] is defined as

ebf (f , f̂) = max
∀x∈Bn

(
m−1∑
i=0

fi(x)⊕ f̂i(x)

)
(3)

VOLUME 7, 2019 177313

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

and gives the maximum number of output bits that simulta-
neously provide a wrong output value.
Definition 6: The average number of erroneous output bits

denoted as average Hamming distance can be expressed as
follows:

emhd (f , f̂) =
1
2n

∑
∀x∈Bn

m−1∑
i=0

fi(x)⊕ f̂i(x) (4)

Since eprob(fi, f̂i) = emhd (fi, f̂i), Eq. 4 can be rewritten to the
equivalent alternative form:

emhd (f , f̂) =
m−1∑
i=0

eprob(fi, f̂i). (5)

D. ARITHMETIC ERROR METRICS
The previous error metrics assume that all the bits have the
same significance; however, this is not desirable in the case
of arithmetic circuits such as adders or multipliers where each
bit typically has a different weight.
Definition 7: The worst-case arithmetic error sometimes

denoted as error magnitude or error significance [33],
is defined as

ewce(f , f̂) = max
∀x∈Bn

| nat(f (x))− nat(f̂ (x))| (6)

Definition 8: The average-case arithmetic error (mean
absolute error) is defined as the sum of absolute differences
in magnitude between the original and approximate circuits,
averaged over all inputs:

emae(f , f̂) =
1
2n

∑
∀x∈Bn

| nat(f (x))− nat(f̂ (x))| (7)

Definition 9: The mean squared error is defined as the
sum of squared differences in magnitude between the original
and approximate circuits, averaged over all inputs:

emse(f , f̂) =
1
2n

∑
∀x∈Bn

(
nat(f (x))− nat(f̂ (x))

)2
(8)

Definition 10: The relative worst-case error uses relative
error magnitude rather than the absolute error magnitude and
is defined as

ewcre(f , f̂) = max
∀x∈Bn

| nat(f (x))− nat(f̂ (x))|
nat(f (x))

. (9)

Note that special care must be devoted to the cases for
which the output value of the original circuit is equal to zero
(i.e. the cases when the denominator approaches zero). This
issue can be addressed by either omitting test cases when
nat(f (x)) = 0, or biasing the denominator as employed
in [34].
Definition 11: When we replace the error distance in the

sum of Eq. 7 with the relative error distance, we can define
the mean relative error:

emre(f , f̂) =
1
2n

∑
∀x∈Bn

∣∣∣nat(f (x))− nat(f̂ (x))
∣∣∣

nat(f (x))
. (10)

E. NORMALIZED ERROR METRICS AND ERROR
DISTRIBUTION
As the maximum arithmetic error increases with increasing
the bit-width, it is not possible to directly compare value of
ewce, emae or emse across circuits having different bit-widths.
To overcome this limitation, normalized values are typically
used for this purpose. There exists more possibilities on how
to normalize the values. In [35], for example, the values of
emae are normalized to be within the range [0, 1). Considering
this definition, the normalized metrics can be defined as
follows:

ewce%=
1
2m
ewce, emae%=

1
2m
emae, emse%=

1
22m

emse, (11)

where 2m corresponds with the range of the values at them-bit
output.

In addition to the average-case and the worst-case error
value, it is also beneficial to have knowledge of the error dis-
tribution that would provide information about the probability
of occurrence of errors of different magnitudes. To compute
the error distribution, we need a procedure which is able to
determine the number of cases for which the error introduced
by approximation is greater than a given threshold. By repeat-
ing this procedure for different thresholds, we obtain the
cumulative distribution function of the error [10].
Definition 12: The number of cases causing that the abso-

lute error is greater than a given threshold T is defined as

#wcegt (f , f̂ , T) =
∑
∀x∈Bn

J| nat(f (x))− nat(f̂ (x))| > T K (12)

F. BOOLEAN SATISFIABILITY AND ITS RELATION TO THE
ERROR ANALYSIS
Considering all possible input combinations and correspond-
ing outputs does not necessarily mean that we have to explic-
itly enumerate them. The worst-case error analysis is, in fact,
a decision problem which can be formulated and solved as
the Boolean satisfiability problem. For example, the worst-
case error can be determined by finding the lexicographically
largest solution for the difference between the output of the
approximate and reference circuit. Analogically, the average-
case error analysis can be translated to the model counting
problem because it requires counting in the model space.

1) BOOLEAN SATISFIABILITY
Let g : Bn → B be a Boolean function. Then, the ON-set of
g is defined as ON-set(g) = {x ∈ Bn|g(x) = 1}. The Boolean
satisfiability problem is formally defined as follows. Given
a Boolean function g, decide whether ON-set(g) 6= ∅ and
if this is the case, determine a ∈ ON-set(g). In other words,
the goal is to find an input assignment a (so-called model) for
which g(a) = 1 or inform us that no such a exists. Such an
assignment is called satisfiable assignment. Note that if the
ON-set contains more satisfiable assignments, one of them is
returned.

177314 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

Definition 13: Let SATOne(g) denote a procedure return-
ing a single satisfiable assignment defined as

SATOne(g) =

{
a ∈ ON-set(g) iff ON-set(g) 6= ∅
∅ otherwise,

(13)

where g is a single output Boolean function g : Bn → B.
In order to keep the algorithms simple, we will use
SATOne(g) also as a predicate P in conditional expressions
with the following meaning P = SATOne(g) 6= ∅, i.e. the
predicate is true iff the ON-set(g) is not empty.
According to the Cook-Levin theorem, the computational

complexity of the Boolean satisfiability problem and hence
the SATOne operation is NP-complete [36]. Despite this,
the use of the SAT problem has been investigated in the field
of digital system design for more than twenty years and many
powerful tools utilizing SAT solvers have been developed.
Modern SAT algorithms are very effective at coping with
large problem instances and large search spaces [37].

2) LEXICOGRAPHIC BOOLEAN SATISFIABILITY
The lexicographic Boolean satisfiability (LEXSAT) problem
is a modified version of the Boolean satisfiability prob-
lem. Compared to the Boolean satisfiability, LEXSAT finds
the lexicographically smallest satisfying assignment (i.e. an
assignment whose integer value under the given variable
order is minimum among all satisfiable assignments). If the
formula has no satisfying assignments, it proves it unsatis-
fiable, as does the traditional SAT. Formally, the LEXSAT
decision procedure finds an input assignment a for which
g(a) = 1 such that g(b) = 0 for all b < a. Then, a is called the
lexicographically smallest assignment. If no such assignment
exists, it returns ∅.
The LEXSAT is NP-hard and complete for the class FPNP

(i.e. for the class of functions computable in polynomial time
with the polynomial number of queries to an NP oracle [38]).
At most n calls of a SATOne procedure are required to refine
an assignment to the input variables to be the lexicographi-
cally smallest for an n-input Boolean function [39].

3) MODEL COUNTING
Another operation closely related to satisfiability is model
counting (sometimes also referred to as SAT counting) which
computes the number of input assignments a for which
g(a) = 1 (i.e. it determines the number of satisfiable assign-
ments for a given formula).
Definition 14: Let SATCount(g) denote a procedure

returning the number of satisfiable assignments defined as

SATCount(g) = |ON-set(g)| =
∑
∀x∈Bn

Jg(x) = 1K

=

∑
∀x∈Bn

g(x), (14)

where g : Bn→ B.
Themodel counting generalizes SAT and its computational

complexity is known to be #P-complete [36]. It represents

FIGURE 2. Methods for analysis of approximate circuits functionality and
their accuracy.

a challenging problem since it has been demonstrated that
#SAT is extremely hard even for some polynomial-time solv-
able problems [40]. In other words, it is a well known fact
that there exists a class of relatively easy decision problems
whose counting version is hard.

IV. ERROR METRICS COMPUTATION
In this section, algorithms for computation of the error met-
rics mathematically defined in the previous section are pre-
sented. We show the way to formulate the error computation
at the abstract level using either SATOne or SATCount oper-
ation. The obtained algorithms can be then understood as a
universal recipe on how to determine the error, regardless of
the chosen formal apparatus.

This section is divided into two parts. The first part pro-
vides a more detailed insight into the formal techniques.
It discusses their properties, scalability, applicability and
especially the way to implement SATOne and SATCount
operations.

A. METHODS FOR COMPUTATION OF ERROR METRICS
The methods allowing for the accurate analysis of approxi-
mate circuits and their relation to the chosen representation
of the approximate circuits are summarized in Figure 2.
The analytical approaches typically profit from the structural
description of the approximate circuits and are applicable to
those circuits that exhibit a regular structure. Compared to
other approaches, analytical methods require to derive the
analytical model. This can be done either manually, semi-
manually or automatically by means of a theorem prover as
shown for example in [41]. The simulation can be performed
independently of the circuit structure and representation. The
chosen representation, however, affects the duration of the
simulation. Similarly, the formal techniques can be applied to
circuits, regardless of the level of description, but they require
to transform the problem to a more suitable representation.
SAT solvers insist on Conjunctive Normal Form (CNF).
BDD packages represent the circuits using reduced ordered
BDDs (ROBDDs). Symbolic computation approaches
require to specify the problem using algebraic equations [18].

If formal guarantees on the error have to be ensured,
we have to employ either the exhaustive simulation or a

VOLUME 7, 2019 177315

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

TABLE 2. Properties of the methods for accurate analysis of approximate circuits.

formal approach like BDDs or SAT solvers. Each method,
however, behaves differently. The properties of these meth-
ods are summarized in Table 2 and further discussed in the
following paragraphs.

1) EXHAUSTIVE SIMULATION
The circuit simulation represents the most universal method
as it can be used to evaluate virtually arbitrary error metric.
The circuit simulator is used to determine the output value
f̂ (x) for a given input vector x. The remaining computation is
done in the software. It is not even necessary to synthesize the
reference circuit to determine f (x). The output value of the
exact circuit can be computed on-the-fly using a high-level
model1 of the reference circuit. In order to maximize perfor-
mance, bit-parallel circuit simulation is typically used. The
parallel simulation utilizes parallel architecture of modern
processors by simulating the circuit on multiple input vectors
in a single pass through the circuit. It profits from the fact
that standard CPU today supports bitwise operations, at least
on 64-bit integers. Considering this fact, it is beneficial to
transform the simulated circuit to the equivalent gate-level
representation. The modern CPUs, equipped with AVX2,
support even 256-bit operations. Moreover, 512-bit opera-
tions have been recently introduced in AVX-512 extension.
Despite that, the exhaustive simulation scales poorly.

The computational time grows exponentially with the
increasing number of primary inputs and linearly with the
number of gates of a simulated circuit. The exhaustive sim-
ulation is thus tractable for circuits having up to 32 inputs.
This corresponds with n = 232 = 4.3 × 109 input vectors
that can be evaluated in n/64 = 67.1 × 106 passes when
64-bit instructions are employed.

2) BDDS, SAT AND #SAT SOLVERS
In order to apply the formal methods, we need to trans-
form the problem into a Boolean satisfiability problem.
A single output circuit denoted as miter is typically

1Note that the model is reduced to a common addition, multiplica-
tion or division operation for arithmetic circuits such as approximate adders,
multipliers or dividers, respectively.

FIGURE 3. Schematic diagram of the approximate circuit analysis using
formal approaches.

constructed to prove the functional equivalence of two cir-
cuits (see Figure 4a). The outputs of the circuit evaluate to
one if and only if the analyzed circuits provide different
outputs. When translated to CNF, a SAT solver can be used
to check the equivalence. This principle can also be adopted
for the purpose of approximate computing; however, we need
to construct the so-called approximation miter (see Figure 4
and 5) computing the difference between the accurate and
approximate circuits (respecting the chosen measure). The
miter is then represented as a CNF or ROBDD and further
analyzed. This process is illustrated in Figure 3. Unfortu-
nately, the necessity of constructing the approximation miter
makes the computation of some metrics non-trivial. The
definition of the mean relative error, for example, would
require an approximation miter containing a divider with
a rational output. Such a circuit is prohibitively complex
to be effectively represented as ROBDD or solved using
SAT solvers.

BDDs can be directly used for the worst-case, as well as
the average-case, analysis because every library for ROBDD
manipulation is typically equipped with SATCount as well as
SATOne operation. Common SAT solvers are, in principle,
applicable to the worst-case analysis only. The SAT solver
receives one formula in CNF and decides whether it is satisfi-
able or unsatisfiable. This means that it performs the SATOne
procedure only. The average-case error analysis, however,
requires us to determine the number of input assignments
that evaluates the output of an approximation miter to true.

177316 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

FIGURE 4. Miter circuits for an analysis of a) error rate, b) average
Hamming distance, and c) maximum Hamming distance.

Hence, a special #SAT solver is required to address this task.
Encoding the approximation miter as CNF expressed in terms
of the input variables would be impractical due to the expo-
nential increase in the formula size. Hence, a more convenient
approach based on Tseitin transformation is typically applied
in practice to obtain a CNF formula which can be solved by
a SAT solver. The main advantage of this approach is that the
CNF size grows linearly relative to the number of gates. For
more details, please refer to [36].

Considering the computational complexity of the formal
methods, the main advantage of ROBDDs is the possibility of
efficiently performing many of the operations needed for the
manipulation or querying of Boolean functions. The equiv-
alence test of two Boolean functions, for example, can be
done in constant time because almost every BDD package
implements advanced node sharing. The checking is thus
reduced to a comparison of pointers. A satisfying assignment
can be computed in linear time with respect to the number of
BDDvariables. Determining the number of satisfiable assign-
ments can be done in linear time with respect to the number
of BDD nodes. Regarding SAT solvers, their speed mainly
depends on the number of paths that have to be traversed
in order to prove or disprove the satisfiability. Despite the
compact CNF representation, the number of paths traversed
by the SAT solver may grow exponentially by increasing the
number of inputs. It means that even the common equivalence
checking may represent a serious problem for SAT solvers
when applied to some pathological cases like multipliers and
dividers.

The memory requirements follow the opposite trend. The
SAT solvers usually have moderate memory requirements.
The decision procedure is based on a sophisticated backtrack-
ing [40]. The underlying data structures that ensure good
scalability are relatively small. On the contrary, it is the
requirement of canonicity which makes BDDs inefficient in
representing certain classes of functions. For example, multi-
pliers are known for their exponential memory requirements
for any variable ordering [42]. It was shown in [43] that the
BDD for the multiplier of two n-bit numbers has at least 2n/8

nodes. It is also a well-known fact that the size of a BDD

(i.e. the number of non-terminal nodes) for a given function is
very sensitive to the chosen variable order. Depending on the
actual variable order, there are Boolean functions for which
the size of the ROBDD can be either linear or exponential in
the number of nodes [44].

The fact that it is not possible to perform equivalence
checking of common 32-bit (exact) multipliers does not mean
that the SAT solvers cannot be used in the context of approxi-
mate computing. Ceska et al., for example, proposed a design
method capable of approximating even 32-bit multipliers
without sacrificing the requirement for formal error guaran-
tees [16].

B. ERROR PROBABILITY
The procedure for determining the error probability is rela-
tively straightforward as it can be based on a miter routinely
used to prove the functional equivalence. The miter (see
Figure 4a) contains the combinational circuits whose corre-
sponding outputs are connected via XOR gates whose outputs
are fed into a single OR gate. It means that it evaluates to true
if and only if a certain input assignment results in a difference
of outputs. To disprove functional equivalence, it is sufficient
to find at least one input assignment that evaluates to true. For
this purpose, the SATOne operation can be employed.

The error probability defined as the fraction of input vec-
tors for which the approximate output differs from the origi-
nal one, can be determined using the SATCount operation as
follows:

eprob(f , f̂) =
1
2n

∑
∀x∈Bn

Jf (x) 6= f̂ (x)K

=
1
2n

∑
∀x∈Bn

(∨
0≤i<m

fi(x)⊕ f̂i(x)
)

=
1
2n

SATCount
(∨
0≤i<m

fi ⊕ f̂i

)
(15)

In Eq. 15, we start with the definition of error rate (Eq. 2),
then the Iverson bracket is substituted (Eq. 1) and finally,
the sum is replaced according to the definition of SATCount
(Eq. 14). The expression inside the SATCount operation does
not depend on x and can thus be represented as a single-
output Boolean circuit whose output corresponds with signal
g in Figure 4a. This circuit represents the approximationmiter
that can either be converted to CNF and submitted to a SAT
solver or represented as ROBDD as shown in Figure 3.

C. AVERAGE HAMMING DISTANCE
The principle of the average-case Hamming distance com-
putation is analogical. The average-case Hamming distance
is obtained by using the same miter, but without the final
OR gate (see Figure 4b). Then, the SATcount operation is
called for each XOR output. Finally, the obtained results are
summed and divided by the total number of input assign-
ments. This algorithm is obtained when we transform Eq. 2

VOLUME 7, 2019 177317

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

into an equivalent one as follows:

emhd (f , f̂) =
1
2n

∑
∀x∈Bn

(m−1∑
i=0

fi(x)⊕ f̂i(x)
)

=
1
2n

m−1∑
i=0

(∑
∀x∈Bn

fi(x)⊕ f̂i(x)
)

=
1
2n

m−1∑
i=0

SATCount(fi ⊕ f̂i). (16)

The Hamming distance computed using BDDs was intro-
duced in the context of approximate synthesis of general logic
in [45] and later in [13].

D. WORST-CASE HAMMING DISTANCE
This metric is rarely used in the literature. It has been applied
in the context of stochastic computing [32] but without intro-
ducing a formal approach for its computation. One approach
is to follow Eq. 4 and construct a miter which consists of the
XOR gates whose outputs are summed by a tree of adders.
Then, we can use an algorithm for determining the worst-
case value as shown in Section IV-G. Another possibility on
how to determine the worst-case Hamming distance is to use
a sorting network instead of the adder (see Figure 4c). The
sorting network is a fixed structure of comparators used to
reorder an arbitrary data sequence. The main benefit of the
bit-level sorting network is that each comparator consists of a
single AND and single OR gate. The AND gate computes
the minimum value and OR gate is used to compute the
maximum value. Such a structure should be more suitable for
BDDs/SAT solvers compared to the usage of an adder tree
since it does not contain XOR chains. Let SN(k)

: Bk → Bk
be a sorting network which sorts all existing binary inputs
from Bk into a descending sequence of binary values. Then,
the bit-flip error is determined as follows:

ebf (f , f̂)=argmax
z

{
SATOne

(
SN(m)

z (f ⊕ f̂)
)
= true

}
. (17)

We are looking for an input assignment x which activates
the maximum number of ones in f ⊕ f̂ . In other words,
we are looking for the most significant output (i.e. leftmost)
of the sorting network SN which evaluates to one. This
procedure is formalized in Algorithm 1 which receives the
approximation miter and computes ebf . The approximation
miter corresponds with the m-output Boolean function s =
SN(m)(f ⊕ f̂). A binary search is used to identify the leftmost
active output of s.

The algorithm begins by checking whether there exists
an input assignment γ that evaluates the middle output of
the SN (denoted as sz) to one. If such γ exists, the search
continues in the upper half of the SN outputs. Otherwise,
the search continues in the lower half of the outputs. The
algorithm furthermore demonstrates the way of employing
the knowledge of γ in order to improve the efficiency of the
search (see line 6 and 7). We can determine the outputs of

Algorithm 1 Worst-Case Hamming Distance Analysis
(Binary Search)
Input: approximation miter with m-bit sorting network

SN(m) (s)
Output: maximum Hamming distance (ebf)

1 l ← 0; r ← m− 1
2 while l ≤ r do
3 z← d(l + r)/2e
4 if (γ ← SATOne(sz)) 6= ∅ then
5 l ← z+ 1

// γ is used to narrow the interval:

6 while (l ≤ r) ∧ sl(γ) do
7 l ← l + 1

8 else
9 r ← z− 1

10 return l

FIGURE 5. Miter circuits for analysis of arithmetic circuits. Miter
producing a) absolute error distance, b) error distance, and c) squared
error distance (naïve approach).

SN that are set to one and safely skip them because we have
already found the input assignment that evaluates them to
one. The value of the l-th output of SN for a particular input
assignment γ is denoted as sl(γ). Compared to the BDD-
based analysis, the computation of sl(γ) is for free if the
SAT solver is employed because every SAT solver returns
the state of all intermediate variables including sl(γ). Each
variable can be in one of three states – it can be assigned to
true, false, or undefined. In the algorithm, we are interested in
those variables that are in the ‘true‘ state. In particular, we are
looking for the highest l for that sl(γ) = true.

E. MEAN ABSOLUTE ERROR
In order to calculate the mean absolute error, an approxima-
tion miter determining the arithmetic error distance has to
be constructed. The miter typically consists of the exact as
well as approximate circuits whose outputs are fed into the
subtracter followed by a circuit which computes the absolute
value (see Figure 5a). Subtraction can be calculated using
m+1 full-adders with first carry-in set to 1 and inverting each

177318 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

bit of the subtrahend. The absolute value can be implemented
using m half-adders and m XOR gates.

There are several methods how to determine the mean
absolute error. For example, an analysis based on the con-
struction of a characteristic function was proposed in [13].
In order to avoid the building of a characteristic function,
which may be time-consuming, an alternative approach was
proposed in [14]. It exploits the fact that there exists a more
convenient form of Eq. 7 which can be employed in practice.
Let D(x) = | nat(f (x)) − nat(f̂ (x))| be the output of the
approximation miter and d = nat−1(D) its m-bit binary
representation. Considering the structure of the approxima-
tion miter, d are the output bits of circuit determining the
absolute value. The equation for error analysis is constructed
as follows:

emae(f , f̂) =
1
2n

∑
∀x∈Bn

D(x) =
1
2n

∑
∀x∈Bn

(m−1∑
i=0

2idi(x)
)

=
1
2n

m−1∑
i=0

(
2i
∑
∀x∈Bn

di(x)
)

=

m−1∑
i=0

2i−n · SATCount(di). (18)

The mean absolute error is obtained by m calls of
SATCount operation, one per each output bit. The obtained
counts are weighted according to the significance of the
output bits and summed up.

1) THE PROPOSED ALGORITHM
To further improve efficiency, we propose to directly use the
output of the subtracter. The subtracter outputs a signed value
E(x) = nat(f (x))− nat(f̂ (x)) represented using (m+ 1)-bits.
Let e = nat−1(E) be the binary representation of E . For a
common subtracter representing numbers in two’s comple-
ment it holds that E = −2mem +

∑m−1
i=0 2iei. The absolute

value |E| can thus be expressed as

|E| =

m−1∑
i=0

2iei, when em = 0

−

(
−2m +

m−1∑
i=0

2iei

)
, when em = 1.

(19)

We can then substitute |E| into Eq. 7. The computation con-
sequently breaks down into two parts – summing E(x) for all
positive cases and summing−E(x) for all negative cases. The
positiveness or negativeness of E(x) is determined by the sign
bit, i.e. em(x). To restrict SATCount(g) to positive cases only,
it is sufficient to condition g by em. Similarly, the condition
g∧ em restricts the SAT counting to negative cases only. This
principle is used to formulate the computation of the mean
absolute error as 2m + 1 calls of the SATCount operation as
shown in Eq. 20.

eIImae(f , f̂)

=
1
2n

∑
∀x∈Bn

|E(x)|

=
1
2n

[∑
∀x∈Bn
em(x)=0

E(x)+
∑
∀x∈Bn
em(x)=1

−E(x)
]

=
1
2n

[∑
∀x∈Bn
em(x)=0

(m−1∑
i=0

2iei(x)
)
+

∑
∀x∈Bn
em(x)=1

(
2m −

m−1∑
i=0

2iei(x)
)]

= 2m−n SATCount(em)

+

m−1∑
i=0

2i−n
(
SATCount(em ∧ ei)−SATCount(em ∧ ei)

)
(20)

The obtained equation looks complicated compared to
Eq. 18, but it helps us to avoid the usage of the
XOR-intensive absolute value in the miter. In addi-
tion, we can introduce some optimizations. For example,
SATCount(em) = 0 implies that SATCount(em ∧ ei) = 0
and all computations of this term can thus be safely skipped.
In other words, if the difference is always positive, we can
omit the part related to the negative values.

Note that 2m −
m−1∑
i=0

2iei equals to the 1 +
m−1∑
i=0

2iei. This

equality can be used to derive another alternative formula:

eIIImae(f , f̂)

=
1
2n

[∑
∀x∈Bn
em(x)=0

(m−1∑
i=0

2iei(x)
)
+

∑
∀x∈Bn
em(x)=1

1

+

∑
∀x∈Bn
em(x)=1

(m−1∑
i=0

2iei(x)
)]
=

1
2n

SATCount(em)

+

m−1∑
i=0

2i−n
(
SATCount(em ∧ ei)+ SATCount(em ∧ ei)

)

= 2−n SATCount(em)+
m−1∑
i=0

2i−n SATCount(em ⊕ ei) (21)

The computation of the absolute value which requires
additions and XORing with the sign bit was moved from the
circuit level to the algorithm level. As in the previous case,
SATCount(em) = 0 implies that em is always zero which
means that the Boolean function em ⊕ ei is equal to ei. This
procedure is formalized as Algorithm 2.

F. MEAN SQUARED ERROR
A naïve approach on how to determine the mean squared
error is to use a multiplier whose both operands are connected
to the output of the subtracter as shown in Figure 5c. The
obtained miter, however, leads to an extremely inefficient
computation since the squaring is done at the level of a
circuit using a large array of one-bit full-adders. In addition,
the squaring implies that the partial products will contain
common terms that have to be summed twice.

In a more efficient procedure and similar to the mean
absolute error calculation, we start with the expansion of

VOLUME 7, 2019 177319

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

Algorithm 2 Computation of the Mean Absolute Error
Input: approximation miter with signed output (e)
Output: mean absolute arithmetic error (emae)

1 c← SATCount(em); ε← c
2 for i ∈ {0, 1, . . . ,m− 1} do
3 if c > 0 then
4 ε← ε + 2i SATCount(ei ⊕ em)
5 else
6 ε← ε + 2i SATCount(ei)

7 return 2−nε;

equation for expression E2. It holds that

E2
=

(
−2m +

m−1∑
i=0

2iei

)2

=

m∑
i=0

22iei +
m−1∑
i,j=0
j>i

21+i+jeiej −
m−1∑
i=0

21+i+meiem (22)

Then, we can substitute this expression into Eq. 8 and after
rearranging it we obtain the following form:

eImse(f , f̂)

=
1
2n

∑
∀x∈Bn

(E(x))2

=
1
2n

[m∑
i=0

22i SATCount(ei)−
m−1∑
i=0

2i+m+1SATCount(ei ∧ em)

+

m−1∑
i,j=0
j>i

21+i+j SATCount(ei ∧ ej)
]

(23)

An optimized variant of the algorithm computing the
mean squared error, as derived in Eq. 23, is provided
as Algorithm 3.

Algorithm 3 Computation of the Mean Squared Error
Input: approximation miter with signed output (e)
Output: mean squared arithmetic error (emse)

1 ε← 0
2 for i ∈ {0, 1, . . . ,m} do
3 c← SATCount(ei); ε← ε + 22ic
4 if c > 0 then
5 for j ∈ {i+ 1, . . . ,m} do
6 c← SATCount(ei ∧ ej)
7 if j = m then
8 c←−c

9 ε← ε + 2i+j+1c

10 return 2−nε;

The algorithm starts with the computation of the number of
satisfiable assignment for ei. If there is no such assignment,

we can skip the rest of the code as it depends on ei which is
never evaluated to true. The inner loop implements the sec-
ond and third sum of Eq. 23. The second sum is the case
when j = m.

G. WORST-CASE ABSOLUTE ERROR
The literature distinguishes two different problems related
to the worst-case error: worst-case error analysis and worst-
case error checking. The output of the worst-case error anal-
ysis algorithm is the maximum error magnitude observed
on the output of the analyzed approximate circuit. The goal
of the checking is to prove whether the worst-case error is
less or greater than a chosen level. The latter problem is much
simpler compared to the worst-case error analysis as it can be
computed using a single call of SATOne. The experimental
results indicate that the real computational complexity should
not be worse than the computational complexity of common
equivalence checking, since even 32-bit multipliers have been
successfully analyzed within a few seconds [16].

1) WORST-CASE ERROR CHECKING
To compute whether the ED is violated, we can use the
approximation miter, as shown in Figure 5b, followed by a
decision block which checks whether the error introduced
by the approximation is greater than a given threshold. For
a fixed threshold, the decision block can be implemented
efficiently using simple AND / OR gates as proposed in [16].
A comparison of signal A with a constant bit vector T repre-
senting the threshold expressed on k bits is substituted by the
following logic expression:

A > T ≡
∨

0≤i≤k−1
Ti=0

(
Ai ∧

∧
i<j≤k−1
Tj=1

Aj

)
. (24)

For a given threshold T on the worst-case absolute error,
it holds that ewce > T is satisfied if either the output of
subtracter e is positive and e > T , or e is negative and
−e > T . As we typically deal with numbers in the two’s
complement, the second condition is equal to e > (T − 1).
Hence, we can use the two’s complement representation and
examine the positive and negative values separately to avoid
the usage of the absolute difference of the output. Formally:

WCEGT(E, T)

= ∃x∈Bn |E(x)| > T

=∃x∈Bn

[
(E(x)≥0 ∧ E(x)>T) ∨ (E(x) < 0 ∧−E(x)>T)

]
= SATOne

(
[em ∧ (E > T)] ∨ [em ∧ (E > (T −1))]

)
6=∅,

(25)

where E(x) = nat(f (x))− nat(f̂ (x)).

2) WORST-CASE ERROR COMPUTATION
An iterative algorithm for the worst-case error analysis com-
puting the maximum value of the difference between the
original and approximate circuit suitable for BDDs was

177320 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

presented in [13], [14]. It requires us to construct the approx-
imation miter producing the absolute difference D as shown
in Figure 5a. The algorithm iterates over the output bits of
D(x) =

∑
0≤i<m di(x) · 2

i. It starts with the most significant
bit dm−1 and checks whether there exists an input assignment
that makes this bit active. Input assignments that do not
evaluate to the maximum value are ruled out using the mask
µ (please refer to [13] for more details).

A pseudocode of an improved variant of the algorithm pub-
lished in [13] is shown as Algorithm 4. Compared to [13], our
version analyzes the model returned by SATOne operation.
It tries to determine the next bits without the necessity of
checking them explicitly. We employ a similar principle as
discussed in Algorithm 1.

Algorithm 4 worst-Case Error Analysis (Optimized
Sequential Approach for Miter With Unsigned output)
Input: approximation miter with absolute value circuit

giving the unsigned output (d)
Output: maximum absolute arithmetic error (ewce)

1 ε← 0, µ← true
2 for i ∈ {m− 1,m− 2, . . . , 0} do
3 if (γ ←SATOne(µ ∧ di))6= ∅ then
4 µ← µ ∧ di
5 ε← ε + 2i

// γ is used to determine value of the

next bits

6 while (i > 0) ∧ di−1(γ) do
7 i← i− 1
8 µ← µ ∧ di
9 ε← ε + 2i

10 return ε;

As evident from Algorithm 4, we require a suitable formal
approach that allows us to modify the approximation miter
during the computation, ideally without losing the informa-
tion gathered in the previous steps. The BDD packages have
this ability as the BDD nodes are cached in memory. When
a SAT solver is used, however, the CNF formulas are typi-
cally solved separately. Fortunately, the modern SAT solvers
support the incremental SAT solving mode allowing them to
propagate the information gathered during the solving pro-
cess to future instances. The incremental SAT solver enables
us to append an additional CNF clause, but the most efficient
way on how to implement the mask µ is to use the so-called
assumptions (propositions that hold solely for one specific
invocation of the solver) [46]. In our case, the assumptions
correspond with µ because at least one additional condition
is added to µ in each iteration.
Algorithm 4 requires a miter producing the absolute differ-

ence. There are two possibilities on how to modify the proce-
dure to directly use the signed output of the subtracter. One
possibility is to separately check the maximum positive and
maximum negative error. Another possibility is to emulate

Algorithm 5 worst-Case Error Analysis (Optimized
Sequential Approach for Miter With Signed output)
Input: approximation miter with signed output (e)
Output: maximum absolute arithmetic error (ewce)

1 ε← 0, µ← true, sgn← SATOne(em) 6= ∅
2 d ← e⊕ em if sgn else e
3 for i ∈ {m− 1,m− 2, . . . , 0} do
4 if (γ ← SATOne(µ ∧ di)) 6= ∅ then
5 µ← µ ∧ di
6 ε← ε + 2i

// γ is used to determine value of the

next bits

7 while (i > 0) ∧ di−1(γ) do
8 i← i− 1
9 µ← µ ∧ di

10 ε← ε + 2i

// recent γ is used to determine value of the

sign bit and avoid calling SATOne

11 if dm(γ) ∨ SATOne(µ ∧ em) then
12 ε← ε + 1

13 return ε;

the absolute difference at the level of the algorithm as it was
applied in Algorithm 2. A pseudocode correspondingwith the
latter case is shown in Algorithm 5.

Firstly, the output values that have the signed bit active
are inverted using XOR operation (line 2). Here we treat the
output value as a number represented in the ones’ comple-
ment because the ones’ complement behaves like the negative
of the original number to within a constant of -1. Then,
exactly the same approach as used in Algorithm 4 is applied
to determine the maximum value of non-negative d . Finally,
a correction is made if necessary (line 12) to fix possibly
incorrect value caused by the usage of the ones’ complement.
The correction is necessary only if the maximum value of d is
coming from negative e. The model returned by a SAT solver
is used to improve the performance as shown in Algorithm 4.
In addition, the model is used in the correction phase to avoid
an unnecessary SATOne call.

Algorithm 6 worst-Case Error Analysis (Binary Search)
Input: approximation miter with signed output (e)
Output: maximum arithmetic error (ewce)

1 l ← 0; r ← 2m − 1
2 while l ≤ r do
3 t ← d(l + r)/2e
4 if WCEGT(e, t) then
5 l ← t + 1
6 else
7 r ← t − 1

8 return l

VOLUME 7, 2019 177321

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

Finally, let us conclude this part with the algorithm based
on the binary search shown as Algorithm 6. The principle
of this procedure is to iteratively check whether the error is
greater than a given threshold (denoted as t in the algorithm).
The search procedure gradually narrows down the interval
where the exact error value lies. After a finite number of
steps, a single value is determined. As the binary search
runs in logarithmic time with respect to the range, at most
m comparisons are required. The checking can be ensured
by means of the magnitude comparator as shown in Eq. 25.
An incremental SAT solver should be employed to mitigate a
potential overhead caused by the necessity of constructing a
different comparator in each iteration.

All three algorithms presented in this section can be con-
sidered as an implementation of a special form of LEXSAT
solver. Instead of finding the lexicographically maximum
input assignment, we are looking for the lexicographically
maximum assignment to the variables associated with the
output bits. The benefit coming with the use of SAT solvers
compared to BDDs is that potentially less than m SAT calls
are required to determine the worst-case value for an m-
bit output because the solver can learn some bits from the
received SAT assignments.

H. WORST-CASE RELATIVE ERROR
Although the definition of the worst-case relative error (Eq. 9)
contains division, we will outline the way of determining
the relative error and avoiding the use of a divider in the
approximation miter.

Let us firstly show, how to compute whether the RED is
violated using a subtracter and a constant multiplier:

WCREGT(E, T) = ∃ x∈Bn
f (x) 6=0

|E(x)|
nat(f (x))

> T

= ∃ x∈Bn
f (x) 6=0

|E(x)| > T nat(f (x))

= ∃ x∈Bn
f (x) 6=0

2k |E(x)|−2kT nat(f (x))>0 (26)

For a given threshold T ∈ R, we are looking for an input
assignment x which causes the absolute arithmetic error
E(x) = nat(f (x)) − nat(f̂ (x)) to be greater than the value
of the output of the correct circuit, i.e. nat(f (x)), multiplied
by T . Since the threshold T is a real number, we need to
scale E(x) as well as the results of the multiplication by a
factor k ≥ 0 (i.e. a constant which allows to represent T as
integer). The multiplication by the constant 2kT can be done
‘‘multiplierless’’ using additions, subtractions, and binary
shifts. The problem of finding the decomposition of a fixed
point value T with the least number of operations is known as
the single constant multiplication problem [47]. The absolute
value can be replaced by its expanded form as shown in
Eq. 25. The computation of WCREGT then leads to a single
call of SATOne operation.

Once we have the WCREGT operation, we can adopt
Algorithm 6 to determine the worst-case relative error. The
only difference is that WCREGT has to be used instead

of WCEGT. The bounds (i.e. the value of l and r) remain
the same.

V. EXPERIMENTAL EVALUATION
We have implemented the algorithms described in Section IV
in C++. In particular, we created a new module for the
ABC tool [48] in order to have the possibility to work with
Verilog files. Three new commands were created: axc_sim
performing the error analysis based on exhaustive simulation,
axc_bdd for analysis of approximate circuits using BDDs,
and axc_sat which analyses the approximate circuits either
by means of a SAT solver or #SAT solver. For BDD analysis,
we utilized the BuDDY v2.4 [49] because our experience
suggests that its performance is better than CUDD. We chose
MiniSAT version 2.20 as the SAT solver supporting the
incremental solving. For model counting, we chose sharp-
SAT by Thurley [50] representing the state-of-the-art solver
for this problem. The exhaustive simulation is accomplished
by the state-of-the-art parallel simulator utilizing common
64-bit bitwise instructions. Each algorithm is implemented
as a single thread code to provide a fair comparison. The
maximum allowed execution time is 3,600 seconds. Compu-
tations exceeding this limit are terminated. The initial number
of BDD nodes was set to 108 which corresponds to 2 GiB
of memory. The maximum amount of allocated memory was
restricted to 6 GiB. The size of the caches used for the BDD
operators was set to 107. All the other parameters were kept at
the default values. The interleaved variable ordering optimal
for adders was used for analysis of approximate adders, i.e.
an−1 > bn−1 > an−2 > bn−2 > · · · > a0 > b0, where ai
and bi denote particular bits of the input operands. The least
significant bit corresponds with the index 0. In other cases,
a common ordering an−1 > an−2 > · · · > a0 > bn−1 >
bn−2 > · · · > b0 was used.

A. BENCHMARKING METHODOLOGY
We conducted all experiments on a server equipped with
two 2.2 GHz Intel Xeon E5-2630 CPUs, with 64GB
LPDDR3 main memory each, running 64-bit Linux OS. Note
that CPU affinity was forced and Hyper-Threading was dis-
abled to maximize the accuracy. We ran each algorithm on a
set of benchmark circuits. For each benchmark, we executed
more runs, each with different reference circuit (the circuits
are described in Section V-D). Rather than measuring the
time of execution, which can be affected by other programs
running on the same machine, and especially CPU frequency
management, we employed the PAPI [51] interface which
provides a high-level access to hardware performance coun-
ters. We observed the following hardware counters: the total
number of instructions, the number of memory instructions,
total CPU clock cycles, and CPU stall cycles. Non-stall CPU
cycles converted to the time of execution are used to evaluate
the performance of the algorithms. To calculate non-stall
CPU cycles, we subtracted CPU stall cycles from the total
clock cycles.

177322 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

In order to understand the reported numbers, let us briefly
recap how the performance of the error analysis is measured.

1) In the case of the exhaustive simulation, each gate-
level netlist is first translated to a corresponding
64-bit machine code. The translation is done in linear
time with respect to the number of gates. The obtained
byte code is then executed and m 64-bit output values
are produced. The values are rearranged to receive
64 integer values that are subsequently compared with
64 expected values to determine the contribution to
the error parameters. The execution and comparison
are repeated for the remaining input vectors. The input
vectors are generated on the fly. The number of instruc-
tions and the CPU time reported in this paper takes into
account the whole procedure, including the translation
to the machine code. Note that the simulator computes
all of the metrics simultaneously.

2) In the case of BDDs, the gate-level netlist is first
converted to a corresponding BDD representation. The
same conversion is done for the reference circuit spec-
ified by a command-line parameter. Then, the miter
is finalized and the obtained ROBDD is analyzed and
modified if necessary. The number of instructions and
CPU time reported in this paper includes both phases
(i.e. BDD construction as well as analysis). The con-
struction of a BDD is typically computationally inten-
sive and dominates the whole runtime.

3) In the case of SAT solving, the analyzed netlist as well
as the requested reference circuit are firstly converted to
a corresponding CNF using the Tseitin transformation.
The conversion is done in linear time with respect to
the number of gates. Finally, one or several calls of
incremental SAT solver are executed. The number of
instructions and CPU time for the initialization of the
SAT solver, conversion to CNF and computation are
reported in Section V-B.

4) The sharpSAT solver was extended to support the PAPI
interface. Firstly, CNF is created as described in the
previous paragraph. The CNF is then exported into a
DIMACS format and sharpSAT is executed externally.
The number of instructions and CPU time is measured
since the SAT solver reads the DIMACs file.

Time and space complexity is typically considered in prac-
tice. We will focus strictly on the time complexity in the
remainder of this work, partly because of requirements
implied by the target application, partly because of the prop-
erties of formal approaches. As discussed in the introductory
part, the error analysis needs to be done as quickly as possible
because of its integration into an iterative design process.
Considering this scenario, it means that the CPU time has a
higher cost compared to the memory requirements. In addi-
tion, it makes no sense to compare the SAT solver-based
implementations with the BDD-based ones. The implemen-
tations based on BDDs require substantially more memory
(see Table 2). Finally, the amount of allocated memory for the
BDD based implementations highly correlates with the time

TABLE 3. Parameters of the approximate circuits utilized for
benchmarking. Column bw shows the bit-width
of the arithmetic circuits.

of computation because the construction phase dominates the
whole time (see Section IV-A2).

B. BENCHMARKS
The performance of the error computation methods is eval-
uated on a large set of approximate circuits consisting of
various approximate adders and multipliers. These arithmetic
circuits were chosen because they represent key components
of many real-world applications in signal processing and
machine learning [1]. While the formal verification of adders
represents a problem of moderate complexity, multipliers are
known to be an extremely difficult benchmark and can be thus
considered as a scalability indicator.

The approximate circuits are selected from the recent
version of EvoApprox library which contains various
arithmetic circuits created by means of evolutionary
algorithms [16], [34] and more complex instances con-
structed from the smaller ones [12]. We have chosen the
instances having a different design (power consumption,
delay, area) as well as quality parameters. As it is assumed
that the performance of the approximate error analysis
depends not only on a type of circuit but also on the actual
error, the instances are chosen to receive a representative
sample which covers the whole range of values for each error
parameter. In addition, we also included truncated multipliers
and broken-arraymultipliers that exhibit a stable performance
and achieve excellent design tradeoffs [12]. All circuits are
available in the form of a gate-level Verilog netlist. Parame-
ters of the benchmark circuits are summarized in Table 3.

In order to determine the key quality parameters, we per-
formed a correlation analysis among the error parameters
and key design parameters. The design parameters were
obtained from the EvoApprox library. The resulting corre-
lation heatmap, calculated over the 8-bit, 12-bit and 16-bit
benchmarks (for which we have all of the relevant data) is
shown in Figure 6. The normalized errormetrics are used for a
meaningful comparison across different bit widths. It is quite
surprising to observe that many error parameters exhibit a
close relationship. For example, ewce strongly correlates with
emae (Pearson correlation coefficient 1.0 for multipliers and

VOLUME 7, 2019 177323

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

FIGURE 6. Correlation heatmap of design (area, power, delay) and quality
parameters for the chosen benchmark circuits. The value -1 indicates a
strong negative dependency, value 1 indicates a strong positive
dependency.

0.9 for adders), emse (0.9) as well as emre (0.6 for multipli-
ers, 0.4 for adders). Similarly, there is a positive correlation
between error probability and bit-flip error (0.8 for multipli-
ers, 0.7 for adders).

Looking at the design parameters (power, area, delay) and
their correlation with error metrics, we can conclude that
ewce and eprob represent a good candidate for indicating the
quality of approximate multipliers and adders, respectively.
Both classes of circuits exhibit a high negative correlation
(around -0.7) among all design parameters and those metrics.
It means that the power consumption/delay, as well as area,
goes down if the error rate (the worst-case error for multipli-
ers) increases.

C. COMPLEXITY AND SCALABILITY OF EXACT ERROR
ANALYSIS OF APPROXIMATE CIRCUITS
The computational demand of the methods for error analysis
of approximate circuits is summarized in Table 4. The table
shows the averages calculated from all experiments. It means
that several algorithms and different reference circuits are
taken into account. Only the naïve algorithm for the mean
squared error computation is intentionally omitted. The pur-
pose of this evaluation is to assess the scalability of the
formal methods and compare the computational requirements
of each metric.

As expected, the exhaustive simulation is computationally
intensive despite its simplicity and efficiency. Compared to
the formal approaches, the number of issued instructions
needed to evaluate 16-bit adders is about five orders of
magnitude higher. On contrary, the main benefit of exhaus-
tive simulation (i.e. its independence on the analyzed prob-
lem) is visible on multipliers where it performs better than
SAT/BDDs for 8-bit and even some 12-bit instances. Due to
its limited scalability, it is infeasible to conduct the exhaustive
simulation for circuits having more than 16-bit operands.

The BDDs represent a quite powerful tool for analysis of
the approximate adders and small multipliers. The compu-
tational complexity is relatively stable independently of the
computed metric. The combinational equivalence checking
and the analysis of the average Hamming distance can be

TABLE 4. The average number of instructions required to perform the
error analysis. We report the median value calculated from all
experiments in the group. The highlighted cells mark the cases
in which more than 1% instances timed out.

solved with less effort compared to other metrics. This is
noticeable especially on 32-bit adders where the difference
in the number of instructions is in three orders of magnitude
compared to the computation of the mean absolute error. The
32-bit approximate adder and 12-bit approximate multiplier,
however, represent the largest instances that can be solved
by BDDs. For adders, the computation of the maximum
Hamming distance ended with a timeout for 5% of instances.
It is impossible, in fact, to construct a BDD of a reasonable
size for 16-bit multipliers. Given the experimental setup, all
the runs ended with a timeout in this case.

Compared to the remaining methods, SAT solver-based
methods scale best. They are capable of analyzing even
20-bit and more complex multipliers. The ewce error analy-
sis successfully finished for 81% of 12-bit, 75% of 16-bit
and 75% of 20-bit instances. The worst-case checking was
successful for 97% of 12-bit, 99.1% of 16-bit and 99.4%
of 20-bit multipliers. The combinational equivalence check-
ing (see the last column of Table 4) was successful in all
cases. The #SAT solver (see the column ‘EQ‘ in the error
analysis part of Table 4, the row ‘sat‘) performs surprisingly
well. It is applicable even to 32-bit adders, but the results
are obtained only for 39% of instances typically having the
lower error (see Figure 8 for a more detailed analysis). In the
remaining cases, the timeout occurred. As is evidently seen
in Table 4, the computational requirements of #SAT solver
are significantly higher compared to the BDDs. The number
of instructions issued by the #SAT solver is about four orders
of magnitude higher than that of the BDDs when we consider
32-bit adders.

177324 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

TABLE 5. The average CPU time given in seconds required to perform the
error analysis. We report the median value calculated from all
experiments in the group. The highlighted cells mark
the cases in which more than 1% instances timed out.

Reporting solely the number of executed instructions may
not be sufficient in general. There can be two algorithms with
the same number of instructions, yet having a completely
different execution time. It depends whether a particular code
is a memory or computationally intensive. Hence, Table 5
reports the average CPU time recorded for each group of
experiments to show how the number of instructions corre-
sponds with the time of execution.

Only a fewmilliseconds are required on average to analyze
8-bit, 12-bit and 16-bit adders using BDDs. Less than three
hundred milliseconds are required on average to analyze 32-
bit adders. Formultipliers, less than one hundredmilliseconds
are required to determine the error parameters. However,
the time grows by two orders of magnitude when increasing
the bit-width from eight to twelve bits. The SAT-solver based
worst-case analysis performs well, even for 20-bit multipli-
ers, but it is is computationally very intensive as will be
discussed in Section V-E.

D. PERFORMANCE VARIATION
It is no surprise that the execution time depends on the number
of primary inputs. In some cases, however, there is a huge
variance even across instances of the same bit width. This
suggests that the time required to perform the analysis also
depends on properties of the individual instances.

Figure 7 shows the average CPU time for instances
arranged into groups according to the worst-case error. The
worst-case error was chosen as the indicator of circuit anal-
ysis complexity because there is a high degree of correlation

FIGURE 7. The CPU time of the error analysis shown as a function of the
worst-case error of analyzed 8-bit approximate multipliers. Note that the
log-scale is employed on the X-axis.

between this metric and the number of instructions required
to perform the analysis (Pearson correlation coefficient
is 0.93 for 8-bit multipliers and 0.94 for 32-bit adders ana-
lyzed by means of Algorithm 6). Similar dependence is also
observed for the CPU time (Pearson correlation coefficient
is 0.93 for 8-bit multipliers and 0.79 for 32-bit adders). The
boxplots are calculated from data acquired during the analysis
of 8-bit multipliers. This benchmark was chosen because it
represents a non-trivial problem where we have results for all
methods and instances (i.e. no timeout occurred). Ten points
taken uniformly in the log domain were used to establish the
intervals for the worst-case error. The results for simulation
are intentionally omitted because the number of instructions
is nearly constant. The runtime depends only on the num-
ber of gates of an analyzed circuit rather than the internal
structure. The first row of Figure 7 contains data for common
equivalence checking to provide a baseline for comparison.

The experimental results show that the CPU time signif-
icantly depends on properties of the investigated circuits.
This observation is also valid for the number of instruc-
tions. In the case of multipliers, the computational com-
plexity of the analysis decreases with increasing the worst-
case error independently of the chosen formal approach.
The difference is substantial, especially for the SAT-solved
based worst-case error analysis. The approximate multipliers
exhibiting ewce in the range between 16% and 50% can

VOLUME 7, 2019 177325

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

FIGURE 8. The CPU time of the error analysis depicted as a function of
the normalized worst-case error of analyzed 32-bit approximate adders.
The percentages shown on the left side of the boxplots represent the
relative number of successfully analyzed instances included in the
boxplot and indicate that timeout occurred.

be analyzed approximately three thousand times faster than
those having a low error. A similar dependency is also observ-
able for more complex instances (i.e. 12-bit and 16-bit multi-
pliers). The BDDs exhibit relative stable performance when
applied to the worst-case error analysis.

Interestingly, exactly the opposite trend is observable in the
case of adders (see Figure 8). Here the CPU time increases
when the worst-case error increases. Determining the error
probability using BDDs can take up to ten timesmore time for
adders having a larger error compared to those having a low
error. Combinational equivalence checking and SAT-based
worst-case error analysis exhibit a relatively stable perfor-
mance (1.5 times vs 1.1 times higher number of instructions
for higher errors). We intentionally chose 32-bit instances
to illustrate how #SAT solver behaves on more complex
instances. It is evident that this method exhibits the same
behavior. In this case, the CPU time fluctuates within two
orders of magnitude depending on a particular instance. The
large variation in the range (0.001%, 0.007%] is caused by
few approximate circuits exhibiting 100% error probability.
Those instances are trivial for SAT solving and could be
analyzed in a few milliseconds. The same situation happened
also for circuits in the range (0.04%, 0.24%]. Apart from
those trivial instances, no result was obtained within the

FIGURE 9. The CPU time of the error analysis and its dependency on
reference circuit used to analyze 12-bit adders and multipliers.

given amount of time for circuits having the worst-case error
greater than 0.0067%. The explanation of this behavior is
as follows. The high worst-case error is usually connected
with a high error probability. Unfortunately, the analysis
of approximate circuits exhibiting high error probability is
nontrivial for #SAT probably because there are many input
assignments that have to be considered during the analysis
of the miter depicted in Figure 4a. The #SAT solver finished
successfully for 30%of the instances with an error probability
higher than 95%. Note that the large variation in the case of
BDD-based computation of ewce is due to the presence of
several algorithms.

The last analysis shown in Figure 9 investigates the depen-
dence between the CPU time and a reference circuit used
in the approximation miter. Three different implementations
of accurate adders and multipliers have been considered in
our experiments, particularly the Ripple Carry Adder (RCA),
Carry Save Adder (CSA) and sophisticated Carry Look
Ahead adder (CLA). The most visible difference is in the
case of combinational equivalence checking. Surprisingly,
the reference has a substantial impact on equivalence check-
ing, regardless of the used formal method. The RCA ensures
the best performance despite it has a long XOR chain which
may negatively affect the performance of formal approaches.
Considering the multipliers, we evaluated CSA-based Array

177326 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

FIGURE 10. Evaluation of the proposed error analysis algorithms on 8-bit multipliers, 12-bit multipliers, and 32-bit adders. Each column compares
the results of different approaches computing the same error metric. The percentages shown on the left side of the boxplots represent the relative
number of successfully analyzed instances included in the boxplot and indicate that timeout occurred. The number of circuit instances within a
certain wce% range is given below each range.

Multiplier (CSAM), RCA-based Array Multiplier (RCAM)
and Wallace-Tree Multiplier (WTM). The WTM performs
worst. The remaining two architectures provide quite similar
results.

E. EVALUATION OF THE AVAILABLE AND PROPOSED
ALGORITHMS
In this section, we evaluate the performance of the algo-
rithms proposed in this paper. Since the performance of
the formal methods varies depending on the parameters of
the analyzed approximate circuits and their type, we report
the results separately for adders and multipliers arranged
into groups according to their worst-case error. This form
helps us to provide meaningful insight into the real compu-
tational requirements. Six points taken uniformly in the log
domain were used to establish the intervals for the worst-case
error.

a: BIT-FLIP ERROR
The results for the worst-case Hamming distance compu-
tation are summarized in the first column of Figure 10.
Four implementations are evaluated. The first and second
implementation is based on the approximation miter with the
sorting network as proposed in Section IV-D. This miter is
then represented and analyzed using BDDs or the SAT solver.
Both implementations follow Algorithm 1; however, only
the SAT solver further exploits the satisfiable assignment.
Bitonic sorting network was used in both cases. The second
and third implementations are based on the approximation
miter consisting of a tree of adders computing the number
of active bits. The output is then analyzed using either BDD-
based or SAT-based algorithm for determining the maximum
output value (Algorithm 4).

We discuss the implementations based on BDDs first. Sur-
prisingly the BDD-based analysis based on the adder tree is
more efficient compared to the one with the sorting network.

VOLUME 7, 2019 177327

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

This result is quite surprising since our intuition was that
the miter based on the sorting network can be represented
more efficiently compared to the tree of adders. On the
other hand, it is necessary to realize that the performance of
BDDs depends on the chosen variable ordering. We chose
the ordering optimal for representing adders which could
potentially cause a problem, especially if the resulting struc-
ture is extremely different from the adder. Unfortunately,
determining the optimal ordering is a non-trivial NP hard
problem.

The SAT-solver based analysis performs better and in most
cases even substantially (see the boxplots for 12-bit multi-
pliers and 32-bit adders). It also scales better as it can be
applied to a 16-bit and more complex multipliers, where the
BDD-based implementations did not provide any result (see
Table 4). Compared to the BDDs, the SAT solvers clearly
profit from the approximation miter with a sorting network
and the analysis based on this miter (i.e. the proposed Algo-
rithm 1) represents the most powerful approach. The anal-
ysis was successful for all instances included in Figure 10.
Both BDD-based implementations ended with a timeout for
some 32-bit adders having the worst-case error in the range
(0.01%, 0.24%].

b: MEAN ABSOLUTE ERROR
The second column of Figure 10 compares the CPU time
of three methods for calculating the mean absolute error,
in particular the method available in the literature and
two alternative versions proposed in this paper. The actual
implementation follows exactly the procedure derived in
Section IV-E, in particular Eq. 18, 20 and 21. The analy-
sis is performed by means of BDDs because it relies on
SAT counting.

The experimental evaluations confirmed that Algorithm 2
implementing the procedure derived in Eq. 21 is the most
efficient approach for determining the mean absolute error. It
provides a speedup between 1 to 5.3 on average compared to
the original method. The second proposed method performs
also well, but it has slightly worse parameters. It achieves a
speedup between 1 to 2.9 on average.

The analysis was successful for all circuit instances
included in the comparison. In the worst case, 71 seconds
was required to analyze the most difficult approximate cir-
cuits. The computational complexity of Algorithm 2 is lower
compared to the bit-flip error analysis. This is noticeable
especially on 32-bit adders.

c: MEAN SQUARED ERROR
Two algorithms for determining the mean square error were
implemented. A naïve approach based on a miter with a
multiplier corresponding with Figure 5c, and the proposed
alternative method according to Algorithm 3. Note that the
implementation of the algorithm is the trickiest one since the
algorithm involves summing many large values multiplied by
a relatively high power of two. It is thus necessary to use high

precision arithmetic 2 to avoid overflows. Both methods are
evaluated and included in Figure 10.

The naïve method does not scale well. The computational
complexity increases with the increasing worst-case error.
Around 29% of instances of 32-bit approximate adders ended
with the timeout. Those instances have the wce larger than
0.0004%. The computationmostly failed during the construc-
tion of the approximation miter. This is somewhat expected
as the miter consists of a 33-bit multiplier. If the difference
between the approximate and reference circuit leads to a
complex BDD structure, the multiplier causes the exponen-
tial explosion considering the number of BDD nodes. As a
consequence of that, the naïve method ended with a timeout
in some cases.

On the other hand, the proposed method was successful
in all cases. The achieved speedup of the proposed method
is remarkable. It varies between 1.2 (8-bit multipliers and
32-bit adders with the lowest worst-case error) and 317
(32-bit adders with higher worst-case error). In the worst
case, 113 seconds was required to analyze the most difficult
approximate circuit. The computational complexity is com-
parable to the mean absolute error computation.

d: WORST-CASE ARITHMETIC ERROR
Three methods for the worst-case error analysis were imple-
mented and evaluated: Algorithm 4, its optimized variant
denoted as Algorithm 5, and Algorithm 6 based on a binary
search and WCEGT operation. The first two algorithms were
implemented as BDD-based as well as SAT solver-based
tools. The latter algorithm is not suitable for BDDs and BDDs
were not considered in this case. Regarding SAT solver-based
implementations, incremental SAT solving and learning of
some bits from the received SAT assignments is employed.
The masking is ensured via assumptions. Algorithm 6 is
implemented as follows. Firstly, CNF of the approximation
miter is created and submitted to the SAT solver. Then,
CNF corresponding with a threshold circuit generated for a
particular threshold is appended to the original CNF in each
iteration. After solving this CNF, the output of this threshold
circuit is blocked by setting a corresponding assumption and
the computation continues with the next iteration. The results
are summarized in the last column of Figure 10.

Let us discuss the complexity of error analysis of the multi-
pliers at first. Although the SAT solver-based methods scale
better and can be applied to complex multipliers where the
BDDs completely failed, the time of execution of SAT solver-
based analysis is mostly worse compared to the BDDs, espe-
cially on 8-bit and 12-bit multipliers. A reasonable speedup
is observable only for approximate circuits having a large
error. All three SAT solver-based methods behave similarly
considering the number of successfully solved instances. The
implementations based on Algorithm 5 and Algorithm 6
represent the most powerful methods. Both successfully
analyzed 99 out of 159 12-bit approximate multipliers.

2GNU Multi-Precision Arithmetic (GMP) library was used in this work.

177328 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

This is quite surprising because a completely different
approach is used in the case of Algorithm 6. Implemen-
tation based on Algorithm 4, however, provides nearly the
same results because 98 instances were successfully ana-
lyzed. Regarding the CPU time, there is no significant dif-
ference among these three implementations when applied to
the approximate multipliers. Unfortunately, the CPU time
heavily depends on the actual worst-case error. As the worst-
case error increases, the CPU time increases as well. Only
a few milliseconds are required to analyze easily solvable
instances exhibiting large error. Considering the analysis
of 12-bit approximate multipliers, more than 2,000 seconds
are needed to analyze the instances having the error in the
range (0.05%,0.37%]. No result was obtained within the
given amount of time for multipliers exhibiting an error
below 0.05%.

A completely opposite situation is observable in the case of
approximate adders. Algorithm 5 substantially outperforms
the remaining two. In addition, the SAT solver-based imple-
mentations achieve significantly better execution times com-
pared to the BDDs and offer a relative robust approach with a
stable performance. The execution time is between 4 to 25ms.
On the other hand, the BDD-based algorithms exhibit a huge
variance ranging from microseconds to more than 110 sec-
onds. Figure 10 reports the results only for 32-bit adders,
but the benefits of Algorithm 5 are observable also for 8-bit,
12-bit, and 16-bit instances. For 32-bit adders, the speedup
of the BDD-based implementation varies between 1.2 and 3.
The SAT solver-based implementation achieved the speedup
between 1.5 and 2. The experimental results clearly demon-
strate the superiority of Algorithm 5 to Algorithm 4 despite
of the fact that the difference between these two approaches
is less visible in the case of multipliers. Considering this
result, it can be concluded that it is, in general, advantageous
to use the miter providing the signed output even though
it is necessary to increase the complexity of the algorithm
(the signed output implied an extra additional operation
in Algorithm 5).

Figure 11 helps us to better understand the performance of
the SAT-solver based worst-case error analysis of multipliers.
It shows the computational requirements of the WCEGT pro-
cedure (i.e. worst-case error checking) for different thresh-
olds applied to all 324 8-bit instances. Five thresholds linearly
sampled in the log space and one additional point (T =
3333) are considered. The results are presented for 8-bit
approximate multipliers included in the benchmark dataset,
but the conclusions are also valid for other bit widths. The
8-bit instances are chosen because we have error parameters
for every multiplier and no timeout occurred. The worst-case
error checking is extremely fast (only a few milliseconds are
required) but only if the actual worst-case error (denoted as
wce) is higher than a given threshold T . If this condition
is violated, the CPU time may increase by several orders
of magnitude. Surprisingly, the difference between the worst
case and the best case CPU time increases with the decreasing
of threshold T . Determining whether the worst-case error

FIGURE 11. The computational requirements of the worst-case error
checking (i.e. the WCEGT procedure proving that ewce > T) of 8-bit
approximate multipliers. ‘Mult RCAM‘ used as a reference circuit.

FIGURE 12. CPU time needed to determine the value of some bits of ewce
for 8-bit approximate multipliers analyzed using Algorithm 4. ‘Mult RCAM‘
used as reference circuit. ewce is encoded using 16 bits denoted
d0, . . . , d15.

is greater than T = 100 represents the most difficult case.
Up to 100 seconds are required to analyse circuit instances
having a wce lower than 100. This dependence explains the
performance of Algorithm 6 in Figure 10. To determine the
worst-case error of 8-bit approximate multipliers, 16 calls of
the WCEGT procedure are required at most. The runtime
of WCEGT increases as the threshold approaches the real
wce and reaches a peak around 100. Hence, the total runtime
increases with a decreasing wce and is highest for the lowest
wce.

In spite of the fact that Algorithm 4 and 5 are based on a
different principle (compared to Algorithm 6), they behave
similarly considering the CPU time. In Figure 12 we plot-
ted the time needed to determine the value of some bits of
the wce to understand this feature. We present the results
for Algorithm 4, but the observations are valid also for its
improved version. The algorithm determines the worst-case
error bit per bit starting with the most significant bit (denoted
as bit d15). Determining the value of d15 is extremely fast
(only a few milliseconds are required). The CPU time then
increases with every next bit and determining the value of
d8 represents the most difficult case (more than 10 seconds
are required). For the next bits, i.e. d7, . . . , d0, the CPU time

VOLUME 7, 2019 177329

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

gradually decreases. As a consequence, the total runtime of
the worst-case error analysis of 8-bit multipliers is dominated
by the CPU time required to determine the value of bits d7, d8,
d9. This part represents 95% of the whole runtime on average.
Similar to Figure 11, the checking is fast only if the actual
worst-case error is higher than the threshold corresponding
with the weight of the checked bit (2i for di).

VI. CONCLUSION
It is a well-known fact that the equivalence checking of
multipliers is an extremely hard problem; however, there is
no study that investigates the complexity of determining error
metrics for approximate circuits, especially from the practical
point of view. We presented a comprehensive evaluation of
various methods across a large set of various approximate
circuits. We discussed the scalability of the methods as well
as their stability (i.e. dependence on some properties of the
analyzed circuits). This is the first study that experimentally
demonstrated that the performance of the methods heavily
depends on parameters of analyzed circuits independently
of whether we choose BDDs or SAT solvers to perform the
analysis.

We determined that the worst-case error represents an
important error parameter. The worst-case error seems to be
a good indicator of the complexity of error analysis because
the CPU time typically increases by increasing the worst-case
error. In addition, the correlation analysis revealed that many
other error parameters relevant for practice, such as the mean
absolute error or mean relative error, correlate with the worst-
case error.

Considering the analysis of approximate circuits, the exper-
imental results demonstrated that BDDs and SAT solvers are
orthogonal methods. Each technique has its own strengths
and performs well only in some tasks and for some type
of circuits. The BDDs naturally compute all assignments in
parallel and are thus suitable for average-case error analysis
(computation of emae, emse). In contrast, SAT solvers are
efficient regarding memory consumption, but only give a
single satisfiable assignment in each call. This limitation
leads to iterative approaches that should be based on a relative
low number of iterations (such as ebf , ewce, ewcre) to guarantee
reasonable scalability.

As a result of the study, we identified the best algorithms
and tools for each error metric. For small circuits having up to
16 inputs (e.g. two 8-bit operands), performance-optimized
exhaustive circuit simulation represents the method of the
first choice. The simulation can be applied even to more
complex problem instances (circuits with up to 32 inputs), but
the formal approaches such as BDDs or SAT-solvers typically
scale better. In these cases, Algorithm 1 implemented using
a SAT solver is the best option for bit-flip error analysis
(ebf). The analysis of the mean absolute error (emae) can be
performed efficiently using BDDs and the proposed Algo-
rithm 2. For mean squared error (emse), Algorithm 3 suit-
able for BDDs was designed. The worst-case error analysis
(ewce) can be done efficiently by the proposed Algorithm 5.

Depending on the structure of the analysed approximate cir-
cuits, however, a BDD or a SAT solver needs to be chosen in
this case. Finally, a variant of Algorithm 6 seems to be a good
option for the relative worst-case error analysis (ewcre).

Considering the worst-case error analysis, the SAT-based
implementations provide very good results, but many chal-
lenges remain. It is possible to analyze even instances that are
usually considered to be hard (e.g. 12-bit and larger multipli-
ers), but no results were obtained in the predefined amount
of time (3,600 seconds) for instances exhibiting a lower
error. It has been shown that the computational complexity
dramatically increases with a decreasing error, especially on
multipliers. Unfortunately, the multiplier is one of the key
arithmetic circuits that is widely used in many applications,
especially in digital signal processing and multimedia pro-
cessing. Hence, there is currently a clear need to come up
with a more powerful approach to the problem of evaluating
the quality of complex approximate digital circuits. A combi-
nation of the circuit simulator and a SAT-solver seems to be
a promising approach which helps us to further improve the
performance of the analysis.

REFERENCES
[1] S. Mittal, ‘‘A survey of techniques for approximate computing,’’ ACM

Comput. Surv., vol. 48, no. 4, pp. 62-1–62-33, Mar. 2016.
[2] Q. Xu, M. Todd, and S. K. Nam, ‘‘Approximate computing: A survey,’’

IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb. 2016.
[3] S. Reda and M. Shafique, Eds., Approximate Circuits. Cham, Switzerland:

Springer, 2019.
[4] S. Venkataramani, K. Roy, and A. Raghunathan, ‘‘Substitute-and-simplify:

A unified design paradigm for approximate and quality configurable cir-
cuits,’’ in Proc. Design, Autom. Test Eur. (DATE). San Jose, CA, USA:
EDA Consortium, 2013, pp. 1–6.

[5] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, ‘‘Abacus: A technique for
automated behavioral synthesis of approximate computing circuits,’’ in
Proc. Conf. Design, Autom. Test Eur. (DATE). San Jose, CA, USA: EDA
Consortium, 2014, pp. 1–6.

[6] L. Sekanina, Z. Vasicek, and V. Mrazek, ‘‘Automated search-based func-
tional approximation for digital circuits,’’ in Approximate Circuits. Cham,
Switzerland: Springer, Dec. 2018, pp. 175–203.

[7] C. Liu, J. Han, and F. Lombardi, ‘‘An analytical framework for evaluating
the error characteristics of approximate adders,’’ IEEE Trans. Comput.,
vol. 64, no. 5, pp. 1268–1281, May 2015.

[8] Y. Wu, Y. Li, X. Ge, Y. Gao, and W. Qian, ‘‘An efficient method for
calculating the error statistics of block-based approximate adders,’’ IEEE
Trans. Comput., vol. 68, no. 1, pp. 21–38, Jan. 2019.

[9] S. Mazahir, M. K. Ayub, O. Hasan, and M. Shafique, ‘‘Probabilistic error
analysis of approximate adders and multipliers,’’ in Approximate Circuits.
Cham, Switzerland: Springer, Dec. 2018, pp. 99–120.

[10] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, ‘‘MACACO:
Modeling and analysis of circuits for approximate computing,’’ in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2011,
pp. 667–673.

[11] D. Sengupta, J. Hu, and S. S. Sapatnekar, ‘‘Error analysis and optimiza-
tion in approximate arithmetic circuits,’’ in Approximate Circuits. Cham,
Switzerland: Springer, Dec. 2018, pp. 225–246.

[12] V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, and J. Han, ‘‘Scalable
construction of approximate multipliers with formally guaranteed worst
case error,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26,
no. 11, pp. 2572–2576, Nov. 2018.

[13] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler, ‘‘BDD
minimization for approximate computing,’’ in Proc. 1st Asia South Pacific
Design Automat. Conf. (ASP-DAC), Jan. 2016, pp. 474–479.

[14] Z. Vasicek, V. Mrazek, and L. S. Brno, ‘‘Towards low power approximate
DCT architecture for HEVC standard,’’ in Proc. Design, Autom. Test Eur.
(DATE), Mar. 2017, pp. 1576–1581.

177330 VOLUME 7, 2019

Z. Vasicek: Formal Methods for Exact Analysis of Approximate Circuits

[15] Z. Vasicek, ‘‘Relaxed equivalence checking: A new challenge in logic
synthesis,’’ in Proc. IEEE 20th Int. Symp. Design Diag. Electron. Circuits
Syst. (DDECS), Apr. 2017, pp. 1–6.

[16] M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar,
‘‘Approximating complex arithmetic circuits with formal error guarantees:
32-bit multipliers accomplished,’’ in Proc. 36th IEEE/ACM Int. Conf.
Comput. Aided Design, Nov. 2017, pp. 416–423.

[17] Y. Wu and W. Qian, ‘‘ALFANS: Multi-level approximate logic synthesis
framework by approximate node simplification,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., to be published.

[18] S. Froehlich, D. Große, and R. Drechsler, ‘‘Approximate hardware genera-
tion using symbolic computer algebra employing grobner basis,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 889–892.

[19] S. Froehlich, D. Große, and R. Drechsler, ‘‘One method-all error-metrics:
A three-stage approach for error-metric evaluation in approximate comput-
ing,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019,
pp. 284–287.

[20] P. Kulkarni, P. Gupta, and M. D. Ercegovac, ‘‘Trading accuracy for
power in a multiplier architecture,’’ J. Low Power Electron., vol. 7, no. 4,
pp. 490–501, 2011.

[21] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, ‘‘Modeling and synthe-
sis of quality-energy optimal approximate adders,’’ in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD). New York, NY, USA, 2012,
pp. 728–735.

[22] V. Mrazek and Z. Vasicek, ‘‘Automatic design of arbitrary-size approxi-
mate sorting networks with error guarantee,’’ in Proc. 26th Int. Workshop
Power Timing Modeling, Optim. Simulation, 2016, pp. 221–228.

[23] Z. Vasicek and V. Mrazek, ‘‘Trading between quality and non-functional
properties of median filter in embedded systems,’’ Genetic Program.
Evolvable Mach., vol. 18, no. 1, pp. 45–82, 2017.

[24] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler, ‘‘Precise
error determination of approximated components in sequential circuits
with model checking,’’ in Proc. 53rd ACM/EDAC/IEEE Design Autom.
Conf. (DAC), Jun. 2016, pp. 1–6.

[25] M. Traiola, A. Virazel, P. Girard, M. Barbarcschi, and A. Bosio, ‘‘Investi-
gation of mean-error metrics for testing approximate integrated circuits,’’
in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst.
(DFT), Oct. 2018, pp. 1–6.

[26] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel, ‘‘Probabilistic
error modeling for approximate adders,’’ IEEE Trans. Comput., vol. 66,
no. 3, pp. 515–530, Mar. 2017.

[27] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, ‘‘A comparative
evaluation of approximate multipliers,’’ in Proc. IEEE/ACM Int. Symp.
Nanoscale Archit. (NANOARCH), Beijing, China, Jul. 2016, pp. 191–196.

[28] D. S. Khudia and B. Zamirai, ‘‘Rumba: An online quality management
system for approximate computing,’’ in Proc. ISCA, 2015, pp. 554–566.

[29] M. Traiola, A. Savino, M. Barbareschi, S. D. Carlo, and A. Bosio,
‘‘Predicting the impact of functional approximation: From component-to
application-level,’’ in Proc. IEEE 24th Int. Symp. On-Line Test. Robust
Syst. Design (IOLTS), Jul. 2018, pp. 61–64.

[30] A. Biere and W. Kunz, ‘‘Sat and atpg: Boolean engines for formal hard-
ware verification,’’ in Proc. IEEE/ACM Int. Conf. Comput. Aided Design
(ICCAD), Nov. 2002, pp. 782–785.

[31] A. Chandrasekharan, S. Eggersglüß, D. Große, and R. Drechsler,
‘‘Approximation-aware testing for approximate circuits,’’ in Proc. 23rd
Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2018,
pp. 239–244.

[32] T.-H. Chen, A. Alaghi, and J. P. Hayes, ‘‘Behavior of stochastic circuits
under severe error conditions,’’ Inf. Technol., vol. 56, no. 4, pp. 182–191,
2014.

[33] W. T. J. Chan, A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, ‘‘Statistical
analysis and modeling for error composition in approximate computation
circuits,’’ inProc. 31st IEEE Int. Conf. Comput. Design (ICCD), Oct. 2013,
pp. 47–53.

[34] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, ‘‘Evoapprox8b:
Library of approximate adders andmultipliers for circuit design and bench-
marking of approximation methods,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), 2017, pp. 258–261.

[35] J. Liang, J. Han, and F. Lombardi, ‘‘New metrics for the reliability of
approximate and probabilistic adders,’’ IEEE Trans. Comput., vol. 62,
no. 9, pp. 1760–1771, Sep. 2013.

[36] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfia-
bility. Amsterdam, The Netherlands: IOS Press, 2009.

[37] J. Marques-Silva, ‘‘Practical applications of Boolean satisfiability,’’ in
Proc. Workshop Discrete Event Syst. (WODES). Piscataway, NJ, USA:
IEEE Press, May 2008, pp. 74–80.

[38] M. W. Krentel, ‘‘The complexity of optimization problems,’’ J. Comput.
Syst. Sci., vol. 36, no. 3, pp. 490–509, 1988.

[39] A. Petkovska, A. Mishchenko, M. Soeken, G. De Micheli, R. Brayton,
and P. Ienne, ‘‘Fast generation of lexicographic satisfiable assignments:
Enabling canonicity in sat-based applications,’’ in Proc. ACM 35th Int.
Conf. Comput.-Aided Design (ICCAD), New York, NY, USA, 2016,
pp. 4-1–4-8.

[40] C. P. Gomes, A. Sabharwal, and B. Selman, ‘‘Model counting,’’ in Hand-
book of Satisfiability, A. Biere, M. Heule, H. Van Maaren, and T. Walsh,
Eds. Amsterdam, The Netherlands: IOS Press, 2009, ch. 20, pp. 266–290.

[41] A. Qureshi and O. Hasan, ‘‘Formal probabilistic analysis of low latency
approximate adders,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 1, pp. 177–189, Jan. 2019.

[42] R. Drechsler and B. Becker, Binary Decision Diagrams: Theory and
Implementation. Springer, 2013.

[43] R. E. Bryant, ‘‘On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multipli-
cation,’’ IEEE Trans. Comput., vol. 40, no. 2, pp. 205–213, Feb. 1991.

[44] R. Ebendt, G. Fey, and R. Drechsler, Advanced BDD Optimization.
Springer, 2000.

[45] Z. Vasicek and L. Sekanina, ‘‘Evolutionary design of complex approximate
combinational circuits,’’Genetic Program. EvolvableMach., vol. 17, no. 2,
pp. 169–192, 2016.

[46] A. Nadel and V. Ryvchin, ‘‘Efficient SAT solving under assumptions,’’
in Theory and Applications of Satisfiability Testing—SAT, A. Cimatti and
R. Sebastiani, Eds. Berlin, Germany: Springer, 2012, pp. 242–255.

[47] Y. Voronenko and M. Püschel, ‘‘Multiplierless multiple constant multipli-
cation,’’ ACM Trans. Algorithms, vol. 3, no. 2, May 2007, Art. no. 11.

[48] R. Brayton and A. Mishchenko, ‘‘ABC: An academic industrial-strength
verification tool,’’ in Proc. CAV. Berlin, Germany: Springer, 2010.

[49] J. Lind-Nielsen and H. Cohen. BuDDy—A Binary Decision Diagram
Package. Accessed: Aug. 12, 2019. [Online]. Available: https://
sourceforge.net/projects/buddy/

[50] M. Thurley, ‘‘sharpSAT—Counting models with advanced component
caching and implicit BCP,’’ in Proc. 9th Int. Conf. Theory Appl. Satisfi-
ability Test. (SAT), Berlin, Germany: Springer-Verlag, 2006, pp. 424–429.

[51] D. Terpstra, H. Jagode, H. You, and J. Dongarra, ‘‘Collecting perfor-
mance data with PAPI-C,’’ in Tools for High Performance Computing,
M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds. Berlin,
Germany: Springer, 2010, pp. 157–173.

ZDENEK VASICEK is currently an Associate Pro-
fessor and a member of the Evolvable Hardware
Group, Faculty of Information Technology, Brno
University of Technology, Czech Republic. He
is interested in the optimization and synthesis of
digital circuits and applications of evolutionary
approaches and formal techniques in areas related
to this problem. He has (co) authored over 50 arti-
cles on (non) evolutionary design and optimization
of common and approximate digital circuits at

renowned international conferences, such as ICCAD, DATE, DAC, GECCO,
and EuroGP and in international journals, such as the IEEE VLSI, the IEEE
TEC, and GPEM. His research interests include logic synthesis, evolvable
hardware, genetic programming, and approximate computing.

VOLUME 7, 2019 177331

	INTRODUCTION
	GOALS AND CONTRIBUTIONS OF THIS WORK
	PAPER ORGANIZATION

	RELATED WORK
	EVALUATING FUNCTIONALITY OF APPROXIMATE CIRCUITS
	EXACT ERROR ANALYSIS OF APPROXIMATE CIRCUITS

	PRELIMINARIES
	NOTATIONS AND BASIC DEFINITIONS
	ERROR MEASURES
	GENERAL-PURPOSE ERROR METRICS
	ARITHMETIC ERROR METRICS
	NORMALIZED ERROR METRICS AND ERROR DISTRIBUTION
	BOOLEAN SATISFIABILITY AND ITS RELATION TO THE ERROR ANALYSIS
	BOOLEAN SATISFIABILITY
	LEXICOGRAPHIC BOOLEAN SATISFIABILITY
	MODEL COUNTING

	ERROR METRICS COMPUTATION
	METHODS FOR COMPUTATION OF ERROR METRICS
	EXHAUSTIVE SIMULATION
	BDDS, SAT AND #SAT SOLVERS

	ERROR PROBABILITY
	AVERAGE HAMMING DISTANCE
	WORST-CASE HAMMING DISTANCE
	MEAN ABSOLUTE ERROR
	THE PROPOSED ALGORITHM

	MEAN SQUARED ERROR
	WORST-CASE ABSOLUTE ERROR
	WORST-CASE ERROR CHECKING
	WORST-CASE ERROR COMPUTATION

	WORST-CASE RELATIVE ERROR

	EXPERIMENTAL EVALUATION
	BENCHMARKING METHODOLOGY
	BENCHMARKS
	COMPLEXITY AND SCALABILITY OF EXACT ERROR ANALYSIS OF APPROXIMATE CIRCUITS
	PERFORMANCE VARIATION
	EVALUATION OF THE AVAILABLE AND PROPOSED ALGORITHMS

	CONCLUSION
	REFERENCES
	Biographies
	ZDENEK VASICEK

