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1 INTRODUCTION
Biomedical workflow management systems enable clinicians to
use grid, cloud and high performance computing (HPC) services
easily. These systems describe complex problems, such as treatment
planning, screening, and diagnosis, using workflows. Workflows
can be seen as directed weighted graphs providing a formal way
to define and automate multi-step computational procedures [5].
The graph nodes present individual tasks that may differ in their
nature, performance and computational demands. They also encap-
sulate lower level details about the task specific parameters. Since
HPC environments are highly dynamic and heterogeneous, effi-
cient manual task execution, tuning to the specific computational
machine, monitoring and dealing with various types of failures
is very tedious and time consuming. Therefore, achieved cluster
throughput may be very limited. The presented framework, called
k-Dispatch, is trying to respond to this problem. k-Dispatch mainly
focuses on computational problems related to biomedical environ-
ment and uses only predefined workflows. Although the workflow
structures are predefined, they have a level of adaptivity based on
the provided input data. The end users (clinicians) only submit
input data and workflow specific parameters. To be compliant with
medical security policies, only certified executables for given HW
can be used.

Since the task run configuration strongly affects the final tasks
mapping on the computational resources, cluster throughput and
computational cost, the execution planning is of the highest priority.
In order to plan the workflow execution, required code types are
hard-coded in the structure of each supported workflow. There may
be available several different binaries for each code type accessible
only on some HPCs, selected queues and hardware architectures
which they have been tuned to. Moreover, their cost factors may
vary, which influences the final computational cost. The goals of
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workflow execution planning are to (1) satisfy the time-constrained
result delivery requirements, and (2) minimize the computational
cost.

Other similar tools like Pegasus [1], Globus [2] or Kepler [4]
offer automated execution of scientific workflows on computa-
tional resources in a more general way. These tools focus on well-
experienced users who provide workflows with data, binaries and
run configurations. Contrary, k-Dispatch focuses on routine exe-
cution of predefined workflows by inexperienced users who want
to reduce the computational cost and execution time. k-Dispatch
achieves this by tuning the amount of computational resources
assigned to individual tasks in the workflow. Since the scaling of in-
dividual tasks is never perfect, k-Dispatchmay find such a workflow
configuration even an experienced user would miss.

2 APPLICATION
k-Dispatch is being developed as a module of the k-Plan system.
k-Plan performs a model-based treatment planning for ultrasound
(US) therapy such as tissue ablation, neurostimulation and targeted
drug delivery. The target position and US transducer parameters
are defined in the treatment planning module via a medical GUI
using patient-specific CT/MR images and therapeutic target. The
predicted acoustic and thermal output is calculated using remote
HPC resources. The task execution and data transfers are managed
by the proposed dispatch server module. The successful treatment
plan can eventually be exported to an ultrasound therapy device
for patient delivery, see Fig. 1.
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Figure 1: Architecture of the k-Plan system. k-Dispatch di-
rectly corresponds with the dispatch server module.
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3 WORKFLOW EXECUTION PLANNING
Currently, k-Dispatch only allows a static task planning similar
to many related tools. For each task in the workflow, a default bi-
nary for a specific code type and a default run configuration are
selected. This approach enables users to run their workflows with-
out any advanced knowledge of the current HPC service, however,
the tasks are likely not to be executed efficiently and may spend
a long time in queues waiting for computational resources. The
solution is to implement an adaptive execution planning and deci-
sion making process that selects the best run configuration for each
task based on collected historical performance data and current
cluster utilization. The first attempt is to implement a one-pass
decision making process where the run configuration is optimized
for each task independently. However, a multi-pass optimization
process may, in the future, better optimize the run configurations
for the whole workflow. Following constraints shall be taken into
the consideration:

• Execution planning is time-constrained since the HPC envi-
ronment is highly dynamic and changes very quickly.

• The workflow completion must not exceed a given time
constraint. Thus, the amount of tasks waiting in queues due
to unsuitable run configurations shall be limited.

Algorithm 1 describes the execution planning algorithm and its
presumptions.

Algorithm 1: Adaptive execution planning algorithm

Presumptions :
1 Consider a set of allocations A+ ⊆ A the user can use.
2 All possible binary executables for a ∈ A+ are defined as

D ∈ (B1,B2, . . . ,Bn ), where n is the number of code types
within the workflow. Bi = {b1,b2, . . . ,bm } is a set of
available binaries for a given code type. Bi may be an
empty set.

3 p is a price function returning the aggregated computational
cost of the workflow. p : G ×C × D → R+.

4 t is a time function returning the aggregated execution time
of the workflow. t : G ×C × D → R+.

5 Workflow evaluation is defined as R+ × R+ → R+ and may
be calculated using the formula f = α · p + (1 − α) · t
where α is a selectable ratio prioritizing the minimal
computational cost or the execution time.

6 Best evaluated workflow is given by argmin(c ∈C,d ∈D) f .

Algorithm :
1 Create a workflow G = (V ,E) from the workflow template

and input data. V is a set of tasks and E ⊆ V ×V is a set of
task dependencies.

2 Select candidate allocations
C = {c ∈ A+ | c .status == active ∧ c .hours_le f t > 0.0}

3 Generate and evaluate workflows for all combinations of
candidate allocations C and binary executables D.

4 IMPLEMENTATION
k-Dispatch is a modular framework developed in Python. As shown
in Fig. 2, k-Dispatch consists of the dispatch database, web server

and dispatch core. The dispatch database holds data about users,
executed workflows, computational resources, allocations, available
binaries, etc. It also maintains performance data for various code
types important for the adaptive execution planning process.

The web server arranges a secured http based communication
with user applications. The dispatch core is the key component
implementing the whole logic. It provides data transfers, execution
planning, fault tolerance, monitoring and logging. Both, the web
server and the dispatch database, may stand alone. Therefore, an
outage of the dispatcher core does not limit users in uploading new
jobs or downloading results.

Figure 2: k-Dispatch architecture. k-Dispatch consists of the
web server, dispatch database, and dispatch core composed
of the daemon, monitor, and dispatch and transfer modules.
The main features of the modules are also shown.

5 CONCLUSIONS
k-Dispatch is a workflow manager providing automated execution,
planning and monitoring of biomedical workflows. It completely
screens out the users from the complexity of nowadays HPC sys-
tems. The presented version of k-Dispatch enables users to easily
execute predefined workflows on various available HPC facilities
by only providing the medical input data. k-Dispatch arranges for
the rest, including the selection of the most suitable HPC facility, ap-
propriate binaries, execution configuration considering the actual
cluster load, transferring the input data and final results between
the user and the HPC facility, and monitoring the execution, task
dependencies and error checking.

6 FUTUREWORK
Next steps in the development are to (1) collect performance data
for various code types, (2) improve the presented logic to select
run configurations, (3) study jobs scheduling simulators, (4) further
evaluate the implemented logic and selected run configuration on
both, simple and real-world workflows, and finally (5) execute tested
workflows in a real HPC environment.

Since collected performance data is sparse and incomplete the
nearest suitable record is selected and used for the execution plan-
ning. In the future, interpolation techniques and machine learning
methods will be used on performance data to better set the execu-
tion configuration.

Due to the cost of resources, varying background load and repro-
ducibiltity, the experimental evaluation is difficult to be performed
on production clusters. The solution may be evaluation using a clus-
ter simulator [3].
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