
ar
X

iv
:1

80
7.

08
48

7v
2

 [
cs

.L
O

]
 2

7
Ju

l 2
01

8

Simulation Algorithms for Symbolic Automata

(Technical Report)

Lukáš Holík1, Ondřej Lengál1, Juraj Síč1,2,
Margus Veanes3, and Tomáš Vojnar1

1 FIT, Brno University of Technology, IT4Innovations Centre of Excellence,
Czech Republic

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic
3 Microsoft Research, Redmond, USA

Abstract. We investigate means of efficient computation of the simula-
tion relation over symbolic finite automata (SFAs), i.e., finite automata
with transitions labeled by predicates over alphabet symbols. In one ap-
proach, we build on the algorithm by Ilie, Navaro, and Yu proposed
originally for classical finite automata, modifying it using the so-called
mintermisation of the transition predicates. This solution, however, gen-
erates all Boolean combinations of the predicates, which easily causes an
exponential blowup in the number of transitions. Therefore, we propose
two more advanced solutions. The first one still applies mintermisation
but in a local way, mitigating the size of the exponential blowup. The
other one focuses on a novel symbolic way of dealing with transitions,
for which we need to sacrifice the counting technique of the original al-
gorithm (counting is used to decrease the dependency of the running
time on the number of transitions from quadratic to linear). We perform
a thorough experimental evaluation of all the algorithms, together with
several further alternatives, showing that all of them have their merits in
practice, but with the clear indication that in most of the cases, efficient
treatment of symbolic transitions is more beneficial than counting.

1 Introduction

We investigate algorithms for computing simulation relations on states of sym-
bolic finite automata. Symbolic finite automata (SFAs) [1,2] extend the classical
(nondeterministic) finite automata (NFAs) by allowing one to annotate a transi-
tion with a predicate over a possibly infinite alphabet. Such symbolic transitions
then represent a set of all (possibly infinitely many) concrete transitions over all
the individual symbols that satisfy the predicate. SFAs offer a practical solution
for automata-based techniques whenever the alphabet is prohibitively large to be
processed with a standard NFA, for instance, when processing Unicode-encoded
text (e.g., within various security-related analyses) or in automata-based deci-
sion procedures for logics such as MSO or WS1S [3,4]. Applications of SFAs
over arithmetic alphabets and formulas arise also when dealing with symbolic
transducers in the context of various sanitizer and encoder analyses [4].

http://arxiv.org/abs/1807.08487v2

A simulation relation on an automaton underapproximates the inclusion
of languages of individual states [20]. This makes it useful for reducing non-
deterministic automata and in testing inclusion and equivalence of their lan-
guages [20,5,6]. Using simulation for these purposes is often the best compromise
between two other alternatives: (i) the cheap but strict bisimulation and (ii) the
liberal but expensive language inclusion.

The obvious solution to the problem of computing simulation over an SFA
is to use the technique of mintermisation: the input SFA is transformed into
a form in which predicates on transitions partition the alphabet. Predicates on
transitions can then be treated as ordinary alphabet symbols and most of the
existing algorithms for NFAs can be used out of the box, including a number of
algorithms for computing simulations. We, in particular, consider mintermisation
mainly together with the algorithm by Ilie, Navaro, and Yu from [7] (called INY

in the following), and, in the experiments, also with the algorithm by Ranzato
and Tapparo (called also RT) [19]. A fundamental problem is that mintermisa-
tion can increase the number of transitions exponentially due to generating all
Boolean combinations of the original transition predicates. Moreover, this prob-
lem is not only theoretical, but causes a significant blowup in practice too, as
witnessed in the experiments presented in this paper.

We therefore design algorithms that do not need mintermisation. We take
as our starting point the algorithm INY, which has the best available time
complexity O

(
nm

)
in terms of the number of states n and transitions m of

the input NFA. We propose two generalisations of this algorithm. The first one
(called LocalMin) reflects closely the ideas that INY uses to achieve the low
complexity. Instead of applying INY on a globally mintermised SFA, it, how-
ever, requires only a locally mintermised form: for every state, the predicates
on its outgoing transitions partition the alphabet. Local mintermisation is thus
exponential only to the maximal out-degree of a state.

Our second algorithm (called NoCount) is fundamentally different from
LocalMin because it trades off the upfront mintermisation cost against working
with predicates in the algorithm, and therefore has a different worst case com-
putational complexity wrt the number of transitions. We show experimentally
that this trade-off pays off. To facilitate this trade-off, we had to drop a count-
ing technique that INY uses to improve its time complexity from O

(
n2m

)
to

O
(
nm

)
and that replaces repeated tests for existence of transitions with certain

properties by maintaining their number in a dedicated counter and testing it
for zero. Dropping the counter-based approach (which depends on at least local
mintermisation) in turn allowed an additional optimisation based on aggregat-
ing a batch of certain expensive operations (satisfiability checking) on symbolic
transitions into one. Overall, this improves the efficiency and ultimately reduces
a worst-case 2m cost, which is typically independent of the Boolean algebra, to
the cost of inlining the Boolean algebra operations, which may be polynomial or
even (sub)linear in m.

In our experiments, although each of the considered algorithms wins in some
cases, our new algorithms performed overall significantly better than INY with

2

global mintermisation. NoCount performed the best overall, which suggests
that avoiding mintermisation and aggregating satisfiability tests over transi-
tion labels is practically more advantageous than using the counting technique
of INY. We have also compared our algorithms with a variant [8] of the RT algo-
rithm, one of the fastest algorithms for computing simulation, run on the globally
mintermised automata (we denote the combination as GlobRT). The main im-
provement of RT over INY is its use of partition-relation pairs, which allows
one to aggregate operations with blocks of the so-far simulation indistinguishable
states. Despite this powerful optimisation and the fine-tuned implementation of
RT in the Vata library [9], NoCount has a better performance than GlobRT

on automata with high diversity of transition predicates (where mintermisation
significantly increases the number of transitions).

Related work. Simulation algorithms for NFAs might be divided between simple
and partition-based. Among the simple algorithms, the algorithm by Henzinger,
Henzinger, and Köpke [10] (called HHK) is the first algorithm that achieved the
time complexity O

(
nm

)
on Kripke structures. The later algorithm INY [7] is

a small modification of HHK and works on finite automata in a time at worst
O
(
nm

)
. The automata are supposed to be complete (every state has an outgoing

transition for every alphabet symbol). INY can be adapted for non-complete
automata by adding an initialisation step which costs O

(
ℓn2

)
time where ℓ is

the size of the alphabet, resulting in O
(
nm+ ℓn2

)
overall complexity (cf. §3.1).

The first partition-based algorithm was RT, proposed in [19]. The main in-
novation of RT is that the overapproximation of the simulation relation is rep-
resented by a so-called partition-relation pair. In a partition-relation pair, each
class of the partition of the set of states represents states that are simulation-
equivalent in the current approximation of the simulation, and the relation on
the partition denotes the simulation-bigger/smaller classes. Working with states
grouped into blocks is faster than working with individual states, and in the
case of the most recent partition-based algorithms for Kripke structures [11], it
allows to derive the time complexity O

(
n′m

)
where n′ is the number of classes of

the simulation equivalence (the partition-based algorithms are also significantly
faster in practice, although their complexity in terms of m and n is still O

(
nm

)
).

See e.g. [11] for a more complete overview of algorithms for computing simulation
over NFAs and Kripke structures.

Our choice of INY over HHK among the simple algorithms is justified by
a smaller dependence of the data structures of INY on the alphabet size. The
main reason for basing our algorithms on one of the simple algorithms is their rel-
ative simplicity. Partition-based algorithms are intricate as well as the proofs of
their small asymptotic complexity. Moreover, they compute predecessors of dy-
namically refined blocks of states via individual alphabet symbols, which seems
to be a problematic step to efficiently generalise for symbolic SFA transitions.
Having said that, it remains true that the technique of representing preorders
through partition-relation pairs is from the high-level perspective orthogonal to
the techniques we have developed to generalise INY. Combining both types of
optimisations would be a logical continuation of this work. It is, however, ques-

3

tionable if generalising already very complex partition-based algorithms, such
as [11,19], is the best way to approach computing simulations over SFAs. Most
of the intricacy of the partition-based algorithms aims at combining the count-
ing technique with the partition-relation pairs. Our experimental results suggest,
however, that rather than using the counting technique, it is more important to
optimise the treatment of symbolic transitions and to avoid mintermisation.

Our work complements other works on generalising classical automata algo-
rithms to SFAs, mainly the deterministic minimisation [12] and computing of
bisimulation [13].

2 Preliminaries

Throughout the paper, we use the following notation: If R ⊆ A1× · · ·×An is an
n-ary relation for n ≥ 2, then R(x1, . . . , xn−1)

def= {y ∈ An | R(x1, . . . , xn−1, y)}
for any x1 ∈ A1, . . . , xn−1 ∈ An−1. Let R∁ def= (A1 × . . .×An) \R.

Effective Boolean algebra. An effective Boolean algebra is defined as a tuple
A = (D,P, J·K,∨,∧,¬) where P is a set of predicates closed under predicate
transformers ∨,∧ : P× P → P and ¬ : P → P. A first order interpretation (de-
notation) J·K : P → 2D assigns to every predicate of P a subset of the domain D

such that, for all ϕ, ψ ∈ P, it holds that Jϕ ∨ ψK = JϕK∪JψK, Jϕ ∧ ψK = JϕK∩JψK,
and J¬ϕK = D\JϕK. For ϕ ∈ P, we write IsSat(ϕ) when JϕK 6= ∅ and say that ϕ is
satisfiable. The predicate IsSat and the predicate transformers ∧, ∨, and ¬ must
be effective (computable). We assume that P contains predicates ⊤ and ⊥ with
J⊤K = D and J⊥K = ∅. Let Φ be a subset of P. If the denotations of any two dis-
tinct predicates in Φ are disjoint, then Φ is called a partition (of the set

⋃

ϕ∈ΦJϕK).
The set Minterms(Φ) of minterms of a finite set Φ of predicates is defined as the
set of all satisfiable predicates of {

∧

ϕ∈Φ′ ϕ ∧
∧

ϕ∈Φ\Φ′ ¬ϕ | Φ′ ⊆ Φ}. Notice that

every predicate of Φ is equivalent to a disjunction of minterms in Minterms(Φ).
Below, we assume that it is possible to measure the size of the predicates

of the effective Boolean algebra A that we work with. We denote by Csat(x, y)
the worst-case complexity of constructing a predicate obtained by applying x
operations of A on predicates of the size at most y and checking its satisfiability.

Symbolic finite automata. We define a symbolic finite automaton (SFA) as a tuple
M = (Q,A, ∆, I, F) where Q is a finite set of states, A = (D,P, J·K,∨,∧,¬)
is an effective Boolean algebra, ∆ ⊆ Q× P×Q is a finite transition relation,
I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states. An element
(q, ψ, p) of ∆ is called a (symbolic) transition and denoted by q−{ψ}→p. We write
Jq−{ψ}→pK to denote the set {q−{a}→p | a ∈ JψK} of concrete transitions represented
by q−{ψ}→p, and we let J∆K def=

⋃

q−{ψ}→p∈∆Jq−{ψ}→pK. For q ∈ Q and a ∈ D let

∆(q, a) def= {p ∈ Q | q−{a}→p}.
In the following, it is assumed that predicates of all transitions of an SFA

are satisfiable unless stated otherwise. A sequence ρ = q0a1q1a2 · · · anqn with
qi−1−{ai}→qi ∈ J∆K for every 1 ≤ i ≤ n is a run of M over the word a1 · · · an. The

4

run ρ is accepting if q0 ∈ I and qn ∈ F , and a word is accepted by M if it has an
accepting run. The language L(M) of M is the set of all words accepted by M .

An SFA M is complete iff, for all q ∈ Q and a ∈ D, there is p ∈ Q with
p−{a}→q ∈ J∆K. An SFA can be completed in a straightforward way: from every
state q, we add a transition from q labelled with ¬

∨
{ϕ | ∃p ∈ Q : q−{ϕ}→p ∈ ∆ }

to a new non-accepting sink state, if the disjunction is satisfiable.
An SFA M is globally mintermised if the set P∆

def= {ϕ ∈ P | ∃p, q : p−{ϕ}→q ∈
∆} of the predicates appearing on its transitions is a partition. Every SFA can
be made globally mintermised by replacing each p−{ϕ}→q ∈ ∆ by the set of tran-
sitions {p−{ω}→q | ω ∈ Minterms(P∆)∧ IsSat(ω∧ϕ)} (see e.g. [12] for an efficient
algorithm), where IsSat(ω ∧ ϕ) is an implementation of the test JωK ⊆ JϕK, be-
cause if ω is a minterm of P∆ and ϕ ∈ P∆ then JωK ∩ JϕK 6= ∅ implies that
JωK ⊆ JϕK. Since for a set of predicates Φ, the size of Minterms(Φ) is at worst
2|Φ|, global mintermisation is exponential in the number of transitions.

A classical (nondeterministic) finite automaton (NFA) N = (Q,Σ,∆, I, F)
over a finite alphabet Σ can be seen as a special case of an SFA where ∆ contains
solely transitions of the form q−{a}→r s.t. a ∈ Σ and JaK = {a} for all a ∈ Σ. Be-
low, we will sometimes interpret an SFAM = (Q,A, ∆, I, F) as its syntactic NFA
N = (Q,P∆, ∆, I, F) in which the predicates are treated as syntactic objects.

Simulation. Let M = (Q,A, ∆, I, F) be an SFA. A relation S on Q is a simula-
tion on M if whenever (p, r) ∈ S, then the following two conditions hold: (C1) if
p ∈ F , then r ∈ F , and (C2) for all a ∈ D and p′ ∈ Q such that p−{a}→p′ ∈ J∆K,
there is r′ ∈ Q such that r−{a}→r′ ∈ J∆K and (p′, r′) ∈ S. There exists a unique
maximal simulation on M , which is reflexive and transitive. We call it the sim-
ulation (preorder) on M and denote it by �M (or � when M is clear from the
context). Computing � on a given SFA is the subject of this paper. A simulation
that is symmetric is called a bisimulation, and the bisimulation equivalence is
the (unique) largest bisimulation, which is always an equivalence relation.

3 Computing Simulation over SFAs

In this section, we present our new algorithms for computing the simulation pre-
order over SFAs. We start by recalling an algorithm for computing the simulation
preorder on an NFA of Ilie, Navarro, and Yu from [7] (called INY), which serves
as the basis for our work. Then, we introduce three modifications of INY for
SFAs: (i) GlobINY, (ii) LocalMin, and (iii) NoCount. GlobINY is merely
an application of the mintermisation technique: first globally mintermise the
SFA and then use INY to compute the NFA simulation preorder over the re-
sult. The main contribution of our paper lies in the other two algorithms, which
are subtler modifications of INY that avoid global mintermisation by reasoning
about the semantics of transition predicates of SFAs.

Before turning to the different algorithms, we start by explaining how �M
can be computed by an abstract fixpoint procedure and provide the intuition
behind how such a procedure can be lifted to the symbolic setting.

5

Abstract procedure for computing �M . We start by presenting an abstract fixpoint
procedure for computing the simulation �M on an SFA M = (Q,A, ∆, I, F).
We formulate it using the notion of minimal nonsimulation �M (which is a dual
concept to the maximal simulation �M introduced before), defined as the least
subset 6� ⊆ Q×Q s.t. for all s, t ∈ Q, it holds that

s 6� t⇔ (s ∈ F ∧ t 6∈ F) ∨

∃i ∈ Q. ∃a ∈ D.(s−{a}→ i ∧ ∀j ∈ Q.(t−{a}→ j ⇒ i 6� j))
︸ ︷︷ ︸

(1*)

. (1)

Informally, s cannot be simulated by t iff (line 1) s is accepting and t is not,
or (line 2) s can continue over some symbol a into i, while t cannot simu-
late this move by any of its successors j. It is easy to see that �M = �∁

M .
The algorithms for computing simulation over NFAs are efficient implementa-
tions of such a fixpoint procedure using counter-based implementations for eval-
uating (1*). Namely, for every symbol a and a pair of states t and i, it keeps
count of those states j that could possibly contradict the universally quantified
property. The count dropping to zero means that the property holds universally.

Symbolic abstract procedure for computing �M . When the domain D is very
large or infinite, then evaluating (1*) directly is infeasible. If Minterms(P∆) is
exponentially larger than the set P∆, then evaluating (1*) with a ranging over
Minterms(P∆) may also be infeasible. Instead, we want to utilize the operations
of the algebra A without explicit reference to elements in D and without con-
structing Minterms(P∆). The key insight is that condition (1*) is equivalent to

IsSat(ϕsi ∧ ¬Γ (t,�∁(i))) (2)

where, for t, s, i ∈ Q and J ⊆ Q, we define ϕsi
def=

∨

(s,ψ,i)∈∆ ψ and Γ (t, J) def=
∨

j∈J ϕtj , i.e., Γ (t,�∁(i)) is a disjunction of predicates on all transitions leaving t
and entering a state that simulates i. Using (2) to compute (1*) in the abstract
procedure thus eliminates the explicit quantification over D and avoids compu-
tation of Minterms(P∆). The equivalence between (1*) and (2) holds because,
for all a ∈ D and R ⊆ Q×Q, we have

a ∈ J¬Γ (t, R∁(i))K ⇔ ¬∃j(t−{a}→ j ∧ (i, j) ∈ R∁) ⇔ ∀j(t−{a}→ j ⇒ (i, j) ∈ R).

The fixpoint computation based on (2) is used in our algorithm NoCount, which
does not require mintermisation. Its disadvantage is that it is not compatible
with the counting technique. Our algorithm LocalMin is then a compromise
between mintermisation and NoCount that retains the counting technique for
the price of using a cheaper, local variant of mintermisation.

3.1 Computing Simulation over NFAs (INY)

In Algorithm 1, we give a slightly modified version of the algorithm INY from [7]
for computing the simulation preorder over an NFA N = (Q,Σ,∆, I, F). The

6

Algorithm 1: INY

Input: An NFA N = (Q,Σ,∆, I, F)
Output: The simulation preorder �N

1 for p, q ∈ Q, a ∈ Σ do Na(q, p) := |∆(q, a)| ;
2 Sim := Q×Q;
3 NotSim := F × (Q \ F) ∪ {(q, r) | ∃a ∈ Σ : ∆(q, a) 6= ∅ ∧∆(r, a) = ∅};
4 while NotSim 6= ∅ do

5 remove some (i, j) from NotSim and Sim;
6 for t−{a}→j ∈ ∆ do

7 Na(t, i) := Na(t, i)− 1;
8 if Na(t, i) = 0 then // ta1i = ∅
9 for s−{a}→i ∈ ∆ s.t. (s, t) ∈ Sim do

10 NotSim := NotSim ∪ {(s, t)};
11 return Sim;

algorithm refines an overapproximation Sim of the simulation preorder until it
satisfies the definition of a simulation. The set NotSim is used to store pairs of
states (i, j) that were found to contradict the definition of the simulation pre-
order. NotSim is initialised to contain (a) pairs that contradict condition C1 and
(b) pairs that cannot satisfy condition C2 regardless of the rest of the relation, as
they relate states with incompatible outgoing symbols. All pairs (i, j) in NotSim

are subsequently processed by removing (i, j) from Sim and propagating the
change of Sim according to condition C2: for all transitions t−{a}→j ∈ ∆, it is
checked whether j was the last a-successor of t that could be simulation-greater
than i (hence there are no more such transitions after removing (i, j) from Sim).
If this is the case, then t cannot simulate any a-predecessor s of i, and so all
such pairs (s, t) ∈ Sim are added to NotSim. In order to have the previous test
efficient (a crucial step for the time complexity of the algorithm), the algorithm
uses a three-dimensional array of counters Na(t, i), whose invariant at line 5 is
Na(t, i) = |ta1i| where ta1i is the set ∆(t, a) ∩ Sim(i) of successors of t over a
that simulate i in the current simulation approximation Sim. In order to test
ta1i = ∅—i.e. the second conjunct of (1*)—, it is enough to test if Na(t, i) = 0.

The lemma below shows the time complexity of INY in terms of n = |Q|,
m = |∆|, and ℓ = |Σ|. The original paper [7] proves the complexity O(nm)
for complete automata, in which case m ≥ ℓn, so the factor ℓn2 is subsumed
by nm. Since completion of NFAs can be expensive, the initialization step on
line 3 of our algorithm is modified (similarly as in [14]) to start with considering
states with different sets of symbols appearing on their outgoing transitions as
simulation-different; the cost of this step is subsumed by the factor ℓn2 (see
Appendix A for the proof of our formulation of the algorithm).

Lemma 1. INY computes �N in time O
(
nm+ ℓn2

)
.

3.2 Global Mintermisation-based Algorithm for SFAs (GlobINY)

The algorithm GlobINY (Algorithm 2) is the initial solution for the problem of
computing the simulation preorder over SFAs. It first globally mintermises the

7

Algorithm 2: GlobINY

Input: An SFA M = (Q,A, ∆, I, F)
Output: The simulation preorder �M

1 ∆G := globally mintermised ∆;
2 return INY((Q,P∆G ,∆G, I, F));

input automaton M = (Q,A, ∆, I, F), then interprets the result as an NFA over
the alphabet of the minterms, and runs INY on the NFA. The following lemma
(together with Lemma 1) implies the correctness of this approach.

Lemma 2. Let N = (Q,P∆, ∆, I, F) be the syntactic NFA of a globally minter-
mised SFA M = (Q,A, ∆, I, F). Then �M = �N .

The lemma below shows the time complexity of GlobINY in terms of n =
|Q|, m = |∆|, and the size k of the largest predicate used in ∆.

Lemma 3. GlobINY computes �M in time O
(
nm2m + Csat(m, k)2

m
)
.

Intuitively, the complexity follows from the fact each transition of ∆ can be
replaced by at most 2m transitions in∆G since there can be at most 2m minterms
in Minterms(P∆). Nevertheless, 2m minterms will always be generated (some of
them unsatisfiable, though), each of them generated from m predicates of size
at most k. More details are available in Appendix B.

3.3 Local Mintermisation-based Algorithm for SFAs (LocalMin)

Our next algorithm, called LocalMin (Algorithm 3), represents an attempt of
running INY on the original SFA without the global mintermisation used above.
The main challenge in LocalMin is how to symbolically represent the counters
Na(q, r)—representing them explicitly would contradict the idea of symbolic au-
tomata and would be impossible if the domain D were infinite. We will therefore
use counters Nψ(q, r) indexed with labels ψ of outgoing transitions of q to repre-
sent all counters Na(q, r), with a ∈ JψK. A difficulty here is that if the automaton
is not globally mintermised, then for some q−{ϕ}→p and a, b ∈ JϕK, the sizes of
qa1r and qb1r may differ and hence cannot be represented by a single counter.4

For example, if the only outgoing transition of q other than q−{ϕ}→p is q−{ψ}→r
with (p, r) ∈ Sim , JϕK = {a, b}, and JψK = {b}, then |qa1r| = 1 while |qb1r| = 2.
To avoid this problem, we introduce the so-called local mintermised form, in
which only labels on outgoing transitions of every state must form a partition.

Formally, we say that an SFAM = (Q,A, ∆, I, F) is locally mintermised if for
every state p ∈ Q, the set P∆,p

def= {ϕ ∈ P | ∃q : p−{ϕ}→q ∈ ∆} of the predicates
used on the transitions starting from p is a partition. A locally mintermised
form is obtained by replacing every transition p−{ϕ}→q by the set of transitions
{p−{ω}→q | ω ∈ Minterms(P∆,p) ∧ IsSat(ω ∧ϕ)}. Local mintermisation can hence

4 When describing an algorithm that works over an SFA, we use the notation qa1r to
represent the set J∆K(q, a)∩ Sim(r), i.e., it refers to the concrete transitions of J∆K.

8

Algorithm 3: LocalMin

Input: A complete SFA M = (Q,A,∆, I, F)
Output: The simulation preorder �M

1 ∆L := locally mintermised form of ∆;
2 for p, q ∈ Q, q−{ψ}→t ∈ ∆L do

3 Nψ(q, p) := |∆L(q, ψ)| ;
4 Sim := Q×Q; NotSim := F × (Q \ F)
5 while NotSim 6= ∅ do

6 remove some (i, j) from NotSim and Sim;
7 for t−{ψtj}→j ∈ ∆L do

8 Nψtj (t, i) := Nψtj (t, i)− 1;
9 if Nψtj (t, i) = 0 then // tψtj1i = ∅

10 for s−{ϕsi}→i ∈ ∆ s.t. (s, t) ∈ Sim do

11 if IsSat(ψtj ∧ ϕsi) then

12 NotSim := NotSim ∪ {(s, t)};
13 return Sim;

be considerably cheaper than global mintermisation as it is only exponential to
the maximum out-degree of a state (instead of the number of transitions of the
whole SFA). The key property of a locally mintermised SFA ML is the following:
for any transition q−{ϕ}→p of ML and a state r ∈ Q, and for any value of Sim ,
it holds that |qa1r| is the same for all a ∈ JϕK. This means that the set of counters
{Na(q, r) | a ∈ JϕK} for all symbols in the semantics of ϕ can be represented by
a single counter Nϕ(q, r).

The use of only locally mintermised transitions also necessitates a modifi-
cation of the for loop on line 6 of INY. In particular, the test on line 9 of
INY, which determines the states s that cannot simulate t over the symbol a,
only checks syntactic equivalence of the symbols. This could lead to incorrect
results because (syntactically) different local minterms of different source states
t and s can still have overlapping semantics. It can, in particular, happen that if
a counter Nψtj (t, i), for some predicate ψtj , reaches zero on line 9 of LocalMin,
there is a transition from state s to i over a predicate ϕsi different from ψtj but
with some symbol a ∈ JϕsiK∩ JψtjK. Because of a, the state t cannot simulate s,
but this would not happen if the two predicates were only compared syntacti-
cally. LocalMin solves this issue on lines 10 and 11, where it iterates over all
transitions entering i and leaving a state s simulated by t (wrt Sim), and tests
whether the predicate ϕsi on the transition semantically intersects with ψtj .

LocalMin is correct only if the input SFA is complete. As mentioned in §2,
this is, however, not an issue, since completion of an SFA is, unlike for NFAs,
straightforward, and its cost is negligible compared with the complexity of
LocalMin presented below.

The lemma below shows the time complexity of LocalMin in terms of n =
|Q|, m = |∆|, the size k of the largest predicate used in ∆, the out-degree mq for
each q ∈ Q (i.e. the number of transitions leaving q), and the overall maximum
out-degree W = max{mq | q ∈ Q}.

9

Algorithm 4: NoCount

Input: A complete SFA M = (Q,A,∆, I, F)
Output: The simulation preorder �M

1 Sim := Q×Q;NotSim := F × (Q \ F);
2 while ∃i ∈ Q : NotSim(i) 6= ∅ do

3 Rm := {t | t→ NotSim(i)};
4 Sim(i) := Sim(i) \NotSim(i);
5 NotSim(i) := ∅;
6 for t ∈ Rm do

7 ψ := Γ (t,Sim(i));
8 for s−{ϕsi}→i∈∆ s.t. (s, t) ∈ Sim do

9 if IsSat(¬ψ ∧ ϕsi) then

10 NotSim:=NotSim∪{(s, t)};
11 return Sim;

Lemma 4. LocalMin derives �M in time

O
(
n
∑

q∈Q

mq2
mq +mCsat(W,k)

∑

q∈Q

2mq
)
.

As shown in more detail in Appendix C, the result can be proved in a similar way
as in the case of INY and GlobINY, taking into account that each transition
is, again, replaced by its mintermised versions. This time, however, the minter-
mised versions are computed independently and locally for each state (and the
complexities are summed). Consequently, the factor 2m gets replaced by 2mq

for the different states q ∈ Q (together with the replacement of Csat(m, k) by
Csat(W,k)), which can significantly decrease the complexity. On the other hand,
as mintermisation is done separately for each state (which can sometimes lead
to re-doing some work done only once in GlobINY) and as one needs the sat-
isfiability test on line 11 of LocalMin instead of the purely syntactic test on
line 9 of INY, on which GlobINY is based, GlobINY can sometimes win in
practice. This fact shows up even in our experiments presented in §4.

3.4 Counter-Free Algorithm for SFAs (NoCount)

Before we state our last algorithm, named NoCount (Algorithm 4), let us recall
that given an SFA M = (Q,A, ∆, I, F), a set S ⊆ Q, and a state q ∈ Q, we use
Γ (q, S) to denote the disjunction of all predicates that reach S from q. We will
also write q → S to denote that there is a transition from q to some state in S.

In NoCount, we sacrifice the counting technique in order to avoid the local
mintermisation (which is still a relatively expensive operation). The obvious price
for dropping the counters and local mintermisation is that the emptiness of ta1i
for symbols a ∈ ψti can no more be tested in a constant time by asking whether
Nψti(t, i) = 0 as on line 9 of LocalMin. It does not even hold any more that ta1i
is uniformly empty or non-empty for all a ∈ ψti. To resolve the issue, we replace
the test from line 9 of LocalMin by computing the formula ψ = Γ (t, Sim(i))

10

on line 7 of NoCount, which is then used in the test on line 9. Intuitively,
ψ represents all b’s such that tb1i is not empty. By taking the negation of ψ, the
test on line 9 of NoCount then explicitly asks whether there is some a ∈ JϕsiK
for which s can go to i and t cannot simulate this move.

Further, notice that NoCount uses the set Rm for the following optimi-
sation. Namely, if the use of Rm were replaced by an analogy of line 6 from
LocalMin, it could choose a sequence of several j ∈ Q such that (i, j) ∈ NotSim,
and then the same ψ would be constructed for each j and tested against the
same ϕsi. In contrast, due to its use of Rm, NoCount will process all j ∈
NotSim(i) in a single iteration of the main while loop, in which ψ is computed
and tested against ϕsi only once.

Lemma 5 shows the complexity of NoCount in the terms used in Lemma 4.

Lemma 5. NoCount computes �M in time O
(
n
∑

q∈Qm
2
q +m2Csat(W,k)

)
.

Observe that
∑

q∈Qmq = m and W ≤ n, so the above complexity is bounded

by O
(
m2Csat(n, k)

)
. Out-degrees are, however, typically small constants.

The lemma is proved in Appendix D. Compared with the time complexity
of LocalMin, we can see that, by sacrificing the use of the counters, the com-
plexity becomes quadratic in the number of transitions (since the decrement of
the counter on line 8 followed by the test of the counter being zero on line 9 in
LocalMin is replaced by the computation of Γ on line 7 combined with the test
on line 9 in NoCount). On the other hand, since we completely avoid mintermi-
sation, the 2mq factors are lowered to at most m (mq in the left-hand side term).

The overall worst-case complexity of NoCount is thus clearly better than
those of GlobINY and LocalMin. Moreover, as shown in §4, NoCount is
also winning in most of our experiments. Another advantage of avoiding minter-
misation is that it often requires a lot of memory. Consequently, GlobINY and
LocalMin can run out of memory before even finishing the mintermisation,
which is also witnessed in our experiments. If mq is small for all q ∈ Q and the
predicates do not intersect much, the number of generated minterms can, how-
ever, be rather small compared with the number of transitions, and LocalMin

can in some cases win, as witnessed in our experiments too.

4 Experimental Evaluation

We now present an experimental evaluation of the algorithms from §3 imple-
mented in the Symbolic Automata Toolkit [2]. All experiments were run on
an Intel Core i5-3230M CPU@2.6 GHz with 8 GiB of RAM. We used the follow-
ing two benchmarks:

RegEx. We evaluated the algorithms on SFAs created from 1,921 regular ex-
pressions over the UTF-16 alphabet using the BDD16 algebra, which is the
algebra of binary decision diagrams over 16 Boolean variables representing par-
ticular bits of the UTF-16 encoding. These regular expressions were taken from

11

100 102 104
100

102

104

GlobINY (39)

L
o
c
a
l
M

in
(9

8)

100 102 104
100

102

104

NoCount (128)

L
o
c
a
l
M

in
(9

)

100 102 104
100

102

104

GlobRT (82)

N
o
C

o
u
n
t

(5
5)

Fig. 1: Comparison of runtimes of algorithms on SFAs from RegEx. Times are
in miliseconds (logarithmic scale).

the website [15], which contains a library of regular expressions created for dif-
ferent purposes, such as matching email addresses, URIs, dates, times, street
addresses, phone numbers, etc. The SFAs created from these regular expres-
sions were used before when evaluating algorithms minimising (deterministic)
SFAs [12] and when evaluating bisimulation algorithms for SFAs [13]. The largest
automaton has 3,190 states and 10,702 transitions; the average transition density
of the SFAs is 2.5 transitions per state. Since the UTF-16 alphabet is quite large,
a symbolic representation is needed for efficient manipulation of these automata.

WS1S. For this benchmark, we used 131 SFAs generated when deciding formulae
of the weak-monadic second order logic of one successor (WS1S) [16]. We used
two batches of SFAs: 93 deterministic ones from the tool Mona [17] and 38
nondeterministic from dWiNA [18]. These automata have at most 2,508 states
and 34,374 transitions with the average transition density of 6 transitions per
state. These SFAs use the algebra BDDk where k is the number of variables in
the corresponding formula.

4.1 Comparison of Various Algorithms for Computing Simulation

We first evaluate the effect of our modifications of INY presented in §3. The
results presented below clearly show the superiority of our new algorithms over
GlobINY, with NoCount being the overall winner. In addition, we also com-
pare the performance of our new algorithms to a version of the RT algorithm
from [19], which is one of the best simulation algorithms. In particular, we use
its adaptation for NFAs, which we run after global mintermisation (similarly as
INY in GlobINY). We denote the whole combination GlobRT. RT is much
faster than INY due to its use of the so-called partition-relation pairs to repre-
sent the intermediate preorder. Its C++ implementation in the Vata library [9]
is also much more optimised than the C# implementation of our algorithms.
Despite that, the comparison on automata with many global minterms is clearly
favourable to our new algorithms.

To proceed to concrete data, Figs. 1 and 2 show scatter plots of the most in-
teresting comparisons of the runtimes of the considered algorithms on our bench-
marks (we give in parentheses the number of times the corresponding algorithm

12

101 103 105

101

103

105

GlobINY (34)

L
o
c
a
l
M

in
(9

7)

101 103 105

101

103

105

NoCount (129)

L
o
c
a
l
M

in
(2

)

101 103 105

101

103

105

GlobRT (36)

N
o
C

o
u
n
t

(9
5)

Fig. 2: Comparison of runtimes of algorithms on SFAs from WS1S. Times are
in miliseconds (logarithmic scale).

Table 1: Aggregated results of the performance experiment.
RegEx WS1S

Algorithm time wins time wins fails

GlobINY 12.3 s 2 1,258 s 1 9 (2)
LocalMin 11.9 s 0 316 s 0 1 (1)
NoCount 12.4 s 54 44 s 94 0 (0)
GlobRT 2.8 s 81 594 s 36 3 (2)

won over the other one). The timeout was set to 100 s. Fig. 1 shows the compar-
ison of the algorithms on SFAs from the RegEx benchmark. In this experiment,
we removed the SFAs where all algorithms finished within 10 ms (to mitigate the
effect of imprecise measurement and noise caused by the C# runtime), which gave
us 138 SFAs. Moreover, we also removed one extremely challenging SFA, which
dominated the whole benchmark (we report on that SFA, denoted as Mc, later),
which left us with the final number of 137 SFAs. On the other hand, Fig. 2 shows
the comparison for WS1S. We observe the following phenomena: (i) LocalMin

is in the majority of cases faster than GlobINY, (ii) NoCount clearly domi-
nates LocalMin, and (iii) the comparison of NoCount and GlobRT has no
clear winner: on the RegEx benchmark, GlobRT is more often faster, but on
the WS1S benchmark, NoCount wins (in many cases, quite significantly).

Further, we also give aggregated results of the experiment in Table 1. In the
table, we accumulated the runtimes of the algorithms over the whole benchmark
(column “time”) and the number of times each algorithm was the best among
all algorithms (column “wins”). The column “fails” shows how many times the
respective algorithm failed (by being out of time or memory). In the parentheses,
we give the number of times the failure occurred already in the mintermisation.
When a benchmark fails, we assign it the time 100 s (the timeout) for the com-
putation of “time”. The times of the challenging SFA Mc from RegEx were: 21 s
for GlobINY, 16 s for LocalMin, 25 s for NoCount, and 148 s for GlobRT.
Obviously, including those times would bias the whole evaluation.

Observe that in this comparison, the performance of the algorithms on the
two benchmarks differs—although GlobRT wins on the RegEx benchmark and

13

100 102 104

100

102

104

simulation

bi
si
m

ul
at

io
n

(a) Iterative reduction.

100 102 104

100

102

104

simulation

bi
si
m

ul
at

io
n

(b) One iteration only.

Fig. 3: Simulation vs. bisimulation-based reduction: the number of transitions of
the reduced automaton.

the other three algorithms have a comparable overall time (but NoCount still
wins in the majority of SFAs among the three), on the more complex benchmark
(WS1S), NoCount is the clear winner. The distinct results on the two bench-
mark sets can be explained by a different diversity of predicates used on the tran-
sitions of SFA. In the RegEx benchmark, the globally mintermised automaton
has on average 4.5 times more transitions (with the ratio ranging from 1 to 13),
while in the WS1S benchmark, the mintermised automaton has on average 23.5
times more transitions (with the ratio ranging from 1 to 716). This clearly shows
that our algorithms are effective in avoiding the potential blow-up of mintermi-
sation. As expected, they are slower than RT on examples where the mintermi-
sation is cheap since they do not use the partition-relation data structure.

4.2 Comparison of Simulation and Bisimulation

In the second experiment, we evaluate the benefit of computing simulation over
computing bisimulation (we use the implementation of bisimulation computa-
tion from [13]). In particular, we focus on an application of (bi-)simulation for
(language-preserving) reduction of SFAs from the whole RegEx benchmark.

For every SFA M from the benchmark, we compute its simulation pre-
order �M , take its biggest symmetric fragment (which constitutes an equiva-
lence), and for each of its classes, merge all states of the class into a single state.
We also eliminate simulation subsumed transitions (the so-called little brothers)
using the technique introduced in [20]. In particular, for a state q s.t. there exist
transitions q−{a}→p and q−{a}→p′ with p � p′, we remove the transition q−{a}→p
(and also the states that have become unreachable). After that, we reverse the
automaton and repeat the whole procedure. These steps continue until the num-
ber of states no longer decreases. Similar steps apply to bisimulation (with the
exception of taking the symmetric fragment and removing transitions as a bisim-
ulation is already an equivalence).

14

10−2 101 104

10−2

101

104

simulation

bi
si
m

ul
at

io
n

(a) Iterative reduction.

10−2 101 104

10−2

101

104

simulation

bi
si
m

ul
at

io
n

(b) One iteration only.

Fig. 4: Simulation vs. bisimulation-based reduction: runtime in miliseconds.

The results comparing the number of transitions of the output SFAs are given
in Fig. 3a, showing that the simulation-based reduction is usually much more
significant.5 Fig. 3b shows the reduction after the first iteration (it corresponds
to the “ordinary” simulation and bisimulation-based reduction).

The comparison of the numbers of states gives a very similar picture as the
comparison of the numbers of transitions (cf. Appendix E) but simulation wins
by a slightly larger margin when comparing the numbers of transitions. This
is probably due to the use of the removal of simulation-subsumed transitions,
which does not have a meaningful counterpart when working with bisimulations.

As for the runtimes, they differ significantly on the different case studies with
some of the cases won by the simulation-based reduction process, some by the
bisimulation-based reduction, as can be seen in Fig. 4. Fig. 4a shows comparison
of runtimes for the whole iterative process, Fig. 4b shows the comparison for the
first iteration only—essentially the time taken by computing the simulation pre-
order or the bisimulation equivalence. One may see that bisimulation is notably
cheaper, especially when the automata are growing larger and both algorithms
are taking more time (note the logarithmic scale). Computing simulation was,
however, faster in surprisingly many cases.

5 Conclusion and Future Work

We have introduced two new algorithms for computing simulation over symbolic
automata that do not depend on global mintermisation: one that needs a local
and cheaper variant of mintermisation, and one that does not need mintermi-
sation at all. They perform well especially on automata where mintermisation
significantly increases the number of transitions. In the future, we would like to

5 There are still some cases when bisimulation achieved a larger reduction than simula-
tion, which may seem unintuitive since the largest bisimulation is always contained in
the simulation preorder. This may happen, e.g., when a simulation-based reduction
disables an (even greater) reduction on the subsequent reversed SFA.

15

come up with a partition-based algorithm that could run on an SFA without the
need of mintermisation. Such algorithm might, but does not necessarily need to,
be based on an NFA partition-based algorithm such as RT. Further, we wish
to explore the idea of encoding NFAs over finite alphabets compactly as SFAs
over a fast Boolean algebra (such as bit-vector encoding of sets) and compare
the performance of our algorithms with known NFA simulation algorithms.

Acknowledgements. The work on this paper was supported by the Czech Sci-
ence Foundation projects 16-17538S and 16-24707Y, the IT4IXS: IT4Innovations
Excellence in Science project (LQ1602), and the FIT BUT internal project FIT-
S-17-4014.

References

1. B.W. Watson. Implementing and using finite automata toolkits. Cambridge U.
Press (1999).

2. M. Veanes and N. Bjørner. Symbolic automata: The toolkit. In Proc. of TACAS’12,
LNCS 7214, Springer, 2006.

3. M. Veanes. Applications of symbolic finite automata. In Proc. of CIAA’13, LNCS
7982, Springer, 2013.

4. L. D’Antoni and M. Veanes. The power of symbolic automata and transducers. In
Proc. of CAV’17, LNCS 10426, Springer, 2017.

5. P.A. Abdulla, Y. Chen, L. Holík, R. Mayr, and T. Vojnar, T. When simulation
meets antichains. In Proc. of TACAS’10, LNCS 6015, Springer, 2010.

6. F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to con-
gruence. In Proc. of POPL’13, ACM, 2013.

7. L. Ilie, G. Navarro, and S. Yu. On NFA reductions. In Proc. of Theory is Forever,
LNCS 3113, Springer, 2004.

8. L. Holík and J. Šimáček. Optimizing an LTS-Simulation Algorithm . In Proc. of

MEMICS’09, Masaryk U., 2009.
9. O. Lengál, J. Šimáček, and T. Vojnar. Vata: A library for efficient manipulation

of non-deterministic tree automata. In Proc. of TACAS’12, LNCS 7214, Springer,
2012.

10. M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on
finite and infinite graphs. In Proc. of FOCS’95, IEEE, 1995.

11. G. Cécé. Foundation for a series of efficient simulation algorithms. In Proc. of

LICS’17, IEEE, 2017.
12. L. D’Antoni and M. Veanes. Minimization of symbolic automata. In Proc. of

POPL’14, ACM, 2014.
13. L. D’Antoni and M. Veanes. Forward bisimulations for nondeterministic symbolic

finite automata. In Proc. of TACAS’17, LNCS 10206, Springer, 2017.
14. M. Eberl. Efficient and verified computation of simulation relations on NFAs.

Bachelor’s thesis, TU Munich, 2012.
15. Regular expression library, http://regexlib.com/.
16. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S.

Tison, and M. Tommasi. Tree automata techniques and applications. 2007.
17. J. Elgaard, N. Klarlund, and A. Møller. Mona 1.x: New techniques for WS1S and

WS2S. In Proc. of CAV’98, LNCS 1427, Springer, 1998.

16

18. T. Fiedor, L. Holík, O. Lengál, and T. Vojnar. Nested antichains for WS1S. In
Proc. of TACAS’15, LNCS 9035, Springer, 2015.

19. F. Ranzato, and F. Tapparo. A new efficient simulation equivalence algorithm. In
Proc. of LICS’07, IEEE, 2007.

20. D. Bustan and O. Grumberg. Simulation-based minimization. ACM Trans. Com-
put. Logic 4(2), 2003.

17

A Complexity of the INY Algorithm

If n = |Q| is the number of states, m = |∆| is the number of transitions, and
ℓ = |Σ| is the size of the alphabet of an NFA N = (Q,Σ,∆, I, F), the time
complexity of the INY algorithm is O

(
nm+ ℓn2

)
as stated in Lemma 1. As this

fact is not immediately obvious, we give a proof of Lemma 1 below, building
on [14].

Proof (Lemma 1). The initialization on lines 1–3 is done in O
(
m + ℓn2

)
time.

Since we save in NotSim pairs of states that are to be processed, and we save
each pair at most once, line 5 is reached at most n2 times.

Next, the value of the sum of the initial values of all counters can be charac-
terised as follows: ∑

i,t∈Q
a∈Σ

Na(t, i) =
∑

i,t∈Q
a∈Σ

|∆(t, a)|.

For a fixed transition t ∈ Q, the sum
∑

a∈Σ |∆(t, a)| is equal to the number
of transitions going from the state t, and the sum

∑

t∈Q

∑

a∈Σ |∆(t, a)| is then
equal to the number of all transitions m. Therefore,

∑

i,t∈Q
a∈Σ

|∆(t, a)| =
∑

i∈Q

∑

t∈Q
a∈Σ

|∆(t, a)| =
∑

i∈Q

m = nm.

Also, since counters cannot be negative (because they represent the number of
states simulating some state), we can now say that line 7 (decrementing the
counters) is reached at most nm times.

Now, the only thing left to show is that lines 9–10 are reached at most nm
times. For that, we first note that if we fix i ∈ Q, a ∈ Σ in Na(i, t), line 9 is
reached at most n times (there are n such counters). On the other hand, if we
fix t, the for loop on lines 9–10 is iterated at most m times. This stems from
a similar fact as the argument for the initial sum of the counters: the for loop
enumerates all states s, such that s−{a}→i, and summed over all states i and
symbols a, it computes its body m times (for a fixed t). If we combine these two
facts, lines 9–10 are reached at most nm times.

Overall, we showed that INY runs in O
(
nm+ ℓn2

)
time. ⊓⊔

B Correctness and Complexity of the GlobINY

Algorithm

In this appendix, we provide a proof of Lemma 2, underlying correctness of Algo-
rithm GlobINY, and then provide a proof of Lemma 3, stating the complexity
of the algorithm.

Proof (Lemma 2). We will prove that R ⊆ Q ×Q is a simulation on M iff R is
a simulation on N .

18

Let R be a simulation on M and assume that it is not simulation on N . Then,
there must be some (q, p) ∈ R contradicting the definition of simulation. Since
the sets of final states are the same, (q, p) must contradict Condition C2. This
means that there is some q−{ψ}→q′ ∈ ∆ for which there is no p−{ψ}→p′ ∈ ∆ such
that (q′, p′) ∈ R. However, since for all a ∈ DA there exists exactly one minterm
ϕ for which a ∈ JϕK, this would mean that (q, p) contradicts Condition C2 for
M , which is a contradiction.

Since M and N have the same transition relation ∆, the other direction is
obvious. ⊓⊔

Proof (Lemma 3). Apart from n being the number of states of M , m being the
number of its transitions, and k being the size of the largest predicate used in the
transitions of M , let m′ be the number of transition in ∆G. Recall the definition
of Csat from Section 2. As there can be at most 2m minterms in Minterms(P∆)
and every minterm is generated from m predicates, we can compute them in
O
(
2mCsat(m, k)

)
time. Computing ∆G is then done in O

(
2mCsat(m, k) +m2m

)
:

every transition is replaced by transitions labelled with minterms. As we then
run INY on the syntactic NFA (Q,P∆G , ∆G, I, F), we can conclude that Algo-
rithm GlobINY has complexity O

(
2mCsat(m, k)+m2m+nm′

)
. Further, we can

bound m′ by m2m−1 because each transition can be at worst replaced by 2m−1

transitions: indeed, note that the predicate of each transition occurs in half of
the minterms. The complexity of Algorithm GlobINY is then

O
(
2mCsat(m, k) + nm2m

)
.

⊓⊔

C Complexity of the LocalMin Algorithm

In this appendix, we examine the time complexity of Algorithm LocalMin and
prove Lemma 4.

Proof (Lemma 4). For a given state q ∈ Q, let rq be the number of minterms
in Minterms(P∆,q) and mq the number of transitions with the source state q.
Using the same reasoning as for global mintermisation, one can show that ∆L

can be computed in time O
(∑

q∈Q(rqCsat(mq, k) + mqrq)
)
. Further, let r be

the number of all local minterms, i.e., r =
∑

q∈Q rq, and let m′ be the number

of transitions in ∆L. The initialization on lines 2–4 is done in O
(
nr

)
time:

|{ r | q
ψ
→ML

r }| is computed during mintermisation. Using the same reasoning
as in NFA simulation, we can say that, initially, the sum of all counters is nm′,
and so line 8 is reached at most nm′ times. For a fixed i, line 10 is reached r
times because there are r counters Nψtj (t, i) that can reach zero only once: for
each t ∈ Q there is one counter Nψ(t, i) for each ψ ∈ Minterms(P∆,t). If we now
fix t and ψtj , lines 11–12 are reached at most m times. All in all, these lines are
reached at most rm times. Since ψtj is a minterm created from mt transitions
and nr ≤ nm′, the time complexity of the algorithm is O

(∑

q∈Q(rqCsat(mq, k)+

19

mqrq) + nm′ +mrCsat(W,k)
)
. Since, for a given q ∈ Q, rq is bounded by 2mq

(because rq is the number of minterms) and sincem′ is bounded by
∑

q∈Qmq2
mq ,

the final time complexity of Algorithm LocalMin is

O
(
n
∑

q∈Q

mq2
mq +mCsat(W,k)

∑

q∈Q

2mq
)
.

⊓⊔

D Correctness and Complexity of the NoCount

Algorithm

We first prove correctness of Algorithm NoCount, i.e., the fact that it indeed
computes �M on an SFA M . Then, we establish the complexity of the algorithm
stated in Lemma 5.

D.1 Correctness

We prove that NoCount computes �M . We first prove that the following in-
variant is preserved by the algorithm for any simulation relation � over Q.

NotSim ⊆ Sim
∁ ⊆ �∁

Initially NotSim = Sim
∁ = F × (Q \ F), and for all x ∈ F and y ∈ Q \ F we

have x 6� y by definition of simulation.
Consider the main iteration of the while-loop and assume that the invariant

holds at the start of the while-loop. We show that it holds after the for-loops.
Fix i such that NotSim(i) 6= ∅ and t ∈ Q such that t → NotSim(i). Let

ψ = Γ (t, Sim(i)), let a ∈ J¬ψK, and let s ∈ Q be such that s−{a}→i. Suppose,
by way of contradiction, that s � t. Then there exists j such that t−{a}→j and
i � j. But, by the definition of ψ and choice of a, it follows that j /∈ Sim(i),

i.e., (i, j) ∈ Sim
∁, and so i 6� j follows from the invariant, which gives us the

contradiction. Hence, s 6� t and Sim is updated by removing (s, t), i.e., Sim∁ as
well as NotSim gets the new element (s, t). Thus, the invariant is preserved, and
it follows that � ⊆ Sim and, in particular, that �M ⊆ Sim.

We need to show that upon termination Sim ⊆ �M . We define the nonsimu-
lation relation of k steps �k over Q by induction over k as follows. We say that
s is k-nonsimulable by t when s �k t.

�0
def= F × (Q \ F)

s �k+1 t
def= s �k t ∨ ∃a∃i(s−{a}→i ∧ ∀j(t−{a}→j ⇒ i �k j)))

Then �M
def= �κ where κ is such that �κ+1 = �κ, and �M

def= �∁
M . Thus

s �M t means that s is k-nonsimulable by t for some k ≥ 0, or in other words,
t cannot k-step simulate s for any k ≥ 0. It follows that �M is the unique
maximal simulation relation of M . This follows by showing that �M is indeed

20

a simulation relation, and (by induction over k) that for any simulation relation
�, we have �k ⊆ �∁. Hence � ⊆ �M .

We show that �∁
M⊆ Sim

∁ by showing that �k⊆ Sim
∁ by induction over

k ≥ 0. This holds for k = 0 due to the initial value of NotSim and the update
of Sim. Assume now that (s, t) ∈ �k+1 \ �k. Then there exists a ∈ D and
i ∈ Q such that J∆K(t, a) ⊆ �k(i). Consider the first iteration of the while-
loop in which, for some such a and i with s−{a}→i ∈ J∆K, the last element of

�k(i) ∩ J∆K(t, a) is added to Sim
∁(i) on line 4. This must indeed eventually

happen because (1) since the automaton is complete, it must hold J∆K(t, a) is not
empty, and (2) due to the induction hypothesis, all elements of �k(i) eventually
appear in NotSim(i) to be later removed from Sim(i) on line 4. Because the last
element of �k(i)∩J∆K(t, a) is being removed from Sim(i), then it is in NotSim(i),
and hence t→ NotSim(i). The transition t is therefore added to Rm. When t is
processed within the for-loop on line 6, the satisfiability check of ¬ψ ∧ ϕsi will

eventually succeed because, J¬Γ (t, Sim(i))K = {a | J∆K(t, a) ⊆ Sim
∁(i)}. And

since (by IH) �k ⊆ Sim
∁ it follows that J∆K(t, a) ⊆ Sim

∁(i) and so a ∈ J¬ψK.
Then (s, t) is added to NotSim and deleted from Sim since all entries that are
added to NotSim are later deleted from Sim. Since (s, t) was chosen freely, it

follows that �k+1⊆ Sim
∁ (by termination of NoCount).

D.2 Complexity

Finally, we now proceed to a proof of Lemma 5.

Proof (Lemma 5). The initialization is obviously done in time O
(
n2

)
.

Further, the construction of the set Rm is, for a fixed i, done on the whole in
m steps. Indeed, we enumerate all transitions going to some j ∈ NotSim(i), and
when we sum over all j ∈ Q, we get the number of all transitions in M . Hence,
for all i ∈ Q, the computation is done in O

(
nm

)
time.

For fixed states i, t ∈ Q, the state t can occur in the set Rm at most mt times,
and constructing ψ on line 7 consists of iterating through all transitions outgoing
from t. Therefore, this line is executed in O

(
m2
t

)
time. Summed over all i, t ∈ Q,

we get O
(
n
∑

t∈Qm
2
t

)
. Since we assume that the time and space complexity of

logical operations are the same, we can assume that the disjunction involved in
the computation of Γ has constant complexity and take it into account later,
during the check on line 9.6 The last fact to show is that lines 9–10 are reached
at most m2 times. Let us again fix states i, t ∈ Q. Then, lines 9–10 can be
reached at most mtm

−1
i times where m−1

i is the number of transitions going to
i. Summing over all states i, t, we get m2.

6 To be sure that line 9 is reached at least once, before constructing ψ, we can check
whether there are any transitions going into i, and if there are not, we continue
with the next iteration of the for loop. For readability of the algorithm, we have not
included this detail into it.

21

100 102

100

102

simulation

bi
si
m

ul
at

io
n

(a) Iterative reduction.

100 102

100

102

simulation

bi
si
m

ul
at

io
n

(b) One iteration only.

Fig. 5: Simulation vs. bisimulation-based reduction: the number of states of the
reduced automaton.

The predicate ψ is a conjunction of mt predicates, n2 ≤ nm ≤ n
∑

q∈Qm
2
q,

and so Algorithm NoCount has the time complexity

O
(
n
∑

q∈Q

m2
q +m2Csat(W,k)

)
.

⊓⊔

E Simulation vs. Bisimulation-Based Reduction

We give a more detailed report on the experimental comparison of the effect of
simulation and bisimulation based reduction on the RegEx benchmark discussed
in Section 4 and also a comparison of the cost of these reductions. Fig. 5 shows
a comparison of the numbers of states of the reduced automata. The iterative
reducing process described in Section 4 is used on Fig. 5a, Fig. 5b shows the
reduction after the first iteration (it corresponds to the “ordinary” simulation and
bisimulation-based reduction). Fig. 6 then compares the numbers of transitions.
One may see that simulation is clearly more powerful and that it may greatly
benefit from iterating the forward and backward reduction. The comparison of
the numbers of states gives a very similar picture as the comparison of the
numbers of transitions, but one may see that simulation wins by a slightly larger
margin when comparing the numbers of transitions. This is probably due to
the use of the removal of simulation smaller transitions, which does not have a
meaningful counterpart when working with bisimulations.

Lastly, Fig. 7 shows a comparison of the running times of the simulation and
bisimulation reduction. Fig. 7a shows the overall time needed by the iterative
reduction process, Fig. 7b then the time taken by the first iteration—essentially
the time taken by computing the simulation preorder or the bisimulation equiv-
alence. One may see that bisimulation is cheaper overall, especially when the
automata are growing larger (note the logarithmic scale). However, computing
simulation may be faster in surprisingly many cases.

22

100 102

100

102

simulation

bi
si
m

ul
at

io
n

(a) Iterative reduction.

100 102

100

102

simulation

bi
si
m

ul
at

io
n

(b) One iteration only.

Fig. 6: Simulation vs. bisimulation-based reduction: the number of transitions of
the reduced automaton.

10−2 101 104

10−2

101

104

simulation

bi
si
m

ul
at

io
n

(a) Iterative reduction.

10−2 101 104

10−2

101

104

simulation

bi
si
m

ul
at

io
n

(b) One iteration only.

Fig. 7: Simulation vs. bisimulation-based reduction: runtime in miliseconds.

23

	 Simulation Algorithms for Symbolic Automata (Technical Report)

