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Abstract—Many works have shown that approximate circuits
may play an important role in the development of resource-
efficient electronic systems. This motivates many researchers
to propose new approaches for finding an optimal trade-off
between the approximation error and resource savings for
predefined applications of approximate circuits. The works and
approaches, however, focus mainly on design aspects regard-
ing relaxed functional requirements while neglecting further
aspects such as signal and parameter dynamics/stochasticity,
relaxed/non-functional equivalence, testing or formal verification.
This paper aims to take a step ahead by moving towards the
formal verification of time-dependent properties of systems based
on approximate circuits. Firstly, it presents our approach to
modeling such systems by means of stochastic timed automata
whereas our approach goes beyond digital, combinational and/or
synchronous circuits and is applicable in the area of sequential,
analog and/or asynchronous circuits as well. Secondly, the paper
shows the principle and advantage of verifying properties of
modeled approximate systems by the statistical model checking
technique. Finally, the paper evaluates our approach and outlines
future research perspectives.

Index Terms—approximate circuit, error, trade-off, relaxed
equivalence, formal verification, timed automaton, stochastic
automaton, modeling, simulation, statistical model checking

I. INTRODUCTION

Approximate computing (AxC) builds on the observation
that in some applications, errors can be tolerated if they
provide an acceptable trade-off between the output quality
and computation effort [1]. Designers use this characteristic
to apply selective approximations or occasional relaxations of
the specifications [2].

As a result, many approximate concepts, methods and
designs have been proposed in many works to take advantage
of AxC, representatives of which are detailed in II-A. Existing
works show that great efforts have been made regarding the de-
sign and automated generation of approximate combinational
digital circuits, few of them have dealt with sequential AxC
circuits, their verification or testing. However, many problems
regarding, e.g., reconfigurable AxC circuits, parameter vari-
ability of AxC circuits due to aging/stress, signal instability
or equivalence in the time domain have not been opened yet in
the works. This paper proposes to solve the problems using the
so-called statistical model checking (SMC) technique detailed
in II-B. Our approach and results we have achieved so far are
summarized in III. Sect. IV concludes the paper.

II. RESEARCH BACKGROUND

A. Representative Approaches
An overview regarding AxC systems can be found in the

broad-range book [1] and in the design-oriented book [3].
Further works cover more specific areas. For example, [4]
presents an evaluation framework. other works deal with
designing AxC circuits, typically adders or multipliers [5]–
[7], but also sensors, processors, memories, neural networks
or compilers [3]. Further works focus on formal verification,
particularly on the accumulated error [8], relaxed equivalence
checking [9] or sequential circuits [1]. Few works, such as [2],
[10], [11], deal with testing of AxC circuits.

B. Reasoning and Instruments of our Research
Our research activity concentrates on modeling and verifica-

tion of AxC systems in their application-specific input/output
scope (“context” in brief). Apparently, contexts for various
applications may differ whereas the context for a simpler
application (e.g., using an adder to sum n consecutive integers
starting by 0) is more predictable than the context for a
complex application (e.g., using an adder to sum the partial
CPU loads of dynamically scheduled real-time tasks). To
succeed in our research effort, we must be able to reconstruct
contexts first – using a computational model in our case. For
simpler applications, a precise model can be constructed easily.
For complex applications, however, it makes more sense to
construct a stochastic rather than a precise model.

In our approach, we use the means [12] of stochastic timed
automata (STA) to construct a model of an AxC system and its
context. To formally verify properties of such model(s), we use
the statistical model checking (SMC) technique [13]. Simply
said, SMC technique conducts simulations over a stochastic
model, monitors them and processes them statistically to infer,
with a predefined degree of confidence, whether they provide a
statistical evidence for the satisfaction/violation of a property.
SMC techniques are advantageous due to the following facts.
Firstly, they replace the binarity (regarding the satisfaction) by
the ability to quantify the impact of a change in a system with
a given degree of uncertainty [14]. Practically, this allows one
to get estimates of the probability measure on the satisfaction
of a property, not just producing a simple “Yes”/“No” answer.
Secondly, they easily scale to industrial size systems [15].
SMC has already been successfully applied to many circuit
related problems [16]–[19], but an application in the AxC
domain is missing.



C. Analyzing Application Contexts

Despite general applicability of our approach, we limited
this paper just to application-specific problems that need
a multiplier to be solved. From the function viewpoint, a
multiplier has two inputs (x, y) and one output (z). Typically,
for n-bit wide x, y the bit-width of z is 2 × n, but this may
differ in the AxC domain [5]. Tab. I illustrates the truth-table
for n = 2: the accurate multiplier needs 4 output bits (green
background) while the approximate multiplier needs just 3
output bits (red background) as the most significant bit is 0.
Binary values in the table do not differ except the value for
x1x0 = y1y0 = 11 whereas the outputs 1001 and (0)111
belongs to the accurate and approximate multiplier, resp.

TABLE I
TRUTH TABLE FOR 2× 2-BIT ACCURATE/APPROXIMATE MULTIPLIER

x1x0
y1y0 00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 1001

0111
z3z2z1z0

For selected multiplier applications, we gathered statistics
about data being propagated to x, y. Fig. 1 illustrates that the
statistics differ across various applications like a) searching the
rank of 100 8-character strings, b) computing the binom. coef.
C(i, j) for integers i, j ranging from 0 to 16 or c) computing
the Catalan number for i = 0, 1, . . . , 9.

Fig. 1 shows that some (x, y) pairs occur at multiplier inputs
much frequently (such a region is marked by a red rectangle)
while some pairs occur rarely or never (yellow rectangle). If
a set of applications is known a designer can use the statistics
to optimize his general-purpose design for applications from
the set. For example, as the yellow rectangle is large and
many input values are not likely to appear regarding Fig. 1b,
the corresponding design can be approximated well; trivially,
“yellow” inputs may be ignored, processed by a hash function
etc. Hopefully, this will lead to a better trade-off among
parameters such as the accuracy, speed or energy consumption.

D. Challenges and Opportunities

We have decided to initiate our research because we de-
tected multiple challenging tasks to be solved in the AxC
area. Especially, we miss a scalable framework capable to
i) intuitively describe and then formally evaluate discrete/-
continuous/hybrid AxC systems in their application-specific
contexts, ii) reflect non-functional (e.g., dynamic) aspects of
real systems, such as time/value jitters, concurrency, sequen-
tiality, (a)synchronicity and/or reconfigurability, iii) be open
to changes, automated and be easily incorporated/interfaced
(in)to commonly used tool-chains. We think that STA/SMC
means are capable enough to complete tasks like that. Before
we show (by our approach) an idea of how to construct such a
framework, let us support this opinion by the following facts.
Firstly, STA means allows one to create a model of a dynamic
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Fig. 1. Statistics of contexts for selected multiplier applications

system using a network of priced timed automata. The au-
tomata may be parameterized, are driven by the progression of
time, may communicate (be synchronized) and model the price
of fired transitions. Secondly, properties (such as the maximum
accumulated error of an AxC system) of the network may be
checked (using probability estimation, probability comparison,
hypothesis testing etc.) by the SMC engine able to verify a
property with a predefined degree of confidence.

III. OUR APPROACH

During our research, we have utilized STA/SMC means
being implemented in the publicly available UPPAAL SMC
tool [20]. Availability of the tool allows one to test our
approach, evaluate it and check whether it is applicable to
desired areas of interest. This section is organized as follows.
Firstly, it gives a top-level view of our approach (III-A) and
presents our approach to modeling AxC systems and their
contexts by means of STA (III-B). Secondly, it sketches our
SMC approach to formal verification of properties of AxC
systems and presents results we have achieved (III-C).

A. Top Level View of our Approach

Our approach builds on STA means, allowing one to de-
scribe a (stochastic) model of a timed system using a network
of (potentially) synchronized automata. Consequently, proper-
ties of such a model may be checked by SMC instruments.

To check properties of an AxC system using SMC, we
created a framework (Fig. 2) built of blocks detailed in III-B.
Let all concepts be explained over Tab. I and Fig. 3.
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Fig. 2. Block schema of our statistical model checking framework
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Fig. 3. Gate-level circuits for (a) accurate and (b) approximate multipliers
with two 2-bit inputs, one 4-bit and 3-bit output, resp.; redrawn from [5]

B. Aspects of Modeling AxC Systems and their Contexts

Firstly, we need an interface for accurate (Fig. 3a) and
approximate (Fig. 3b) systems. In our model, this includes
(Listing 1) the amount of primary inputs (NPI) and outputs
(NPO), indexes of primary inputs shared by acc. and approx.
systems (PI), separate indexes of primary outputs for acc. and
approx. systems (POac and POap, resp.).

Listing 1. Top-level interface setup of our framework from Fig. 2+3
1 const int NPI = 4; // # primary input bits
2 const int NPO = 4; // # primary output bits
3 const int PI[NPI] = {0,1,2,3}; // shared PI indexes
4 const int POac[NPO] = {4,5,6,7}; // accurate PO indexes
5 const int POap[NPO] = {8,9,10,-1}; // approx. PO indexes

Secondly, we modeled (Fig. 4a–e) all blocks from Fig. 2
by means of STA; initial states of all models are colored ligh-
green. Particularly, Fig. 4a models a generator able to produce
stimuli for x, y according to the corresponding application-
specific context. After it is initialized, the model gets a new
stimulus, produced by f(), and synchronizes waiting models
by sending a message via the channel update while applying
the stimulus to primary inputs. Stimuli are generated until the
stop condition is true (e.g., error/coverage is achieved) whereas
a new stimulus is produced after the equivalence checking for
the previous one ends (waiting for a message via eqChkDone).

a)
b)

c) d) e)

Fig. 4. STA models of key components in our approach: a) stimuli generator,
b) equiv. checker, c) primary input sync., d) log. gate, e) approx. multiplier

Fig. 4b depicts our equivalence checker model. Basically, it
checks just the functional equivalence, i.e. whether accurate
and approximate outputs match or not. In its initial state,
the model waits (delay dly) until 2 outputs are available
(nResuls == 2): accurate and approximate. Then, it checks
the outputs by eqchk() and sends a message via eqChkDone.

Fig. 4c waits until the stimulus updates (update?). Then, it
uses the channel c to initiate the update of each primary input
(identified by idx) according to the stimulus.

Fig. 4d represents our model of a two-input, one-output
logical gate. After it is initialized, the model enters w4update.
Here, it waits until its input in0 or in1 changes (c[in0]?,
c[in1]?). If it changes, the model waits (in compute) until
its propagation delay (dly(tbl op[id])) is over and then, it
produces its output (out(tbl op[id]). id identifies a gate and
tbl op[id] returns a logical function associated with the gate.
An approximate multiplier is constructed as a network of logi-
cal gates whereas gates, interconnections etc. are characterized
by unique properties (such as the signal propagation delay),
potentially changing in time.

Fig. 4e depicts our model of the accurate circuit; here, it is a
combinational circuit defined by a truth-table. After the model
is initialized, it waits until the stimulus updates (update?).
Then, it waits dly units of time and uses f() to produce
the output for the stimulus and the truth-table. To model a
more complex (e.g., sequential) system, the automaton can be
simply extended to describe the corresponding behavior.

Finally, all blocks must be instantiated and interconnected
via their interfaces, according to Fig. 2 (see 2).

Listing 2. Making block instantiation/interconnections based on Fig. 2+3
1 sgen=tStimuliGen(PI[0],...,PI[3],dg,covR);
2 ac=tAc(PI[0],...,PI[3],POac[0],...,POac[3],tblac,dac);
3 gap4=gateAp(4,PI[0],PI[2],POap[0],c[0],c[2],c[13]);
4 gap3=gateAp(3,PI[0],PI[3],12,c[0],c[3],c[12]);
5 gap2=gateAp(2,11,12,POap[1],c[11],c[12],c[14]);
6 gap1=gateAp(1,PI[1],PI[2],11,c[1],c[2],c[11]);
7 gap0=gateAp(0,PI[1],PI[3],POap[2],c[1],c[3],c[15]);
8 spi = syncPI();
9 echk = equivChk(de);

C. Formal Verification of AxC Systems

For this paper, we decided to present just few representative
SMC results (Fig. 5, Fig. 6) we achieved so far. Each of them
was produced from a SMC query specifying the property to
be checked. Fig. 5 presents simulation results based on the
query (Q1) simulate [<=tmax;n] {φ}, where φ is a list of
properties to be monitored in n simulation runs, each taking
tmax units. It can be seen that our approach covers input/output
jitters (a, b), evaluates/compares output values (b) and finally,
evaluates parameters such as absolute/accumulated error/sum
and coverage in various contexts (c, d).
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Fig. 5. Results from multiple (5–10) simulation runs of Q1 aiming to show
the evolution of: a) jitters of values 0–7 at PI, b) PO values and difference, c,d)
accumulated sums, errors etc. for two different application-specific contexts
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Fig. 6. Results of a) Q2, b) Q3, c) Q4, d) Q5 for the probability uncertainty (ε)
set to 0.05 % and various application-specific scenarios (A–F). Visualization
is incomplete – just cutouts of the area defined by (x = 0, y = 0) to
(maxX,maxY ) are visualized to show the most interesting results

Fig. 6 presents (cutouts of) results of the following
queries: (Q2) Pr[<=tmax] (<>coveR>87.5%) for checking the
probability that outputs for more than 87.5 % inputs will
be found equivalent within the given time bound (tmax),
(Q3) E[<=tmax; n] (max:tcover) for estimating the maxi-
mum amount of time for checking the equivalence during tmax

when repeated n times, (Q4) E[<=tmax; n] (max:sumDiff)

for estimating the maximum accumulated error of the ap-
proximate output during tmax when repeated n times,
(Q5) Pr[<=tmax] (<>errR > 5%) for checking the probability
that the accumulated error exceeds 5 % within tmax, where
tmax = 25e3, n = 1e3.

From the scalability viewpoint, our results shows that the
checking time grows linearly and inversely proportionally to
the probability uncertainty (ε). For example, for ε = .1%,
the checking time ranges from 2 s to 286 s, depending on a
query. The memory consumption is almost independent of ε,
but (actually) it grows exponentially with the number of bits
needed to represent the interface of a circuit (≈45 MB for
a 2–8bit multiplier, growing exponentially to ≈110-1500 MB
for a 10–15 bit multiplier).

IV. CONCLUSION

In this paper, we presented novel approach to modeling
and verification of AxC systems regarding their application-
specific contexts. Our experiments show that the STA/SMC
approach presented in this paper has a potential to contribute
to the area of AxC systems. The approach covers a wide
range of systems and is able to formally evaluate and compare
various static as well as dynamic properties of both accurate
and approximate variants of systems.

Our future research plans regarding SMC of AxC systems
will concentrate on more complex, sequential systems (e.g.,
DRAMs or CPUs) in real operating conditions (e.g., fault or
aging/stress scenarios). Also, we plan to apply the STA/SMC
instruments in the area of approximate control of systems.
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“From Statistical Model Checking to Statistical Model Inference: Char-
acterizing the Effect of Process variations in Analog Circuits,” in
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), Nov 2013, pp. 662–669, DOI 10.1109/ICCAD.2013.6691186.

[18] J. A. Kumar, S. N. Ahmadyan, and S. Vasudevan, “Efficient Statistical
Model Checking of Hardware Circuits With Multiple Failure Regions,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 33, no. 6, pp. 945–958, June 2014, DOI 10.1109/T-
CAD.2014.2299957.

[19] G. Gielen, N. Xama, K. Ganesan, and S. Mitra, “Review of
Methodologies for Pre- and Post-Silicon Analog Verification in
Mixed-Signal SOCs,” in Design, Automation Test in Europe Con-
ference Exhibition (DATE), March 2019, pp. 1006–1009, DOI
10.23919/DATE.2019.8714828.

[20] A. David, K. Larsen, A. Legay, M. Mikučionis, and D. Poulsen, “Uppaal
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