
Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

pqsfinder web: G-quadruplex identification using
optimized pqsfinder algorithm
Dominika Labudová 1, Jiří Hon 1 and Matej Lexa 2∗

1IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Božetěchova 2,
61266 Brno, Czech Republic
2Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: G-quadruplex is a DNA form in which four guanine-rich regions are held together by
Hoogsteen bonding between guanine nucleotides in coordination with potassium ions. G-quadruplexes
are increasingly seen as a biologically important component of genomes. Their detection in vivo is
problematic, however, sequencing and spectrometric techniques exist for in vitro detection in isolated
DNA. In silico methods can be used to analyze nucleotide sequences for potential quadruplex-forming
sequences (PQS). We previously devised the pqsfinder algorithm for identification of PQS, implemented it
in C++ and published it as an R/Bioconductor package. We looked for ways to optimize pqsfinder for faster
and user-friendly sequence analysis.
Results: We identified two weak points where pqsfinder could be optimized. We modified the internals of
the recursive algorithm to avoid matching and scoring many sub-optimal PQS conformations that are later
discarded. To accommodate the needs of a broader range of users, we created a website for submission
of sequence analysis jobs that does not require knowledge of R to use pqsfinder.
Availability: https://pqsfinder.fi.muni.cz
Contact: lexa@fi.muni.cz

1 Introduction
In our previous work (Hon et al., 2017) we created pqsfinder, an
R/Bioconductor package implementing a recursive algorithm to search
nucleotide sequences for all combinations of guanine nucleotide clusters
(G runs) satisfying a set of rules defining a potential quadruplex-forming
sequence (PQS). The algorithm was parametrized to provide the best match
between prediction and results of then available experiments (Bedrat et al.,
2016; Chambers et al., 2015). Since then, pqsfinder has been used to
analyze prokaryotic (Mishra et al., 2019; Jain et al., 2018) and eukaryotic
genomes (Tokan et al., 2018) as well as used as a reference for similar
tools (Berselli et al., 2018; Belmonte Reche and Morales, 2019).

The frequent use of the tool and its application to entire genomes
led us to look for improvements that would make it easier for non-
programmers to use the tool and to make analyses faster. We optimized
the algorithm and the associated code and made these improvements

first available in pqsfinder-2.0 package. The optimized functions were
then used in setting up pqsfinder web interface running at https:
//pqsfinder.fi.muni.cz.

2 Speed optimization and the new threshold
Based on analysis of pqsfinder’s performance issues emerging on DNA
sequences with high G content, we implemented two main optimizations:
i) tabulation of costly math library functions repetitively used in scoring
and ii) reduction of internal search iterations.

The first optimization tabulates bulge length penalties and loop length
penalties as they were repetitively computed with the same arguments and
use costly math library functions. After optimization, they are computed
only once at the beginning of the algorithm.

The second optimization is implemented as an additional skip
condition between individual G run searches to reduce the number of search
iterations. After each G run identification, a maximal score estimate is

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://pqsfinder.fi.muni.cz
lexa@fi.muni.cz
https://pqsfinder.fi.muni.cz
https://pqsfinder.fi.muni.cz


2 Labudová et al.

calculated and compared to two values: i) score threshold and ii) maximal
score reported so far overlapping the starting position of the first G run in
the current PQS. If the maximal score estimate is lower than any of the two
values, the search for other G runs is skipped. Consequently, many sub-
optimal overlapping PQS are not matched and scored as pqsfinder usually
finds the highest-scoring PQS in several first iterations.

The speedup of the optimized algorithm can reach three orders of
magnitude. It strongly depends on the content and distribution of guanine
bases in the sequence. Regions with dense G clusters are processed more
than 1000x faster than before, whereas G-sparse regions are processed at
approximately the same speed.

We measured the performance gain using the entire human genome
sequence, and the speedup was around 800x on standard laptop hardware.
The optimized pqsfinder algorithm is now convenient for whole-genome
analysis and fully competitive in speed with other approaches.

Recently, pqsfinder’s default settings showed to be too sensitive,
finding too many, possibly irrelevant, hits. The high number of reported
PQS is allowed by low default score threshold 26 that we chose as the best-
performing threshold on small in vitro Lit392 dataset (Hon et al., 2017;
Bedrat et al., 2016). Based on later feedback, we decided to increase the
score threshold to focus on more stable PQS by default.

We used G4-seq data (Chambers et al., 2015) to find the new score
threshold. First, we labeled regions with mismatch levels greater or equal
to 25 as positive PQS containing regions. Remaining regions were labeled
negative. Second, we randomly sampled regions longer than 50 base
pairs to get 50,000 positive and 50,000 negative sequences. Third, we
ran pqsfinder on all sampled sequences and recorded the maximal PQS
score. We found that score threshold 52 best discriminates positive and
negative sequences having maximal prediction accuracy 77.3%. Therefore,
we chose this value as the new pqsfinder minimum score threshold.

3 Web features
The web interface has a client-server architecture. The backend is a REST
API implemented in R language using the plumber library and is running
in the Stratus.FI cloud. The React framework was used to implement the
client application. A unique job ID identifies each user request that can be
used to later access the results without having to rerun the computations.

The web application accepts a set of sequences in FASTA format. The
sequences can be either uploaded from a file or provided as plain text. We
are also planning to support import of gene sequences directly from the
NCBI database. The analysis options are by default set to recommended
values from the latest pqsfinder release but can be easily customized using
the web interface.

Identified PQS can be viewed either in a table or an interactive plot.
The table contains all important PQS characteristics – start, end, score,
strand, number of tetrads, number of bulges, number of mismatches and
the nucleotide sequence itself. The sequence is colored to highlight each
G run, including bulges and mismatches. The plot visualizes individual
positions of the PQS in the sequence and their score (see Figure 1). Results
can be downloaded in CSV or GFF formats.

The web server provides pre-computed whole-genome tracks for two
human genome releases Grch38 and GRch37. These tracks can be easily
imported to UCSC Genome Browser using a track hub link available at
the Genomes download page.

4 Conclusions
We report here a major upgrade to a previously published pqsfinder
software package designed to identify PQS in nucleotide sequences. The
software uses a robust scoring scheme that has not been surpassed by

Fig. 1. Identified PQS in an interactive plot displayed on the results page. The tooltip box
provides details on selected PQS and visualizes their structure with bulges highlighted in
red. The plot can be scaled and filtered to only show PQS on either sense or antisense strand.

other tools so far. However, it lacked in user-friendliness and speed. The
reported upgrade provides a speedup of several orders of magnitude on
G-rich sequences and introduces a web server for hassle-free access to
PQS identification. It should find use in whole-genome sequence analyses
as well as small ad-hoc queries by molecular biologists at large.

Acknowledgements
We thank Tomas Szaniszlo and the rest of the Faculty of Informatics
Stratus.FI team for registering the pqsfinder.fi.muni.cz domain and
providing a virtual machine for the pqsfinder web server. Access to
computing and storage facilities owned by parties and projects contributing
to the National Grid Infrastructure MetaCentrum provided under the
programme Projects of Large Research, Development, and Innovations
Infrastructures (CESNET LM2015042), is greatly appreciated.

Funding
This work has been supported by the Czech Science Foundation [15-
02891S to M.L.] and ICT tools, methods and technologies for smart cities
project of the Brno University of Technology [FIT-S-17-3964 to J.H.].

References
Bedrat, A. et al. (2016). Re-evaluation of G-quadruplex propensity with

G4Hunter. Nucleic Acids Res., 44(4), 1746–1759.
Belmonte Reche, E. and Morales, J. C. (2019). G4-iM Grinder: DNA

and RNA G-quadruplex, i-Motif and higher order structure search and
analyser tool. bioRxiv.

Berselli, M. et al. (2018). NeSSie: A tool for the identification of
approximate DNA sequence symmetries. Bioinformatics, 34.

Chambers, V. et al. (2015). High-throughput sequencing of DNA G-
quadruplex structures in the human genome. Nat. Biotechnol., 33.

Hon, J. et al. (2017). pqsfinder: an exhaustive and imperfection-
tolerant search tool for potential quadruplex-forming sequences in R.
Bioinformatics, 33(21), 3373–3379.

Jain, N. et al. (2018). G-quadruplex stabilization in the ions and maltose
transporters inhibit salmonella enterica growth and virulence. bioRxiv.

Mishra, S. et al. (2019). Characterization of highly conserved G-
quadruplex motifs as potential drug targets in streptococcus pneumoniae.
Sci. Rep.

Tokan, V. et al. (2018). Quadruplex DNA in long terminal repeats in maize
LTR retrotransposons inhibits the expression of a reporter gene in yeast.
BMC Genomics, 19(1), 1–11.


	Introduction
	Speed optimization and the new threshold
	Web features
	Conclusions

