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ABSTRACT
Routing loops can harm network operation. Existing loop detection
mechanisms, including mirroring packets, storing state on switches,
or encoding the path onto packets, impose significant overheads on
either the switches or the network.

We present Unroller, a solution that enables real-time identifi-
cation of routing loops in the data plane with minimal overheads.
Our algorithms encode a varying fixed-size subset of the traversed
path on each packet. That way, our overhead is independent of
the path length, while we can detect the loop once the packet re-
turns to some encoded switch. We implemented Unroller in P4
and compiled into three different FPGA targets. We then compared
it against state-of-the-art solutions on real WAN and data center
topologies and show that it requires from 6x to 100x fewer bits
added to packets than existing methods.
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• Networks → Network algorithms; Network monitoring; Pro-
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1 INTRODUCTION
Real-time detection of traffic loops is essential for the performance
of today’s networks. Unidentified loops may lead to losses, which
in turn increase the tail latency [14]. Also, packet losses due to
traffic loops are often interpreted as a signal of congestion, e.g.,
in TCP, leading to a reduction in throughput [1]. As an example,
in a production cluster of 2500 switches, Microsoft reported that
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.Figure 1: Unroller in action: each packet stores the minimal switch ID
seen and resets the stored ID after each phase. When a packet reaches
the switch with the stored ID, the loop is reported.

traffic trapped in routing loops led to a significant increase in overall
traffic [29]. Also, it has been demonstrated that the portion of traffic
not caught in the loop but sharing some of the affected links can
be severely affected in terms of delay and jitter [14]. Finally, loops
are one of the main causes for routing instability which can affect
performance on the network as a whole [10, 25, 26]

Advanced approaches to loop detection include storing state on
switches [19, 24] or mirroring just selected packet header fields [9,
13]. The former leads to significant overhead on switch memory,
while the latter leads to significant overhead on the network. Both
aspects are important, as the scarce switch SRAM memory can be
instead used for ACL rules or customized forwarding [23], while
excessive control traffic can have prohibitive data collection over-
heads [21]. Lately, the recent advances of programmable switches [5]
has opened the opportunity to tackle the routing loop detection prob-
lem by storing path information directly on packets. For example,
the in-network telemetry (INT) [11] allows each switch to put its ID
on a packet as it passes by. As a consequence, if a switch sees its
own ID on an incoming packet, it can conclude the existence of a
routing loop and take appropriate action, e.g., report and reroute the
packet. This simple solution suffers from an important drawback:
storing the full path information on a packet takes significant header
space. For a path of six hops, for example, we need 32 Bytes (8
Byte INT header and 4 Byte switch ID for each hop) [11], which is
an overhead of 3.2% for packets with an average size of 1 KBytes.
While a reduced overhead can be obtained for specific data center
topologies [27], a more generic approach is needed when dealing
with any arbitrary big topology.

In this paper, we design Unroller, a solution that enables real-time
identification of traffic loops while keeping low overhead on both
network and switches. The idea is to store within each packet only a
subset of the path taken, even a single switch ID, while guaranteeing
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that a routing loop can be identified in a bounded number of hops.
This is possible by dividing the path of a packet in phases, i.e., con-
secutive series of hops, that increases exponentially, i.e., 1, 2, 4, 8, . . ..
Every time a switch processes a new packet, it is allowed to store its
ID only if it is smaller than the one currently stored into the packet
or if we are at the beginning of a new phase. Intuitively, not too long
after reaching the loop, the packet will enter a phase that is long
enough to reach again the last switch that has updated its ID on the
packet (see Figure 1). We evaluate Unroller against state-of-the-art
solutions using real WAN and data center topologies. We show that,
although storing only partial information into packets might intro-
duce errors, the probability of falsely reporting a loop is negligible
in practice. Furthermore, our solution requires from 6x to 100x less
bits added to packets than existing methods.

In summary, the main contributions of this paper are:

• We present Unroller, a novel solution that enables real-time iden-
tification of routing loops in the data plane by storing information
on packets.

• We evaluate Unroller on a number of real WAN and data center
topologies. We also implement our solution in P4 and compile
into three different FPGA targets.

• We analyze Unroller and rigorously prove performance bounds.
• We open source our code: https://github.com/kucejan/unroller.

2 DESIGN SPACE
Past proposals can be classified into three main categories depending
on how they handle the information needed for detecting loops; (1)
keep flow state at switches; (2) mirror information at switches; or
(3) keep information on packets.

Storing flow information at switches [18, 24] and periodically
exporting the information to a collector can put too much pressure
on the switch hardware. Indeed, keeping state for a large number
of active flows (e.g., up to 100K [22]) is by itself challenging with
limited switch space (e.g., 100 MB [20]). Moreover, space is at a
premium because operators need the memory for more essential
control functions such as ACL rules, customized forwarding [23],
and other network functions and applications [16, 20]. The advantage
of storing information on switches is the low network overhead; we
only need to occasionally export the switches’ state for analysis and
can avoid using excessive control bandwidth.

Mirroring information at switches upon a packet arrival [13] or
after a given timeout [9] creates significant scalability concerns for
both trace collection and analysis. The traffic in a large-scale data
center network equipped with hundreds of thousands of servers
can introduce terabits of traffic [12, 22]. Assuming a CPU core
can process tracing traffic at 10 Gbps, on the order of thousands
of CPU cores would be required for trace analysis [29], which is
prohibitively expensive.

Finally, a third set of solutions propose to keep information on
packets [11, 15, 27]. Specifically both INT [11] and Tiny Program
Packets [15] suggest a mechanism for each switch to record their ID
in the incoming packet. This allows rapid detection of loops in the
data plane1 at the cost of a per packet overhead that grows linearly
with the network diameter, i.e, the ID is encoded in 4B and 2B for

1If a switch receives a packet with its ID already stored, then most likely the packet has
entered in a loop.

Table 1: Comparisons of Unroller and the state-of-the-art solutions for
routing loop detection.

Type Solution Real Switch Network
Time Overhead Overhead

On-switch State
FlowRadar [18]

✗ high low
Hash IP Traceb. [24]

Header Mirroring
NetSight [13]

✗ low highEverflow [29]
Trajectory Samp. [9]

Full Path Encoding INT [11]
✓ low high

on Packets
TPP [15]
PathDump [27]

Partial Encoding Unroller ✓ low low

INT and TPP respectively. With Pathdump [27], the authors instead
enable on-line routing loop detection by leveraging the fact that
commodity SDN switches can recognize only two VLAN tags in
hardware. With this in mind, they consider only scenarios where
a third VLAN tag only arises in the presence of a loop, and when
an attempt is made to add a third tag, the switch CPU is invoked to
manage the loop detection.

A last key classification for such algorithms is whether they can
detect a loop in real time: while a packet is in flight. Real-time
detection of loops enables (1) selective reporting: let the packet
traverse the loop again to record the identifiers of the participating
switches; and (2) active rerouting: forward the packet to a different
port in an attempt to avoid packet loss. All existing solutions are
either unable to detect loops in real time or have a packet overhead
that is linear in the number of hops, as presented in Table 1. Given
the design space with the trade-offs current solutions face, in this
paper, we answer the following question:

Can we design an algorithm that detects routing loops at
real time, in the data plane, while keeping low switch and
network overheads?

We show that this is possible with Unroller, a technique to encode
only a small subset, e.g., a single identifier, of the switches ID along
the path, while guaranteeing detection in a bounded number of hops.

3 UNROLLER
One possible approach to detect loops by encoding information
onto packets is to store the identifier of all switches that the packet
traverses. This is how INT would handle this task. When a switch
receives a packet, it checks if it is on the packet’s list and, if so, re-
ports a loop. As previously discussed, this generally adds significant
bandwidth overhead and should be avoided.

A possible alternative is to store a Bloom filter which encodes
the set of visited switches. Intuitively, we can hold a compressed
representation of the path and save bandwidth at the cost of false
positives. As before, once a switch is reported as positive by the filter,
we report a loop. This Bloom filter solution must deal with false
positives, but it remains wasteful even without that issue. Intuitively,
there is no need to remember all switches on the loop, but only
some switch on the loop. If a packet stores the same switch ID while
traversing the entire loop, we can report the loop when we see the
repeated switch ID. Let us first assume that the packet’s first hop is
already part of the loop. In this case, we can record on the packet
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Table 2: List of symbols and notations.
Symbol Definition

B The number of hops before the loop.
L The number of switches in the loop.
X The number of hops before reaching a switch twice (B+L).
b The phase growth base; the i’th phase lasts for bi hops.
z The Unroller bit-overhead on each packet.
c The number of switch IDs encoded into packets.
H The number of hash functions used on each switch ID.
Th The threshold for reporting a loop.

the minimum switch ID that it has seen. We are guaranteed to detect
the loop after two iterations through the loop; the minimal switch
is recorded in the first loop and observed again in the second loop.
The problem becomes a bit more complicated when there could be
a path of switches the packet traverses before reaching the loop. In
this case, the above approach would fail when the minimal identifier
appears on the path leading to the loop rather than the loop itself.
We suggest the following solution (Table 2 summarizes the notation
used in this paper).

Let B be the number of hops before the loop and L be the number
of switches in the loop. Notice that any algorithm would require the
packet to traverse X ≜ B + L hops before reaching some switch for
the second time, which gives a lower bound on the number of hops
required for detection. We now show a deterministic algorithm that
stores a single switch ID, has no false positives, and finds the loop
after at most 4.67X hops (without knowing B or L). As before, we
keep the minimum identifier we have seen, but now we occasionally
reset the identifier as though we are restarting, and we gradually
increase the resetting intervals.

Our algorithm has a parameter b that determines how aggressively
we increase the resetting intervals. The execution takes place in
phases so that at the end of each phase, we reset the stored identifier;
the i’th phase lasts for bi hops. We prove that after no more than

(2L − 1) +max
{
2bL − 1
b − 1

, bB + 1
}
≤ 4.67X

hops (the inequality holds for b = 4), the packet reaches a switch
that can report the loop. If the switches can perform floating point
operations, or if we can compute

⌊
bi
⌋

for non-integer b using a
lookup table, it is possible to optimize the ratio further.

THEOREM 1. Our algorithm identifies the loop after at most
(2L − 1) +max

{
2bL−1
b−1 ,bB + 1

}
hops at the worst case.

We split the proof of the theorem into three simple lemmas.

LEMMA 2. After at most 2bL−1
b−1 hops, we get to a phase that lasts

at least 2L hops.

PROOF. Let us first denote by p the first phase number that lasts
for at least 2L hops. Observe that p =

⌈
logb 2L

⌉
; the number of hops

until we reach this phase is then
p−1∑
i=0

bi =
bp − 1
b − 1

≤
2bL − 1
b − 1

. □

LEMMA 3. After at most bB + 1 hops, the stored ID is from a
switch on the loop.

PROOF. We know that after B hops the packet reaches the loop.
We want to show that, once the packet reaches the first switch in the

loop, after at most (b−1)B+1 additional hops the phase ends and the
identifier resets, at which point the stored ID will be from a switch
on the loop. Since the previous phase (if one exists) before reaching
the first switch in the loop cannot last more than B hops, it follows
that the current one must end within b · B hops. A slightly tighter
analysis shows that it actually ends within (b − 1)B + 1 additional
hops. Denote the phase number when we reach the first switch on
the loop by p. By the end of this phase, the stored ID will be from a
switch in the loop. We have that

bp − 1
b − 1

=

p−1∑
i=0

bi < B,

and thus p < logb (B(b − 1) + 1). As the current phase is of length
bp , the lemma follows. □

LEMMA 4. If at the start of a phase the stored identifier is from
a switch on the loop and the phase lasts at least 2L − 1 hops, then
we terminate after at most 2L − 1 hops.

PROOF. Let v be the switch with the smallest ID in the loop.
From (1) and (2) it follows that (i) the packet has already reached
the loop, (ii) that the ID that is stored of a node in the loop and that
(iii) the phase is long enough; after at most L − 1 hops the packet
reaches v and thereafter does not change the stored identifier. After
another L hops it reaches v again and the loop is reported. □

3.1 Lower Bound
Our algorithm only guarantees detection after 4.67X hops. An in-
teresting question is what is the minimal number of hops required
for loop detection by an algorithm that stores a single identifier? As
we now state, deferring the details to Appendix A, any deterministic
algorithm that does not assume knowledge of B requires at least
≈ 3.73X hops detection time. This shows that our approach is not
far from optimal for deterministic algorithms.

THEOREM 5. Any deterministic loop detection algorithm that
stores a single identifier requires at least 3.73X · (1 − o(1)) hops for
detection in the worst case.

3.2 Average Case Analysis
The above analysis shows that we require at most 4.67 times as many
hops to report a loop than the costly algorithm that stores the entire
path. This analysis holds at the worst case, but it is also useful to
analyze the average case. For reasoning about the average case, we
require that the switch IDs will be random so that each switch has
the same probability of holding the smallest ID. If this is not the
case, we can use hashed switch IDs for the algorithm; these may
introduce false positives (similar to the Bloom filter algorithm), but
the trade-off between overhead to error is much more favorable in
our algorithm. Alternatively, we may consider a random permutation
on the switch identifiers that is known to all switches. We have no
false negatives and all loops are still guaranteed to be reported. We
show here that in the average case, the loop is detected after at most
3X hops, when b = 3. There are three cases to consider, depending
on the length, denoted q, of the first phase that begins on the loop
with length at least L.

If q = (1 + α)L for some 0 ≤ α ≤ 1, then up to this phase, by our
previous analysis, the packet has traversed at most (q − 1)/(b − 1)
hops. In this phase, since the switch with the minimal identifier
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is equally likely to be any on the loop, we hit the switch with the
minimal identifier twice with probability α , and in this case, the
expected number of additional hops is (1 + α/2)L. If the switch with
the minimal identifier is not hit twice in this phase, which occurs
with probability (1−α), it will be hit twice in the next phase, after an
expected (1+α)L+ (1+ (1−α)/2)L hops. Overall, the total expected
number of hops is at most

L
(
1 + α
b − 1

+ 2 −
α 2

2
+

(1 − α )2

2

)
= L

(
1 + α
b − 1

+ 2.5 − α
)
.

For b = 3, this expression is at most 3L.
If 2L < q ≤ bL, then the loop will be found in this phase, after

an expected 3L/2 hops. Up to this point, the packet has traversed
at most bL/(b − 1) hops, which is also 3L/2 when b = 3, giving an
overall count of at most 3L hops.

If q > bL, then the previous phase was at least L hops but
did not start on the loop. In this case, we have traversed at most
bB + 1 hops, and B is at least L/(b − 1). The loop will be found
in this phase, after an expected 3L/2 hops. In this case, X is at
least B + L, and the expected number of hops to find the loop
is at most bB + 1 + 1.5L ≤ 3X .

For b = 3, in all cases, we have shown that after at most 3X hops
we identify the loop, and this is the best choice for b for the average
case analysis. The average case analysis provides a different bound
than the lower bound for the worst-case analysis, and uses a different
choice of b than our best upper bound for the worst-case analysis.

3.3 Reducing the Per-Packet Overhead
The above algorithms suggest storing a switch identifier on each
packet. However, in some cases, the identifiers may be large and
pose an undesirable overhead. In such cases we propose to hash
the switch identifiers into z bits. That is, instead of storing a switch
identifier, Unroller will encode its smaller hash onto the packet. This
reduces the number of bits added to each packet but introduces false
positives as two switches not on a loop, but simply on the path, may
have the same hash.

We propose a simple counting technique that exponentially re-
duces the probability of false positives. We add a small counter
that tracks the number of times we have seen a switch whose hash
matches the one on the packet. Once the counter reaches a prede-
termined threshold of Th, we report the loop. If there is a loop, the
counter eventually reaches Th; if there is no loop, a false positive
now requires Th switches on the path to have the same hash, which
is much more unlikely. This solution requires an additional

⌈
log2Th

⌉
bits per packet2, but significantly reduces the chance of false report-
ing. For example, on a path of length 20 hops, with Th = 4, z = 7,
and b = 4, the chance of false positives is lower than 10−5 while
using (7+ 2) bits of overhead per packet. Therefore, we can run with
only a few false positives while reducing the overhead by 72%. We
note that using Th > 1 does not come for free as it increases the
number of hops required for detection (namely, by (Th − 1) · L hops).

3.4 Trading Bandwidth for Convergence
So far, we have allowed the algorithm to store a single identifier.
As we saw, this allows us to derive algorithms that are 3-4.67 times

2We do not need to encode the value Th but report the hop that sees a hash match when
the counter equals Th-1.

Table 3: Parameters encoded in the packets’ header being
used by our algorithm.

Values encoded in packet headers
Xcnt

3 The current number of visited hops of the packet along its path.
SWids [] The array of the current switch IDs seen.
Thcnt The current value of the threshold counter.

slower than the X hops lower bound (which assumes no bandwidth
constraints). A natural question is whether we can get faster detection
if we allow storing more than one identifier but not the entire path.

The main drawback of storing just one identifier is that we had to
balance the rate in which we increase the reset time (the parameter b)
in a way that we do not lose much when B ≫ L but also when L ≫ B.

In Appendix B, we explore how to use multiple identifiers on
packets to reduce the expected number of hops required for detection.
Specifically, we show that by using H hash functions and storing
c identifiers for each (a total of c · H identifiers), we can reduce
significantly the number of hops. Intuitively, using multiple hashes
allows different switches to have “minimum IDs” with respect to
some hash function while each of the c identifier stored for a hash
function tracks the minimum only on a 1/c-fraction of the phase.

3.5 Discussion
Here, we discuss the importance of phases and the trade-off associ-
ated with the identification of the switches involved in the loop.

Importance of switch ID resetting. Let us assume a variant of
Unroller where each switch inserts its ID, with a set probability,
only if the incoming packet does not already carry the maximum
number of IDs. This solution works well when the packet’s first
hop is already part of the loop. If, however, the packet encounters a
number of hops before the loop, this solution might introduce false
negatives when only the pre-loop IDs are stored within the packet.
By introducing phases in the algorithm, we force the values already
stored within the packet to be overwritten at times, thus avoiding
this problem.

Identification of switches involved in a loop. There is an obvious
trade-off between the detection of the loop and the additional iden-
tification of all the switches involved. Directly recording as many
IDs as possible into packets aids the discovery of network elements
involved in the loop. However, this comes at the cost of additional
overhead on packets, which leads, in normal conditions, to undesired
effects on network performance [3]. With Unroller, we opted for a
lightweight mechanism to detect loops. Once a loop is identified it
is possible, for example, to tag the packet to collect the involved
switch IDs and send a report for analysis.

4 IMPLEMENTATION
We implemented Unroller using the P416 language [8] and compiled
on a software target BMv2 [7], and three FPGA based targets using
the P4-To-VHDL compiler [4].
P4 implementation. The core of Unroller is implemented in 60
lines of code. The implementation consists of a single control block
applied at the ingress pipeline. The input program parameters are
b, z, c, H and Th (Table 2). Additionally, Unroller requires extra
3In cases where the hop number can be inferred from the TTL (e.g., see [2, 3]), we can
avoid storing Xcnt and reduce the bit overhead.
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Table 4: Architecture HW resources utilization results.
Platform LUTs REGs BRAM Frequency
Virtex 7 26 234 (7.23 %) 29 944 (4.13 %) 396 kb (1.17 %) 224 MHz
Virtex US+ 26 221 (7.23 %) 30 520 (4.21 %) 684 kb (2.02 %) 225 MHz
Stratix 10 21 917 (1.17 %) 45 907 (1.22 %) 301 kb (0.12 %) 189 MHz

information being carried on each packet, as summarized in Table 3.
Observe that Xcnt requires at most 8 bits 3, SWids [] takes c · H · z
bits, while Thcnt only needs log2Th bits Here, we assume that
each switch has an unique identifier, stored in a register alongside
all the aforementioned configuration parameters. No match-action
tables are needed. All the logic fits in a single apply section of
the control block. Specifically, for each incoming packet, we (1)
read the configuration parameters from the registers and increment
Xcnt ; (2) evaluate the hash functions to randomize the switch ID;
(3) check if one of the IDs (SWids[]) stored within the packet have
to be updated; (4) drop the packet and inform the controller when a
loop is identified. Unroller updates the IDs list present in the packet
header only if either there is space for a new value, the current switch
has an ID smaller than the one currently stored in the list, or if the
packet enters a new phase. This is the case when the Xcnt counter
stored within the incoming packet is equal to a power of the phase
growth base b. Fortunately, for b = 2 or b = 4, this operation can
be performed using standard bitwise checks. Thcnt counter tracks
the number of times the packet has seen a switch whose ID matches
one of the stored values in the list. Once the counter reaches a
predetermined threshold of Th − 1, a loop is reported.
Compiling Unroller to programmable switches. We compiled Un-
roller on the P4 software switch target based on the behavioral model
(BMv2). Here, the main constraint is the number and pattern of ac-
cesses to on-chip registers [20]. To reduce the number of operations,
we used a 256-sized lookup table that records, for each possible
Xcnt , whether it is the start of a new phase. Alternatively, it is possi-
ble to store pre-hashed identifiers into registers, to reduce the number
of hash operations. Unroller requires two pipeline stages, uses mini-
mal resources, and does not store any per-flow state in the switch.
Furthermore, if the set phase growth base b is not a power of two, a
lookup table is necessary for determining the packet’s phase. This is
because specific operations such as division or power evaluation are
not natively supported by hardware.
Compiling Unroller to FPGAs. We used the P4-To-VHDL com-
piler to port the produced P4 code to different FPGA chips. This was
not a one-step process as the original code needed a few adaptations
to meet FPGA timing constraints. Specifically, the compiler allows
calling actions that manipulate packets only from a match-action ta-
ble and not directly from a control block. Because of this, we added a
dummy match-action table with a single default action uncondition-
ally manipulating the packet. We compiled the Unroller logic into
three different FPGA-based targets supporting 100GbE ports: Xilinx
Virtex 7 (model XCVH580T), Xilinx UltraScale+ (model XCVU7P)
and Intel Stratix 10 (model 1SG280HU). Table 4 shows the chip
occupancy and the maximum frequency for all the platforms. Here,
we can see that Unroller logic is lightweight, requiring less than
8% of chip resources. Since the synthesized architectures are fully
pipelined, i.e., capable of processing a new packet every clock cycle,
the frequency can be directly correlated with the maximum achiev-
able throughput: ~220 Mpps for Xilinx devices, and ~190 Mpps for
the Intel platform. This is more than 100 Gbps for minimum-sized

Table 5: Unroller vs. state-of-the-art solutions on real topologies.

Topology
# of

Nodes
Dia-

meter

PathDump Bloom filter Unroller
Overhead Overhead Avg Time Overhead

(bits) (bits) (#hops/X) (bits)

Stanford 16 2 × 171 1.74 25
BellSouth 51 7 × 189 1.56 25
GEANT 40 8 × 608 2.13 27
ATT-NA 25 5 × 608 2.15 27
UsCarrier 158 35 × 2466 2.47 28
FatTree4 20 4 64 414 1.73 28

Ethernet packets. Given the targets are dimensioned for 100GbE
processing, we can fairly state that Unroller logic does not introduce
any throughput degradation.

5 EVALUATION
We evaluated Unroller with a Python simulator that generates paths
based on the required number of hops before entering a loop (B)
and the number of hops comprising the loop itself (L). Unless oth-
erwise stated, each data point reflects 3M runs. Switch identifiers
are randomly generated 32-bit numbers, and the default Unroller
configuration parameters are b = 4 phase base, c = 1, H = 1
(one hash function) and Th = 1 reporting threshold (see Table 2
for notation description).

Comparing Unroller to state-of-the-art solutions. Here we used
several real topologies, with different sizes, spanning from WAN to
data centers [17, 28]. We compared the loop detection capabilities
of Unroller against state-of-the-art solutions that work in real time:
(1) PathDump [27] and (2) an especially crafted approach that adds
a Bloom Filter into packets to store switch IDs. The former adds a
fixed overhead on each packet, i.e., 64 bits, and does not experience
false positives, but can only be applied to a very limited set of topolo-
gies [27], e.g., FatTree and VL2. By employing a probabilistic data
structure to store switch IDs, the latter can introduce false positives,
as Unroller does. To compare both solutions fairly, we randomly
picked two nodes in each considered topology and selected a shortest
path between them. Out of all possible loops that intersect with that
path, we picked one uniformly at random. We then measured, over
3M runs, the minimum overhead (in bits) needed in each packet
so that no false positives were reported. Table 5 shows the results.
Unroller can detect loops, without experiencing any false positives,
using a very small packet overhead. Depending on the topology, our
solution requires from 6x to 100x fewer bits than the Bloom Filter
counterpart. This comes at the expense of detection speed: while the
Bloom Filter can identify a loop as soon as a switch is hit twice by
the same packet, Unroller might require one or two extra passes over
the loop, as reported in the Avg Time column in Table 5. INT would
require packets to store an increasing number of switch IDs at each
hop, making this approach more expensive (in terms of per-packet
bit overhead) than those previously discussed.

Sensitivity analysis. Here, we aim at assessing how the different pa-
rameters introduced in this paper (see Table 2) might affect Unroller
performance. Unless otherwise stated, the adopted default values are
the following: B = 5 hops before the loop, L = 20 loop hops, z = 32
bits per packet, c = 1, H = 1 (one hash function) and Th = 1 report-
ing threshold. We first evaluate the average detection time, measured
as the ratio between the number of hops required for detection and
the X = B + L hops lower bound. This time is affected by the loop
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Figure 2: Detection time varying L and b .
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Figure 3: Detection time varying L and B.
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Figure 4: Detection time varying L and c , H .
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Figure 5: Detection time for different c, H configurations.
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Figure 6: False Positives when compressing switch IDs to z bits.

length L when storing only a single full switch ID in each packet.
Figure 2 shows the relationship when varying the b parameter. The
smaller the value of b, the more aggressively Unroller resets the
switch ID stored in the packet, causing an increase of the average
detection time. Figure 3 shows the impact of B when b is fixed to 4.
Here, the average detection time increases when B decreases. This is
the effect of the resetting interval mechanism.

In Figure 4, we fixed b = 4 and B = 5 and studied the effect on
the average detection time of partitioning each phase into c chunks
and randomizing the switch ID using H hash functions. Specifically,
we stored c · H hashed switch identifiers into each packet. All of the
stored IDs are compared to the current switch identifier, and a loop
is reported if a match is found. Clearly, the more chunks and hashes
used, the better it is for the average detection time. Figures 5(a)
and 5(b) show in more details the individual impact of parameters
c and H to the detection time. We can see that the improvement
is greater when we are increasing the number of chunks c when
compared to increasing the number of hashed switch identifiers H .
This means that Unroller is more sensitive to the number of chunks
rather than the number of hash functions.

Although storing multiple identifiers in the packet (c > 1 or H >
1) improves the average loop detection time, it also imposes a bigger
overhead on each packet. Thus, we analyzed the extension of the
algorithm, which reduces the per-packet overhead by compressing
the switch identifiers into z-bit values. This practice, however, may
introduce false positives. We test using a path length of 20 hops,
with B = 20 and L = 0. As the adopted path does not contain loops,
any reported loop by Unroller is a false positive. Figure 6(a) depicts
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Figure 7: Detection time using counting technique varying Th.

the effect of the compression over the false positives when varying c
and H and keeping the hash width z. Partitioning of phases (c > 0)
or storing more hashed identifiers (H > 0), if combined with the
compression, increases the false positive rate but leads to faster
detection of loops (Figure 4).

Figure 6(b) shows similar results when the threshold technique
to reduce the false positive rate is deployed. In this case, the false
positives are reduced exponentially with the size of the threshold.
However, this comes at the cost of a slight increase in the average
detection time, as demonstrated in Figure 7.

6 CONCLUSION
In this paper, we presented Unroller, a lightweight loop detection
solution that is readily deployable on emerging technologies such
as programmable switches. We evaluated our solution and showed
that it could quickly and accurately detect routing loops using a
minimal bit-overhead on packets. Further, Unroller does not store
state on switches, leaving their scarce memory to other applications.
Unlike some of the existing solutions, Unroller can identify loops in
real time, by the switches themselves and without a remote analysis
node. We envision that such a capability would enable rerouting
mechanisms that could prevent packet losses that happen when
packets traverse a loop until their TTL zeros out. For example,
recently introduced solutions to enable near-optimal compression
of backup rules [6] can be adopted in cooperation with Unroller to
quickly reroute packets on pre-determined backup ports upon the
detection of a loop.
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A LOWER BOUND
Observe that any such algorithm can be determined by the inter-
val it takes before resetting the identifier (b0,b1, . . ., in our algo-
rithm). Let x1 denote the number of hops before the first reset,
x2 denotes the number of hops before the second one, etc. We

denote by β ≜ maxn∈N
{

xn∑n−1
i=1 xi

}
the maximal growth rate in

the resetting periods. Let n be such that xn∑n−1
i=1 xi

= β and denote

y =
∑n−1
i=1 xi .4 We also note that by setting a minimal value for n

(i.e., β ≜ maxn∈N,n≥T
{

xn∑n−1
i=1 xi

}
for some T ) we get an arbitrarily

large number of hops before possible detection (X ). We start with
some lemmas.

LEMMA 6. Any deterministic algorithm that stores a single iden-
tifier must make at least (β + 1) · X −O(1) hops before identifying
a loop.

PROOF. Let B = y + 1,L = 2, and consider the case where the
minimal identifier is at the last hop before the loop. In this case, the
algorithm will reset after y hops, then store the minimal identifier,
and will not detect loop before the next reset. Therefore, it will
only report the loop after y + xn + 2L − 1 = y(1 + β) + 2L − 1 =
(β + 1) · X −O(1). □

LEMMA 7. Any deterministic algorithm that stores a single iden-
tifier must in the worst case use at least

min {4, (3 + 2/β)} · X −O(1)

hops before identifying a loop.

PROOF. Throughout the lemma, we assume that B = 0 and con-
sider the value of L. We take cases on β .

If β ≤ 0.5 then the algorithm is not guaranteed to find the loop (it
will keep on resetting before that, e.g., for L = x1).

When 0.5 < β < 1, we consider L = ⌊2y/3⌋ + 1 and assume that
the minimal identifier is the last switch in the loop. Therefore, after
y hops the packet has not reached the minimum for the second time
and its identifier is reset. Then, before reaching the minimum for the
second time, we have a reset at xn + y < 2y hops. Specifically, this
means that the cycle is detected only after 4L − 1 = 4X −O(1) hops.

Next, consider 1 ≤ β < 2 (i.e., in this case, we have xn < 2y). Let
B = 0,L = y + 1, and consider the case where the minimal identifier
is reset after this y-hops (i.e., it is at the end of the loop). Since xn ,
we will not complete two cycles before the next reset; therefore, the
loop is detected after no fewer than 4L − 2 = 4X −O(1) hops.

Finally, let β ≥ 2. Here, let L = ⌈βy/2⌉ + 1 and consider the
case where the minimal identifier is the y’th hop in the loop. The
algorithm will reset the identifier after seeing the minimum for the
first time. It will then complete an entire cycle before seeing it again,
and just before reaching it for the third time, it will reset again (as
we reach y + xn hops). Therefore, the algorithm will make at least
y + xn + 2L − 1 = y(β + 1) + 2L − 1 = (3 + 2/β)L −O(1) hops. □

We now infer the correctness of Theorem 5.

4For simplicity, we assume that such exists, otherwise the result will hold up to a term
that vanishes as the loop grows longer.

PROOF. Using the two lemmas above, we have that the detection
time is lower bounded by

max {β + 1,min {4, 3 + 2/β}} · X −O(1)

hops. Taking the minimum over all real β values we get a lower
bound of (2 +

√
3)X −O(1) > (3.73 − o(1))X . □

B USING MULTIPLE HASHES
Given an integer parameter c ∈ N, consider partitioning each phase
into c chunks. Intuitively, we are going to store c times as many
identifiers, but each will only be active in a 1/c fraction of the phase.
Specifically, during phase p, chunk j will get the minimal identifier of
hops

⌈
bp/c · (j − 1)

⌉
, . . . ,

⌈
bp/c · j

⌉
−1. The algorithm still compares

the current switch identifier to all of the stored IDs and reports a
loop if it finds a match.

The analysis only needs to change slightly: Lemma 3 can now
show that after about at most B + (b − 1)B/c + 1 hops we have an
identifier in the loop. In turn, this gives that the overall number of
hops reduces to at most

2L +max
{
2bL − 1
b − 1

,B + (b − 1)B/c + 1
}
.

As an example, if we are allowed to store several identifiers, we can
set c = 2 and b = 7 for a detection after at most 4.33X hops at the
worst case.

Next, if we allow randomization, we can also consider using
H ∈ N hash functions. Specifically, we assign each switch s with
H identifiers {hi (s) | 1 ≤ i ≤ H } using random independent hash
functions h1, . . . ,hH . A packet now contains H IDs m1, . . . ,mH ,
one for each minimum obtained by h1, . . . ,hH . When reaching a
switch s, we compute its hashes and check if any of them matches
the ones on the packet (i.e., whether there exists i ∈ {1, . . . ,H }

for which hi (s) = mi ), and if so report a loop. Otherwise, for all
i ∈ {1, . . . ,H } we set mi = min(mi ,hi (s)) if we are in the middle
of a phase, or mi = hi (s) if the last phase has ended and a new
phase begun. Intuitively, if the phase is enough to complete two
cycles over the loop, we can get some switch on the loop with some
minimal identifier faster than if we had a single identifier. This is
because the expectation of the minimum among H uniform variables
in {0, . . . ,L − 1} has an expectation lower than L/(H + 1). Similarly,
if the phase covers the loop 1 + α times for some α ∈ [0, 1), the
chance that we will get a minimal identifier in the first αL hops
increases from α to 1 − (1 − α)H . It then takes another L hops to
complete another cycle and report the loop.
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[4] Pavel Benáček, Viktor. Puš, Hana Kubátová, and Tomáš Čejka. 2018. P4-To-
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