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Abstract

Motivation: Accurate genotyping of DNA from a single cell is required for applications such as de

novo mutation detection, linkage analysis and lineage tracing. However, achieving high precision

genotyping in the single-cell environment is challenging due to the errors caused by whole-

genome amplification. Two factors make genotyping from single cells using single nucleotide

polymorphism (SNP) arrays challenging. The lack of a comprehensive single-cell dataset with a

reference genotype and the absence of genotyping tools specifically designed to detect noise from

the whole-genome amplification step. Algorithms designed for bulk DNA genotyping cause signifi-

cant data loss when used for single-cell applications.

Results: In this study, we have created a resource of 28.7 million SNPs, typed at high confidence

from whole-genome amplified DNA from single cells using the Illumina SNP bead array technol-

ogy. The resource is generated from 104 single cells from two cell lines that are available from the

Coriell repository. We used mother–father–proband (trio) information from multiple technical

replicates of bulk DNA to establish a high quality reference genotype for the two cell lines on the

SNP array. This enabled us to develop SureTypeSC—a two-stage machine learning algorithm that

filters a substantial part of the noise, thereby retaining the majority of the high quality SNPs.

SureTypeSC also provides a simple statistical output to show the confidence of a particular single-

cell genotype using Bayesian statistics.

Availability and implementation: The implementation of SureTypeSC in Python and sample data

are available in the GitHub repository: https://github.com/puko818/SureTypeSC

Contact: eva@sund.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell genomics is an umbrella term for genotyping of

individual cells from a heterogeneous population. The deconvolu-

tion of mixed populations allows detection of genetic diversity

within a population of cells. Applications cover many disciplines

from sequencing the complete genomes of microorganisms that are

challenging to culture in the laboratory to de novo mutation

detection in tumor cells (Huang et al., 2015). Detecting

genomic changes in single cells is a sensitive procedure, complicated

by the often rare, unique and precious nature of the starting mater-

ial, such as during genetic testing of human embryos for diagnostic

purposes.
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Unlike sequencing of bulk DNA, single-cell sequencing requires

a whole-genome amplification (WGA) step to generate sufficient

material for genotyping by next-generation sequencing (NGS) or

single nucleotide polymorphism (SNP) array (Gawad et al., 2016).

A typical human cell contains 8–16 pg nuclear DNA that must be

amplified to meet the input requirements for PCR-free sequencing

(1 mg) or SNP array analysis (400 ng). The efficacy of genotyping

from a single cell is critically dependent on the WGA method.

Genome coverage, replication fidelity and the level of technical

noise, such as systematic or stochastic amplification bias, are the

main features considered when choosing the WGA method.

However, all WGA methods deteriorate the signal from single cells.

The signal deterioration potentially carries two risks: (i) sub-

optimally amplified signal can lead to a complete loss of information

about a particular locus and (ii) uneven signal amplification of two

alleles at a heterozygous locus can result in an erroneous homozy-

gous genotype call. The latter is called allele drop-out (ADO) and

affects up to 30% of SNPs from a single cell (Blanshard et al.,

2018).

After WGA, the amplified DNA can either be sequenced or

analyzed by SNP arrays. There are several tools for genotype calling

from WGA amplified DNA after sequencing (Bae et al., 2018;

Bohrson et al., 2017; Dong et al., 2017; Lodato et al., 2015; Zafar

et al., 2016). In theory, sequencing can detect genomic changes from

single base mutations to whole chromosome imbalances (Gawad

et al., 2016; Huang et al., 2015). However, the sequencing depth

required for applications such as detection of rare variants in a popu-

lation of cells is limited by the number of cells that can be assessed,

making sequencing impractical. In contrast, although SNP arrays are

limited by assessing only a sample of the genome, the technology

allows the analysis of a wide range of genetic variants with good

coverage in a fast and cost-efficient manner. SNP arrays have been

successfully applied to WGA DNA for discovery of new mutations,

especially larger deletions that can cause loss of heterozygosity in

cancers (Leung et al., 2002; Wong et al., 2004). They are also used

in linkage analysis to screen preimplantation embryos for the pres-

ence or absence of monogenetic variants that underlie serious genetic

disorders. This is referred to as preimplantation genetic diagnosis or

preimplantation genetic testing for monogenic disorder, PGT-M.

This makes it critical that genome coverage is high and that the

SNPs are typed with high precision (Handyside et al., 2010; Natesan

et al., 2014; Zamani Esteki et al., 2015). SNP arrays have also been

used to infer the parental origin of chromosome imbalances in

human preimplantation embryos as well as recombination and segre-

gation patterns in meiosis after WGA (McCoy et al., 2015; Ottolini

et al., 2015). The unique genomic arrangement of SNPs that occur

naturally as haplotype blocks, or can be induced experimentally,

also allow lineage tracing in a variety of organisms, including by

SNP array analysis (Ottolini et al., 2017; Woodworth et al., 2017).

There is a plethora of tools and algorithms currently available for

genotyping bulk DNA from SNP arrays (Li et al., 2012; Ritchie et al.,

2011). These algorithms are optimized for SNPs on the array and per-

form very well in terms of both call rates and sensitivity. However, an

algorithm that is specifically designed for single-cell variant calling

using SNP arrays is currently missing. This is important because it is

unclear how well the genotyping platforms deal with the biases intro-

duced by WGA of DNA from single cells. One solution is to include

only SNP calls that are similar in properties to those from bulk DNA.

This, however, causes a substantive loss of data (Zamani Esteki et al.,

2015). It is also unclear how accurate genotyping is after the WGA.

Genotyping from SNP arrays relies on the detection of emission

intensities (X and Y). Thus, when both X and Y are above a certain

threshold, the genotype is inferred as heterozygous (AB). In contrast,

when only X or Y is detected above a certain threshold, a homozy-

gous genotype is assigned (AA or BB). Current genotyping

algorithms are based on two distinct approaches. Model-based algo-

rithms do not require a training dataset and assume that every SNP

can be modeled from a linear combination of multivariate compo-

nents (Giannoulatou et al., 2008; Teo et al., 2007). Reference-based

algorithms perform genotyping based on a comprehensive database

of reference variants. Parameters of these algorithms are inferred

from a training dataset (e.g. the HapMap population, International

HapMap Consortium, 2005) and are used for normalization of the

raw data (Ritchie et al., 2009) or provide a confidence measure of

the genotype (Kermani, 2008). The training of the parameters can

be performed via supervised machine learning methods, in particular

neural networks (Kermani, 2008).

Here, we present a comprehensive database of 104 single-cell

samples from two different cell lines that we SNP-typed and com-

pared with their reference genotype. This allowed us to divide the

data in two classes: (i) high quality single-cell calls and (ii) misclassi-

fied single-cell calls caused by deteriorated signal. We used both

classes to develop a two-layered algorithm that combines a super-

vised machine learning method with a model-based algorithm.

We refer to this as SureTypeSC, which is able to identify the noise in

the single-cell data coming from erroneous WGA and then assign a

probability score of a SNP being correctly genotyped.

2 Materials and methods

2.1 Cell lines and molecular methods
We generated genotypes from whole-genome amplified DNA (from

single cells) or genomic DNA from bulk extraction using the

Infinium Karyomapping Assay Kit (Illumina Inc., California, US).

We obtained EBV-lymphoblastoid cell lines GM07228 and

GM12878 from the NIGMS Human Genetic Cell Repository at the

Coriell Institute for Medical Research, New Jersey, USA, and cul-

tured these according to the supplier’s recommendation. All of the

molecular methods and genotyping using GenCall for obtaining the

SNP genotypes are provided in the Supplementary Methods.

2.2 MA transformation
The MA transformation is an application of the Bland–Altman

transformation (Bland and Altman, 1999) that has been used exten-

sively in the analyses of gene expression data when intensity values

for two channels are compared using microarrays (red and green,

referred to as X and Y, respectively).

Formally, we apply a linear-log transformation for every SNP, i,
carrying a tuple of intensities ðxi; yiÞ by calculating the values mi and

ai, as follows:

mi ¼ log2ðxiÞ � log2ðyiÞ
ai ¼

1

2
½log2ðxiÞ þ log2ðyiÞ�:

The M-feature has powerful discriminative ability to separate

the three genotype clusters and is able to reduce variability between

experiments and SNPs (Carvalho et al., 2007). The A-feature is a

good general indicator of the signal quality (Ritchie et al., 2011).

2.3 Bioinformatics workflow for the machine learning

algorithm
We developed a bioinformatics workflow with a supervised machine

learning core that filters out the noise from the single-cell data.
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The reference training intensities as well as validation intensities are first

extracted from the intensity data (*.idat) files and subsequently geno-

typed using the GenCall algorithm implemented in GenomeStudio.

The training data are then exported from GenomeStudio, transformed

using the MA transformation and fitted to a two-layered machine learn-

ing model. The results are subsequently tested on a cross-validated data

as well as on a set of independent single-cell samples. The details of the

workflow are shown in Supplementary Figure S1.

2.4 Training and validation datasets
We created a reference genotype for both single-cell lines

(GM07228 and GM12878) using parental information and multiple

technical replicates from bulk DNA (Supplementary Methods).

We subsequently compared our single-cell datasets to the reference

genotype. More specifically, for every candidate single-cell call for

SNP i and sample s we assigned a label: li;s 2 fTrue; Falseg, depend-

ing on the match or mismatch with the corresponding reference

genotype call. The training dataset is then a triplet (mi;s; ai;s; li;s Þ,
where (mi;s; ai;s) are input features and li;s is the output feature.

Note that we omit sample index s in further explanation, as we do

not distinguish between the origins of SNPs in the training dataset.

We included all autosomal single-cell calls with GenCall score above

0.01 (QC001) totaling 14 403 139 SNPs for training (GM07228)

and 11 737 508 SNPs for validation (GM12878). Lowering the

GenCall score threshold for accepting a SNP allowed us to include

potentially poorly amplified SNPs and to capture the full error pat-

tern. Table 1 and Supplementary Table S2 give a detailed overview

of the datasets used.

2.5 Supervised training using Random Forest
Random Forest (RF) is an ensemble supervised training method that

is built from the collection (forest) of classification (decision) trees

(Breiman, 2001). Each tree is trained on a different random subset

of data and different subsets of input features. Although the training

data only contain two input features (M and A), the preliminary

analysis (Fig. 1B) suggests that the function that separates the erro-

neous clusters (red areas) from the correct calls (blue areas) is non-

linear. RF has the ability to fit different trees to different parts of the

input space and therefore approximate a non-linear separating func-

tion resulting in increased classification accuracy. The class of mis-

calls (l ¼ False) is usually a minority class and we therefore applied

downsampling on the class of correct calls to tackle the class imbal-

ance. We used the implementation of RF from the scikit package

(Pedregosa et al., 2011) for fitting the training data. We adjusted the

following parameters of the algorithm:

• the number of trees was increased from 10 to 30; according to

Oshiro et al. (2012), a theoretical upper limit is 128 trees and

further increase in number of trees does not contribute to higher

accuracy. However, our data suggest that forests with more than

30 trees contribute minimally to the accuracy of the model but

increase the size of the model substantially (data not shown);

Table 1. Summary of genotype calls from single cellsa

Cell lined Minimal QCb GenCallc

þ – NC þ – NC

M SD M SD M SD M SD M SD M SD

GM07228 0.39 0.02 0.05 0.01 0.05 0.01 0.36 0.02 0.04 0.01 0.1 0.01

GM12878 0.4 0.02 0.06 0.02 0.04 0.01 0.37 0.03 0.04 0.01 0.09 0.02

Totale 0.8 0.11 0.09 0.73 0.08 0.19

Total countse 28.7 million SNPs, 104 cells

aValues are proportions.
bGenCall cutoff 0.01.
cGenCall cutoff 0.15.
dþ: concordant with reference genotype; �: disconcordant with reference genotype; NC, no calls; M, mean; SD, standard deviation.
eTotal proportions of concordant, disconcordant and no calls in analysed data and size of analysed data.

Fig. 1. Signal-noise detection in whole-genome amplified DNA from single

cells. (A) The GenCall algorithm in GenomeStudio classifies genotyping calls

based on the normalized intensities of the X and Y channels (A and B allele,

respectively). The genotyping space for homozygous AA calls is shown in

red, heterozygous genotypes fall within the purple area and homozygous BB

genotypes are in blue. The centroid of each genotyping space is shown as a

circle. The genotyping space is specific to each SNP and based on bulk DNA.

Cyan points: genotypes from bulk DNA, green points: correct genotypes from

single cell, gray points: genotyping calls from single cells below the QC

threshold of GenCall; red points: misclassified genotype from single cells. (B)

Contour MA plot of all SNPs from one single-cell sample from GM07228; AA,

BB and AB clusters are labeled accordingly. The probability density function

was estimated using bivariate normal kernel from MASS library in R with de-

fault parameters. Each ring connects values with similar density levels and

shades of blue/red show the likelihood of correct/incorrect genotype in that

area (C) MA plot of 10 000 randomly selected SNPs from 10 single-cell sam-

ples from GM07228. (D) Cluster labeling of randomly selected SNPs from (C)

using SureTypeSC
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• the number of features to consider when looking for the best split

was set to two.

The prediction was evaluated in two ways—by stratified 10-fold

cross-validation and with an independent single-cell dataset. We

used metrics that are commonly used in classifier evaluation as well

as metrics that are specific for the single-cell environment

(Supplementary Methods).

2.6 Cluster correction using Gaussian discriminant

analysis
The second stage of the algorithm is a Gaussian discriminant

analysis (GDA) that formalizes the genotype clusters obtained from

the RF step and potentially improves the precision and recall.

Let D ¼ fxjjj ¼ 1 . . . N;xj 2 R� R�G� bLg denote a set of N

validation SNPs that were classified by the trained RF, where

G ¼ AA; AB; BBf g; bL ¼ fT; Fg. Therefore, xj ¼ ðmj; aj; gj; l̂j Þ
is a quadruplet of the logarithmic difference, logarithmic average,

genotype predicted by GenCall (QC 0.01) and class prediction by

RF at the j-th SNP. We assume that both the positive (T) and nega-

tive (F) classes, which are represented by pairs di ¼ ðmi; aiÞ, come

from mixtures of multivariate normal distributions. Based on this,

we define the following system of Gaussian discriminants:

bL � BernoulliðkÞ (1)

p l̂
� �
¼ kl̂ 1� kð Þ1�l̂

(2)

p djjl̂ ¼ T
� �

¼ p djjHT

� �
¼
X3

k¼1

aT;k/ djjzT;k; hT;k

� �
(3)

p djjl̂ ¼ F
� �

¼ p djjHF

� �
¼
X3

k¼1

aF;k/ djjzF;k; hF;k

� �
(4)

where:

• k denotes probability Pðl̂ ¼ TjdjÞ
• / is multivariate normal density function with parameters hk

(with mean lk and covariance matrix Rk)
• zk is an indicator variable that denotes the genotype class,

where zk 2 G� bL
• ak is the mixture component weight representing the probability

that a random tuple mj; ajð Þ was generated by component k.

The complete set of parameters for the presented Gaussian

discriminants is given as HbL2fT;Fg ¼ abL ;1; . . . abL ;3;� hbL ;1 . . . hbL ;3g.
The log-likelihood function F for classes from L̂ is defined as

follows:

ln F Hð Þ ¼
XN
j¼1

lnpðdjjHbL Þ: (5)

We use an expectation–maximization (EM) algorithm

(Dempster et al., 1977) to estimate the parameters HbL of the positive

and negative class that maximize their log-likelihood function

[Equation (5)]. The EM algorithm is divided into an expectation-

step (E-step) and a maximization-step (M-step). These are run in

iterations separately for the positive and negative classes until con-

vergence is reached. The detailed description of the algorithm is pro-

vided in Supplementary Methods.

After the parameters of both classes have been estimated by the

EM algorithm, they are subjected to a second run. Here, the class

membership bL is hidden from the algorithm and every SNP is eval-

uated for both Gaussian discriminants using the following formula:

ðscoreT; scoreFÞ ¼ ½ln p djHbT
� �

; ln p djHbF
� �

�: (6)

The final classification (membership to a positive or a negative

class) is determined by higher value from the pair ðscoreT; scoreFÞ.

2.7 Scoring function
The key role of a genotyping algorithm is to report the likelihood of

a certain genotype in form of a score or a posterior probability.

Besides GenCall having its own scoring scheme, we used the follow-

ing equations to estimate the probability of a certain SNP being cor-

rectly genotyped:

1. RF: the score of a genotype of the ith SNP is given as a propor-

tion of the trees in the forest that voted for a particular genotype

being correct:

scoreRF ¼ Pi li ¼ Tjdið Þ: (7)

2. The scoring strategy of SureTypeSC is inferred from its second

layer (GDA) as the class-conditional posterior probability of a

genotype falling into positive class T:

scoreRF�GDA ¼
escoreT � PðTÞP

Z2fT;Fg escoreZ � PðZÞ : (8)

3 Results

3.1 Generation of 28.7 million high confidence SNPs

from single cells
We typed nearly 28.7 million SNPs from 104 cells from two individu-

als (GM12878 and GM07228, Table 1 and Supplementary Table S2)

using the HumanKaryomap-12 array (Illumina Inc., California, USA).

To amplify the DNA from the single cells, we used multiple displace-

ment amplification, a commonly used first-generation WGA method

that relies on Phi (U) 29 polymerase. Its 3’fi5’ exonuclease activity

allows proofreading and therefore improves the fidelity of amplifica-

tion. This allows high precision genotyping with a mutation rate of

10�7�10�9. Furthermore, the ability to displace secondary DNA struc-

tures, such as hairpin loops that would cause other polymerases to stall

or dissociate from the template DNA, allows the amplification of long

DNA fragments (2–10 kb) (Blanshard et al., 2018; Dean et al., 2002).

3.2 Noise characterization of genotypes from single

cells
To characterize the noise associated with genotyping from

whole-genome amplified DNA from single cells, we compared the 28.7

million SNP genotypes from the two single-cell datasets to their refer-

ence genotypes obtained from bulk, genomic DNA. To this end, we cre-

ated high confidence reference genotypes from bulk DNA using nine

independent bulk DNA samples hybridized against the

HumanKaryomap-12 array and inferred genotypes using either the full

parental information (GM07228, Supplementary Methods) or multiple

technical replicates of bulk DNA and sequence data (GM12878,

Supplementary Methods and Eberle et al., 2017). This allowed us to

identify 264 269 SNPs for GM07228 and 270 681 for GM12878

(95.8% and 97.9% of autosomal SNPs, respectively) on the

HumanKaryomap-12 array that called correctly in every replicate from

bulk DNA. From these, we generated high confidence reference

genotypes.
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Using the standard QC cutoff from GenCall (0.15), 73% SNPs

(20.9 million) from the two single-cell datasets called correctly,

whereas 8% SNPs (2.36 million) were not concordant with the ref-

erence genotype (Table 1, Supplementary Table S2). About 19%

SNPs gave ‘no calls’ (5.05 million; Table 1, Supplementary Table

S2), having failed to fall within the genotype clusters defined by

bulk, DNA genotypes (Fig. 1A). The true positive rate was higher

when we used a minimal QC (0.01) compared to the standard QC

of GenCall (39%, SD ¼ 0.02 and 36%, SD ¼ 0.02%, respectively,

for cell line GM07228 and 40%, SD ¼ 0.02 and 37%, SD ¼ 0.03%

for GM12878, Table 1). These differences in true positive rates are

statistically significant (P < 0.0001, Supplementary Fig. S2). In total

for both datasets, the GenCall algorithm rejects about 7% of cor-

rectly genotyped SNPs from WGA DNA and increases precision by

2% (Supplementary Table S2). We also listed call rates and error

rates of individual cells and chromosomes from GM12878 and

GM07228 (Supplementary Table S3).

We displayed the pattern of the noise from the genotyping of

SNPs from WGA DNA from single cells by first transforming the

fluorescence intensities (X and Y) of each SNP into the logarithmic

difference M and logarithmic average A (MA plot; Fig. 1B–D). At

this stage of the workflow (‘Building training dataset’,

Supplementary Fig. S1), we were able to observe the error pattern in

the single-cell data and display it in the form of contour plots

(Fig. 1B). Three clusters of miscalls (false positives) became apparent

in the single-cell data. Two clusters were from ADO, where AB gen-

otypes were incorrectly genotyped as AA or BB. A smaller cluster of

allele drop-in (ADI) also appeared. The ADI cluster was clearly sep-

arated from the true AB genotypes. Most of the errors, however,

occur in the transition area between AB–AA and AB–BB (ADO) but

nevertheless suggest good separability of the correct calls from mis-

calls, since the centers of the clusters are non-overlapping (Fig. 1B).

3.3 Design and implementation of the SureTypeSC

algorithm
The characterization of the patterns of noise in a comprehensive

dataset allowed us to employ a supervised machine learning method

to classify and separate high quality genotypes from miscalls in the

WGA DNA from single cells (Supplementary Fig. S1). We combined

a non-parametric (RF) and parametric method (GDA) and devel-

oped a scoring strategy that assigns probabilities that a specific SNP

from a single-cell dataset has been correctly genotyped [Section 2,

Equations (7) and (8)]. Using a RF prevents over-fitting of the data

and provides good estimates of the positive and negative classes for

the GDA (Section 2). We implemented the RF-GDA and the testing

procedures in Python using the scikit library (Pedregoza et al., 2011)

and pandas (McKinney, 2010). An example of a division of the fea-

ture space consisting of M and A by the RF-GDA algorithm is

shown in Figure 1D. Collectively, we refer the single layers (that can

be implemented on their own) and the combined layers (RF-GDA)

as SureTypeSC. The output from SureTypeSC is compatible with

GenomeStudio and allows the user to import the results of the ana-

lysis back to GenomeStudio for further investigation.

3.4 Cross-validation of SureTypeSC
To assess whether our algorithm captures noise from the WGA and

to exclude the possibility of overtraining, we first ran stratified 10-

fold cross-validation on the single-cell dataset from cell line

GM07228. The dataset is imbalanced and mistyped SNPs are the

minority class. We therefore used stratification to ensure that every

fold contains both correctly genotyped and mistyped SNPs. In every

iteration, we trained the algorithm on 9-folds (27 445–27 772 SNPs)

and used the 10th fold for testing. To tackle the imbalance problem,

we always balanced the training fold by downsampling the correctly

genotyped SNPs. We evaluated the performance of every testing fold

with the single layers individually (RF or GDA) as well as with a

combination of them (RF-GDA). We scored the genotypes of all

algorithms using the GenCall score or Equation (7) or (8) (Section

2). Consistent with random sampling of the SNPs, the mean per-

formances of all algorithms have narrow confidence intervals (at

95%), which suggests that the algorithms are invariant to SNP selec-

tion (Supplementary Table S4). Pairwise comparison of the algo-

rithms using paired t-test shows that both, GDA and RF-GDA

outperform GenCall in precision at similar recall (mean difference

4%, P < 0.0001, Supplementary Table S5). Note that the RF out-

performs GenCall in precision as well (mean difference 4.7%,

P < 0.0001, Supplementary Table S5), but has a lower performance

in other metrics (Supplementary Table S4). RF-GDA is more accur-

ate than GenCall (mean difference 3.5%, P < 0.0001) and has a

higher f1-score (mean difference 2%, P < 0.0001, Supplementary

Table S5).

3.5 Validation of SureTypeSC on an independent

dataset
We next addressed how well our algorithms and GenCall performed

on an independent dataset. To this end, we used the SNP genotypes

obtained from 58 single cells after WGA from cell line GM07228

for training and the SNP genotypes obtained from WGA DNA from

46 single cells from a different cell line, GM12878 (Table 1,

Supplementary Table S2), for testing (‘tester set’). The genotyping

data from the tester set were obtained at an independent time, with

different batches of WGA reactions and genotyping arrays. This

avoids systematic errors introduced by the chemistry used to obtain

the genotypes. The training and validation scenarios are summarized

in Supplementary Figure S3.

We first evaluated the performance of GenCall and SureTypeSC

(RF, GDA and the RF-GDA) separately for heterozygous and homo-

zygous regions using receiver operating characteristic (ROC) and

precision-recall curves (Fig. 2, Supplementary Fig. S4). These metrics

gave us visual insight into overall performance of the classifiers, in-

variant to the score cutoffs used. For the heterozygous calls, the RF-

GDA outperforms all tested algorithms, which is also quantified by

the ROC-area under the curve (AUC) score (Table 2). Whereas

GenCall achieves a 74% ROC-AUC score on average, this is

increased to 86, 87 and 92% for RF, GDA and RF-GDA, respective-

ly (P < 0.0001, Supplementary Table S6). For the homozygous

regions, the RF outperforms GenCall at all points of the ROC and

precision-recall curves, which is supported by the increase in the

ROC-AUC score from an average of 67% (GenCall) to 81% for the

RF (Table 2). This is further increased with the GDA or RF-GDA

(both 83%). Interestingly, at a precision of 93%, the RF curve

crosses that of the GDA and RF-GDA and recalls more true positive

homozygous calls (Supplementary Fig. S4A). This suggests that the

RF alone might be a good option if higher recall is required at the

costs of lower precision, which is nevertheless higher than GenCall

in the homozygous regions. GenCall crosses the precision-recall

curve of the RF-GDA at a precision around 88% and recalls more

true positives (Supplementary Fig. S4A). This is, however, very close

to a recall of 100%, which also means accepting all calls without

any significant filtration.

Next, we were interested in how our methods perform compared

to GenCall with standard settings (QC 0.15). Standard GenCall
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recalls 68% of the true positive heterozygous genotypes with a preci-

sion of 97%. The RF-GDA has 84% recall, achieves 99% precision

on average, and thus outperforms the standard GenCall in both pre-

cision and recall. At similar precision, the RF and GDA on their

own recall fewer true positive heterozygous genotypes (Table 2). As

expected, high precision and recall is reflected in a high harmonic

mean of precision and recall (f1-score) for the RF-GDA (Table 2)

and a high rate of correctly classified SNPs (accuracy, Table 2).

GenCall recalls 96% of the true positive homozygous genotypes on

average at precision 89%. At similar recall, the RF alone increases

precision by 2.5% (P < 0.0001; Supplementary Table S6). GDA and

RF-GDA further improve precision, but at the cost of recall. Both

methods achieve an average precision of 92% at 90% recall for the

homozygous calls (Table 2). Recalling fewer true positives at higher

precision causes a drop in the f1-score for GDA and RF-GDA. This

is because recall declines much quicker than the precision increases

(Supplementary Fig. S4A). The effect of lower recall from the GDA

and RF-GDA is also mirrored in the lower accuracy. As GDA and

RF-GDA have higher precision, they are also more likely to reject

correct SNPs, thereby decreasing the number of true positives.

The two-layered architecture, RF-GDA, generally outperforms

its constituent single layers (RF or GDA alone). Combining the RF

and GDA together is particularly advantageous in the heterozygous

regions, where the RF-GDA performs better in all metrics

(Supplementary Fig. S5). This is due to sensitivity of the EM algo-

rithm to outliers, which are effectively reduced in the RF step

(Supplementary Section 1.8). For the homozygous calls, the RF-

GDA performs better than single RF and GDA in precision (mean

difference 1.7 and 0.2% for RF and GDA, respectively, P < 0.0001,

Supplementary Table S6). However, the single GDA has better

ROC-AUC score, which is 0.2% higher in the GDA than in RF-

GDA (P < 0.001, Supplementary Table S6). The ROC curve in

Figure 2A and precision-recall curve in Supplementary Figure S4A

confirm that the difference is minor, since the RF-GDA and GDA

largely overlap. Collectively, the benefits of the two-layered RF-

GDA compared to its single layers are the maximized precision and

recall for the heterozygous calls. There is a further benefit in the

maximized precision in the homozygous calls at the relatively mod-

est loss of true positive calls.

3.6 Genotyping confidence in the single-cell

environment
Our observations suggest that SureTypeSC can effectively improve

precision of both homozygous and heterozygous SNPs (on average,

99% for heterozygous calls and 92% for homozygous calls,

Table 2). Precision can be further improved at the cost of recall, par-

ticularly for homozygous SNPs, as Supplementary Figure S4 sug-

gests. We therefore adjusted both SureTypeSC and GenCall for high

precision, recalling approx. 47% of the true positive SNPs. To com-

pare their performance, we developed a simple statistical toolkit

that shows a detailed view of confidence in AA, BB or AB calls using

a transition matrix of posterior probabilities (Supplementary Table

S9). The posterior probabilities show the probability that a certain

genotype from the single-cell application is genotyped correctly

compared to the reference genotype. Supplementary Table S9 shows

that compared to GenCall, SureTypeSC achieves major improve-

ments of 8 and 7% confidence of AA and BB, respectively, and an

improvement of 0.3% in confidence of an AB genotype.

3.7 ADO and ADI rates are reduced using SureTypeSC
Incorrect genotype calls arise predominantly from imbalances in the

allele frequencies generated during the chemical reaction when the

whole genome is amplified. The deviation from a 1: 1 allele ratio of

heterozygous SNPs can lead to ADO. Analogously, mistyping of a

homozygous SNP results in ADI. We calculated the ADO and ADI

rates for GenCall and SureTypeSC at high precision using the transi-

tion matrices from Supplementary Table S9 (Table 3; performances

of single layers RF and GDA are shown in Supplementary Table

S10). At a call rate of 42% for GenCall and 39% for SureTypeSC,

GenCall is able to decrease ADI 7 times and SureTypeSC 12.5 times

compared to minimal filtering (GenCall QC 0.01). The ADO rate is

Fig. 2. SureTypeSC improves the performance for single-cell genotyping.

ROC curve for homozygous (A) and heterozygous SNPs (B) on GM12878. The

points of the curves were created by applying different cutoffs of the classifi-

cation scores using the Precrec package (Saito et al., 2017). Data below a cer-

tain cutoff were classified as negative, otherwise positive. The bands along

the curves represent 95% confidence intervals from the 46 single cells

Table 2. Performance of the genotyping algorithms on independent dataset GM12 878a

Metrics/Algorithm GenCallb RF GDA RF-GDAc

het homo hetd homoe hetf homog het homo

Accuracy 0.6860.01 0.8660.012 0.7160.013 0.8860.008 0.6360.009 0.8560.01 0.8460.014 0.8560.01

f1-score 0.860.01 0.9260.007 0.8260.012 0.9360.005 0.7660.011 0.9160.007 0.9160.011 0.9160.007

Precision 0.9760.01 0.8960.009 0.9960.001 0.9160.008 0.9960.001 0.9260.008 0.9960.001 0.9260.008

Recall 0.6860.01 0.9660.005 0.760.017 0.9660.001 0.6160.013 0.960.005 0.8460.017 0.960.006

ROC-AUC score 0.7460.01 0.6760.015 0.8660.004 0.8160.012 0.8760.005 0.8360.013 0.9260.004 0.8360.012

aValues are mean proportions over 46 cells 6 confidence interval at 95%.
bGenCall score threshold 0.15.
cRF-GDA score threshold 0.15.
dRF score threshold 0.6 and e0.15.
fGDA score threshold 0.8 and g0.5.
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decreased 1.5 times by GenCall and 5.6 times by SureTypeSC

(Table 3). Although SureTypeSC outperforms GenCall and mini-

mizes the error incidence, the loss of data is inevitable (call rate

39%, Table 3).

3.8 Proof-of-concept of biological inference
To provide proof-of-concept that SureTypeSC would improve bio-

logical insight when used for high precision (RF-GDA), we assessed

copy number variants in human oocytes (Supplementary Fig. S7;

Ottolini et al., 2015). The loss of a chromosome or chromosome

segment results in one cell with only A and B calls (no heterozygous

SNPs). The loss, however, is obscured by ADI when using the stand-

ard GenCall algorithm (Supplementary Fig. S7). SureTypeSC

removes the ADIs (erroneous AB), increasing the certainty of the in-

ference (loss of hetSNPs).

We were interested in whether we could use SureTypeSC with

high precision to reveal biological variability within the tested cell

line GM12878. We assumed that all variants in the cell line that do

not match the reference genome (‘erroneous variants’) are ADOs or

ADIs (Supplementary Fig. S8A). We were curious whether some of

these variants, however, could be real and therefore used to detect

heterogeneity within a cell population. We chose SureTypeSC as this

documented the best overall performance in terms of precision

(Tables 2 and 3, Supplementary Tables S9 and S10) and compared it

to GenCall. We performed hierarchical clustering (Supplementary

Methods) on raw data with minimal filtering (QC 0.01), data proc-

essed by GenCall (GenCall QC 0.87), and RF-GDA at high precision

(Table 3). The hierarchical clustering reveals there are potentially

four subpopulations of cells in GM12878 cell line that are invariant

to the type of filtration used (Supplementary Fig. S8B–D). The boot-

strap analysis (Supplementary Methods), however, reveals that only

the RF-GDA consistently gives four stable subpopulations (Jaccard

mean bootstrap value for a cluster > 0.75, Hennig, 2007). The un-

stable clusters present in the trees from the minimal filter (QC 0.01)

and ‘high precision’ genotyping using GenCall suggest non-

reproducible noise being transferred to the bootstrapped replicates

that is removed by SureTypeSC.

4 Discussion

Whereas there are specialized tools for single-cell genotyping from

NGS data (Bae et al., 2018; Bohrson et al., 2017; Lodato et al.,

2015; Zafar et al., 2016), no such algorithms exist for genotyping

data from SNP arrays. Instead, genotyping WGA DNA has relied on

increasing the threshold of the genotyping algorithms, which causes

a substantial data loss (Zamani Esteki et al., 2015).

In this study, we have typed nearly 30 million SNPs from 104

single cells from two independent cell lines and developed an algo-

rithm to distinguish signal from noise in whole-genome amplified

DNA. SureTypeSC consists of two layers—a RF and a GDA that

work singly or in a cascade. The cascade approach is particularly

beneficial for heterozygous SNPs, as it improves both precision

and recall compared to the single layers and GenCall. We observed

an increase in recall from 68% in GenCall at standard QC (0.15)

to 84% in SureTypeSC. Resolving most of the heterozygous SNPs

makes SureTypeSC highly relevant and applicable when hetero-

zygosities are needed, such as tag SNPs during linkage analysis of

transmission of monogenic diseases and aneuploidy detection

(Handyside et al., 2010; Natesan et al.,2014; Zamani Esteki et al.,

2015). At the same time, SureTypeSC improves precision for both

homozygous and heterozygous SNPs by 3 and 2%, respectively

(Table 2). Having high precision makes it feasible to explore rare

events across populations of cells. This includes assessing clonal

expansion in tumor evolution, linage tracing or detecting rare de

novo mutations such as large genomic rearrangements in single

cells that are averaged out and lost in bulk analyses (Chen et al.,

2017; Cooper et al., 2015; Leung et al., 2002; Lu et al., 2012;

Wong et al., 2004). High precision is also needed to obtain high

resolution at haplotype breakpoints, which is particularly import-

ant in diagnostics (Handyside et al., 2010; Natesan et al., 2014;

Zamani Esteki et al., 2015). Our proof-of-concepts show that

SureTypeSC is likely to improve diagnostics as well as biological

inferences.

As running the single layers of SureTypeSC could be potentially

beneficial, such as high recall in homozygous regions at lower preci-

sion by the RF alone, SureTypeSC always operates in both modes

(cascade and single layers), simultaneously, and scores the genotypes

with RF, GDA, as well as RF-GDA.

Analyzing a large number of single cells allows the decompos-

ition of heterogeneous populations. Understanding how single cells

in a population contribute toward a ‘mosaic’, mixed SNP call is par-

ticularly important as use of SNP arrays increases in cytogenetics.

Furthermore, having a robust algorithm of genotyping from WGA

DNA from single cells improves the certainty of genotype calling

when only few cells are available. This is important in both basic

biomedical research as well as clinical settings such as in preimplan-

tation genetic testing. We show that SureTypeSC can be used for

both (Supplementary Figs S7 and S8).

We have implemented SureTypeSC in two modes in terms of per-

formance. Using the standard mode where precision and recall are

balanced, SureTypeSC was able to successfully identify a chromo-

somal loss in the single-cell oocyte data, where GenCall failed to re-

ject SNP calls from the chromosomal region (Section 3.8;

Supplementary Fig. S7). Using a high precision mode, SureTypeSC,

but not GenCall, was able to stably detect four subpopulations in

the reference GM12878 cell line. Thus, SureTypeSC most likely

revealed true heterogeneity within the single-cell population. This

allows the use of SNP arrays in the single-cell environment to ex-

plore fine differences between closely related cells. This was previ-

ously not possible due to the low resolution of the SNP array in

combination with the noise coming from WGA.

Although genotyping from SNP arrays cover only a fraction of

the genome compared to NGS, the cost of de novo genome assembly

is prohibitive even for bulk, genomic DNA when assessing a large

number of cells or samples. The sequencing depth, or coverage,

needed in one recent reference genome assembly for the detection of

de novo mutations was nearly 50� (Besenbacher et al., 2015).

For single-cell applications, the coverage to accurately identify

new mutations from the noise and bias introduced by the WGA step

is in excess of this (Behjati et al., 2014). Thus, SureTypeSC allows a

cost-effective approach to improve genotype accuracy using SNP

arrays.

Table 3. ADI and ADO

Min. QCa GenCallb RF-GDAc

ADI 0.0560.01 0.00760.003 0.00460.0005

ADO 0.1460.009 0.09660.01 0.02560.004

Call rate 0.9260.003 0.4260.01 0.3960.01

aGenCall QC threshold 0.01.
bGenCall QC threshold 0.87.
cRF-GDA score threshold 0.75. Proportions and confidence intervals at

95% are shown.
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