JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

World Scientific

Journal of Circuits, Systems, and Computers \\’
www.worldscientific.com

Vol. 28, Suppl. 1 (2019) 1940010 (29 pages)
© World Scientific Publishing Company
DOI: 10.1142/50218126619400103

SAT-Based Generation of Optimum Circuits
with Polymorphic Behavior Support*

Petr Fiser’, Ivo Haletek! and Jan Schmidt’

Faculty of Information Technology,
Czech Technical University in Prague,
160 00 Praha 6, Czech Republic
fiserp@fit. cout.cz
thalecivo @fit.cout.cz
§schm'z‘dt@ﬁt.cvut. cz

Véclav Simek

Faculty of Information Technology,
Brno University of Technology,
612 66 Brno, Czech Republic
simekv@fit.vutbr.cz

Received 14 October 2018
Accepted 20 April 2019
Published 14 June 2019

This paper presents a method for generating optimum multi-level implementations of Boolean
functions based on Satisfiability (SAT) and Pseudo-Boolean Optimization (PBO) problems
solving. The method is able to generate one or enumerate all optimum implementations, while
the allowed target gate types and gates costs can be arbitrarily specified. Polymorphic circuits
represent a newly emerging computation paradigm, where one hardware structure is capable of
performing two or more different intended functions, depending on instantaneous conditions in
the target operating environment. In this paper we propose the first method ever, generating
provably size-optimal polymorphic circuits. Scalability and feasibility of the method are
documented by providing experimental results for all NPN-equivalence classes of four-input
functions implemented in AND-Inverter and AND-XOR-Inverter logics without polymorphic
behavior support being used and for all pairs of NPN—equivalence classes of three-input func-
tions for polymorphic circuits. Finally, several smaller benchmark circuits were synthesized
optimally, both in standard and polymorphic logics.

Keywords: Boolean functions; logic synthesis; SAT; PBO; optimum implementation; exact
synthesis; polymorphic circuits.

*This paper was recommended by Regional Editor Zoran Stamenkovic.
§ Corresponding author.

1940010-1

https://dx.doi.org/10.1142/S0218126619400103

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

1. Introduction

The need for obtaining optimum gate-level implementations of Boolean functions
is encountered in many applications, mostly in logic synthesis and optimization.
The rewriting algorithm,' where subcircuits of a network are repetitively replaced
by their (preferably) optimum implementations, is the most striking example.
The optimum can be understood in terms of area, but the delay could be of concern
as well.

In the original rewriting algorithm,! the replacement circuits were produced by
a branch-and-bound algorithm, which is a rather time-consuming process, and for
this reason the optimum implementations of all functions (or their NPN classes,
respectively”) of a given number of inputs are precomputed and stored in memory.
Moreover, this approach is not extensible; once new technological primitives are to be
considered or different primitives’ costs are to be assumed, all the implementations
must be recomputed.

Having a single optimum implementation of each function is not sufficient.
Particularly, even though all optimum implementations (in size and delay) are equal
as stand-alone solutions, their incorporation in a bigger network may make a dif-
ference, mostly because of logic sharing possibilities.

For the above reasons, a more universal, flexible, and scalable way of computing
optimum implementations is required. In this paper, we propose a method able to use
any technological primitives (logic gates) for the implementation, assign arbitrary
costs to gates and thereby compute the optimality, generate one or more (or all)
solutions, and run on demand, because of its relatively low runtime. The proposed
algorithm also supports the design of polymorphic circuits, where one hardware
structure generates two different functions, based on external stimuli, see Sec. 1.1.

In its basic principle, the method is based on generating a Satisfiability (SAT)
problem instance in a conjunctive normal form (CNF) for a given function, whose

15

solution is the optimum function implementation. Next, Pseudo-Boolean Optimi-
zation (PBO)" is incorporated to accommodate different gate costs. Enumeration
SAT problem solving can be used to obtain more or even all solutions.

* when

The decision version of the Optimum Circuit Problem is ¥-complete,”
the instance size is measured by the number of variables. Since the suggested
problem exhibits such an immensely complex nature, it is possible to design provably
optimum implementations only for functions with a severely limited number of
inputs, typically up to 10. However, this cannot be overcome now by any means
(unless a significant breakthrough in circuit complexity theory happens).

The contributions of this paper can be summarized as follows:

(1) SAT- and PBO-based algorithm for optimum circuits synthesis. Therefore,
complex formal methods like Satisfiability Modulo Theories (SMT)? with slow
solvers are avoided.

1940010-2

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

(2) Support for any type of nodes (gates). That is, the optimum circuit can be
constructed of any gates, including those implementing nonsymmetric functions.
Nodes of individual gate type may be assigned a specific cost.

(3) Multi-output functions support.

(4) Polymorphic behavior support. It is implemented by polymorphic edges. Such
an approach we have adopted is, indeed, a generalization of possible polymor-
phic gates.

(5) The ability of the algorithm to enumerate all solutions.

(6) Support for depth optimization. Since the total network cost is the primary
optimality criterion, the network depth (number of levels) can be assigned as the
secondary.

This paper is an extended version of Refs. 10 and 11. In this paper, the SAT instances
generation is described in a more detailed way, as well as the overall algorithm with
all its modifications (influence of gates cost, enumeration of all solutions, and depth
minimization). Also, more comprehensive experimental results are presented.

The paper is structured as follows: after the introduction, the related works on
optimum circuits design and polymorphic circuits design are presented in Sec. 2.
Section 3 gives the preliminaries necessary for understanding the rest of the paper.
The proposed method is described in detail in Sec. 4. The algorithm is experimentally
evaluated in Sec. 5. Section 6 concludes the paper.

1.1. Polymorphic circuits

The still ongoing trend of relentlessly scaling diverse circuit features in close
compliance with Moore’s law, while the ubiquitous CMOS technology is approaching
its technology limits at the same time, is raising the necessity to introduce rather
unconventional technological solutions accompanied by a range of suitable compu-
tational paradigms.'? Thus, it becomes obvious that so-called emerging technologies
and their properties will play a substantial role in pursuing a new generation of
devices. Polymorphic circuits can be recognized as one of such examples.'® Here,
using a single hardware structure, two or more intended functions can be imple-
mented. Selection mechanism of the active function at a given moment in time
involves the natural occurrence of external conditions, like temperature, supply
voltage, light, or even an additional control signal, which have a direct impact on the
electrical properties of particular hardware circuitry.

The motivation behind the activities ultimately resulting in the creation of
polymorphic circuits (or similar ones concerning the general principle of operation)
has been originally given by the need to address the following aspects properly:
(1) autonomous temperature compensation of a system’s properties once it is
deployed in harsh environments'? without the possibility of performing regular
maintenance, (2) “graceful degradation” of a system;'” that ensures, for example, its
safe shutdown or triggers its automatic transition into a low-power emergency

1940010-3

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

operating mode in case of low or depleted batteries. Another application field can be
identified in connection with security devices — a hidden function (watermark) can
be implemented using polymorphic electronics.'”

The first attempt to design such circuits has been made by Stoica et al. from
NASA’s Jet Propulsion Laboratory, for adaptively changing the function of a device
based on the environment temperature.'>™'” MOS transistor structures were pro-
posed to accomplish this job and polymorphic gates were developed and manu-
factured, performing distinctive logic functions (e.g., NAND/NOR,'® AND/OR'")
once exposed to variable temperature ranges.

Due to fundamental constraints projected in the capabilities of existing conven-
tional methods in terms of enabling the design of such structures,'® these polymor-
phic gates were mostly generated by suitable evolutionary techniques. In particular,
the application of genetic programming!*'%17 took place. At present, it is possible
to design virtually any type of polymorphic gate by using these techniques.'®

Theoretical backgrounds and most importantly the physical availability of
polymorphic gates open a path towards the opportunity to actually design even
larger circuits comprising more than just a few logic gates. From the practical point
of view, it makes no sense indeed to employ the polymorphic logic gates with the
sensitivity to the external conditions within a given circuit solely; a typical circuit
with multi-functional or polymorphic behavior is always built around the combi-
nation of conventional, mono-functional logic gates, while their polymorphic coun-
terparts are used only for a portion of the circuit structure. Numerous attempts to
design polymorphic circuits of an arbitrary size have been already reported.'® 2!
However, all these approaches are considerably suffering from non-optimality of the
resulting circuit structure; no obvious proofs to validate the optimality or at least a
lower bound imposed on the size complexity have been demonstrated.

2. Related Works
2.1. Optimum circuits generation

The problem of obtaining optimum multi-level representations of Boolean functions
has been tackled since the 1960s. The optimal two-level minimization principles were
extended to a multi-level domain in Ref. 22. Synthesis methods based on functional
decomposition were published in Refs. 23-25. Later on, different branch-and-bound
techniques were presented in Refs. 4, 26, 27, 28, and 29. All these techniques were
extremely time-demanding and sometimes also memory-demanding.

Almost in parallel to this explicit track, formal (implicit) techniques were used for
the purpose of optimum circuit implementations generation: approaches based on
Integer Linear Programming (ILP) were proposed in Refs. 30—-32. Optimum solutions
based on NOR gates for functions of up to four variables were computed there.

1940010-4

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

A SAT-based approach was introduced in Ref. 33. However, it was targeted
strictly to MOD-functions as nodes. This idea was later extended in Ref. 11 to
support AND and XOR gates,**” and in Ref. 35 to support gates of any type.

One of the recent works®® presents optimum circuit generation for Majority-
Inverter Graphs based on SMT.? This approach is claimed to be scalable enough to
be repeatedly run in the runtime of a rewriting process.

As it can be seen from above, numerous strategies have been used to produce
optimum circuit implementations. However, none of them was general enough to
support any type of gates, incorporate gate costs, and was capable of enumerating all
solutions. In this paper, we present a remedy to this situation.

In our approach, instead of using time-consuming ILP- or SMT-solvers, we stay
with a standard (and simple) SAT-based approach, for which very efficient solvers
exist.” Apart from SAT, a PBO-solver®® is used for the purposes of area optimiza-
tion in the presence of different gate costs. Even though the PBO solving is more
time-consuming, the number of solver runs is minimized, typically to one run only.

2.2. Polymorphic circuits design

Based on the availability of suitable polymorphic gates, the design of more complex
(larger) polymorphic circuits has been tackled recently. One of the approaches is
quite straightforward — a polymorphic circuit switching between two functions can
be obtained easily by means of implementing these two functions separately, whereas
the actual output is selected by a single polymorphic multiplexer.!® Another ap-
proach, based on BDDs,*’ was also proposed in Refs. 18 and 19. The method is
known as PolyBDD. Its key aspect builds upon the exploitation of Multi-terminal
BDD (MTBDD),* which is an extension of the well-established binary decision
diagram concept where the terminal nodes of the diagram contain integer values.
The PolyBDD method uses these values as a way of expressing a possible relation
between input variables and the relevant output.

When a typical design objective calls for implementation of a pair of two intended
functions denoted as, e.g., F; and F; (each of them is actively executed in one of the
permissible yet mutually distinct operating modes), a corresponding MTBDD tree is
created. As a next step, the MTBDD representation is converted into a target circuit
structure, where its nodes assume the role of multiplexers and terminals are replaced
by proper polymorphic subcircuits according to the numbers in their respective
leaves. These values placed in the terminal nodes of the MTBDD tree will assume
integer values from the interval 0-15 (see Fig. 1 for details) in case of functions F;
and F;. Detailed explanation of internal principles of the PolyBDD method can be
found in Refs. 18 and 19.

Nevertheless, the principal drawback of both situations may be recognized as a
relatively sparse utilization of polymorphic gates, when these have been moved
just to the peripheral edge of a target circuit (practically used only in the role of

1940010-5

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

Fig. 1. Conversion table for the transformation procedure of PolyBDD into a polymorphic circuit.'’

input/output switches). This approach eventually leads to very inefficient results,
since there is no shared portion of logic between the two operating modes of a given
polymorphic circuit.

The first attempt to use the sharing of logic resources between the two specified
functions has been addressed in Ref. 21. Based on the initial, two-level description of
these functions, shared co-kernels*' are subsequently identified, thus making it
possible to move polymorphic gates “deeper” into the circuit structure. However, it is
still possible to observe the inclination to place the polymorphic gates near the
circuit outputs.

The actual optimality of results obtained by the methods mentioned above is
rather questionable at least. Hence, obtaining lower bounds on size complexity of
polymorphic circuits, i.e., designing optimum implementations of these circuits, is a
vital task now.

Even though the design of optimum circuit implementation is a mature and
relatively well-mastered process in case of standard logic (see Sec. 2.1), no such
approach has been proposed for polymorphic circuits until now. The remedy to this is
presented in this paper, as one of its main contributions.

3. Preliminaries
3.1. Clircuit representation

Multi-output combinational circuits will be assumed throughout the paper. A
combinational logic circuit can be represented as a directed acyclic graph (DAG),

1940010-6

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

with nodes corresponding to gates (logic functions they implement) and edges
representing the connections between them. The DAG has one or more roots cor-
responding to the circuit’s primary outputs (POs) and the DAG leaves correspond to
its primary inputs (PIs).

Since one of the fundamental objectives of the proposed method is to make the
optimum circuit generation procedure general enough to be directly applicable to
any technology, the set of node functions will not be restricted by any means.
However, only two-input nodes will be assumed in this paper, for the sake of sim-
plicity. Therefore, each node may implement any two-input function (out of 10
possible). Despite this limitation imposed, the method can easily be extended to
support nodes with any number of inputs, without the need of introducing any
additional principal modifications.

Similarly to Reduced Boolean Circuits (RBCs)**** or AND-Inverter Graphs
(AIGs),"** the edges may be negated, to indicate the presence of an inverter at
the edge.

An example DAG of a 1-bit full-adder constructed from AND and XOR gates
(XAIG®) is shown in Fig. 2.

3.2. Polymorphic circuits representation

Besides the role of an ordinary negation, graph edges may assume the polymorphic
nature. This means all respective (polymorphic) edges are further negated when the
external polymorphic stimulus occurs. The polymorphic stimulus (denoted as P in
the following text) enables the selection of the circuit operating mode (out of the two

Sum Carry

Carry_in b a

Fig. 2. A 1-bit full-adder described by an XAIG. Oval nodes represent AND gates, hexagon nodes are
XORs, and the dashed edges are negated.

1940010-7

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

intended functions). As a result, there are four types of edges: normal, negated,
polymorphic, and negated polymorphic ones. Assume an edge from node x to node y.
Then the respective four types of edges perform these operations:

e Normal edge: y = .

o Negated edge: y = Z.

e Polymorphic edge: y =z @ P.

e Negated polymorphic edge: y =z @& P.

An example of such a DAG [Polymorphic XAIG (PXAIG)*] is shown in Fig. 3(a),
for a polymorphic circuit implementing a function AND/XOR, i.e., the function

F=P(a-b)+Pladb), (1)

where P is the polymorphic stimulus.

In the figure, circle nodes represent AND gates, hexagon nodes represent XOR
gates, dashed edges are negated, bold blue edges are polymorphic, and dashed bold
blue edges are the negated polymorphic ones.

Another example is shown in Fig. 3(b), for a polymorphic 1-bit full-adder. Here,
one of the adder inputs is implemented as the polymorphic stimulus. Notice that
polymorphic edges actually represent implicit XOR gates (see the difference from
Fig. 2). This is the first hint that efficient implementation of polymorphic behavior
support may significantly reduce the amount of logic.'”

Sum Carry

(a) (b)

Fig. 3. Examples of polymorphic circuits represented by a DAG (PXAIG), for: (a) AND/XOR circuit
and (b) polymorphic 1-bit full-adder. Polymorphic edges are in bold.

1940010-8

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

3.3. Boolean SAT problem

The CNF Satisfiability problem (CNF-SAT)" is defined as follows: given a Boolean
formula in its CNF, find a satisfying assignment of its variables. A literal is a variable
or its negation. A clause is a sum (disjunction) of literals. The CNF is a product
(conjunction) of clauses. The formula is satisfiable when there exists an assignment of
its variables so that the functional value of the formula is equal to one, i.e., each
clause evaluates to one under a given assignment of variables.

The decision SAT problem just gives an answer (positive or negative) about
satisfiability, whereas its constructive version returns a satisfiability witness as a
result, i.e., the satisfying assignment of variables.

3.4. PBO problem

The PBO problem® can be simply understood as a special case of the ILP problem, or
an extension of SAT with optimization capabilities. Instead of processing a product
of clauses, a set of linear inequalities is processed. An integer-weighted sum of literals
is present on the left-hand side of each inequality and integers are on the right-hand
side. Generally, each PBO inequality is written in the form

Coyo +Cryn + -+ Co1yy1 2 C, (2)

where y; are Boolean variables, and C; and C' are integer constants.

The optimization criterion is defined as an integer-weighted sum of variables, i.e.,
similarly to the left-hand side of the inequalities. The optimization criterion is to be
either minimized or maximized.

Dedicated PBO-solvers exist,”” ™ or the problem is solved by repeated applica-
tion of a SAT-solver.3":38:20

In later sections we will need to transform a standard CNF to a PBO instance.
This can be accomplished in a straightforward way:

(1) For each Boolean variable z,...,z,,_; of the CNF, construct an integer vari-
able yo, ..., Yn_1 of the PBO.

(2) For each CNF clause (lyViV---VI];) where [; are its individual literals
(variables or their negations), construct an inequality Ly + Ly +---+ L; > 1.

(3) Foreach k€ {0,...,1}:

If a literal [;, = x;, (variable in its direct form), then substitute L; = y;, in the
inequality.
If a literal [;, = T, (variable in its negated form), then substitute L; = (1 — y;,).

As an example, let us have a clause (zy V Z7 V Z5). This clause can be transformed to
a PBO inequality as follows:

Yo+ (1—y)+(1—w)>1, (3)

1940010-9

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

Table 1. List of all two-input functions.

Index Gate Function ~Symmetricaob=boa Symmetric to negation aob = aob=aob
0 0 Y
1 NOR a+b Y
2 ab
3 NOT a
4 ab
5 b
6 XOR ab + ab Y Y
7 NAND ab Y
8 AND ab Y
9 XNOR ab+ ab Y Y
A b
B IMPLY a+b
C a
D a+b
E OR a+b Y
F 1 Y
which is
Yo—Y1—Yy2 = —1. (4)

3.5. List of two-input functions

As it was stated above, the procedure described in this paper supports any two-input
function as a circuit node. Just for clarity, here we present a list of all two-input
functions with their symmetry properties (Table 1). These symmetries can be effi-
ciently used in the algorithm to prune the search space, see Sec. 4.3. The functions’
indexes are derived from their truth tables (see, e.g., Ref. 4).

We can also notice that there are only 10 two-input functions, from which only
three (AND, XOR, and IMPLY) are of practical use, assuming negated edges are
provided (i.e., all gate inputs and outputs can be possibly further negated).

4. The Proposed Method

The proposed SAT-based method of designing size-optimal (and possibly depth-
optimal) circuits will be presented in this section. Any set of two-input gates can be
used as a set of building blocks (DAG nodes), with their costs (area) specified. As it
was stated in Sec. 3.2, the DAG edges may be negated and/or polymorphic.

First, for better understanding, we will present the algorithm in its basic, SAT-
based form, to devise an optimal DAG implementation of a given Boolean function.
The algorithm will be then extended to support additional features, namely the
enumeration of all solutions, depth-optimal implementations generation, and cus-
tomizable gate costs. The polymorphic behavior support will be assumed throughout

1940010-10

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

the whole text. In case it is not required, the parts implementing this feature can be
easily “bypassed” when implementing the algorithm.
The following basic variables will be used in the following text:

e k denotes the number of implemented function PIs,
e 0 denotes the number of implemented function POs,

o n denotes the number of gates in the implementation.

4.1. The basic procedure

The Optimum Circuit Problem is solved by its reduction to a decision CNF-SAT
problem.”® Since these problems belong to different complexity classes of polynomial
hierarchy (the decision Optimum Circuit Problem is ¥-complete”®), the reduction
cannot be polynomial. The exponential complexity increase is caused by the enu-
meration of all function minterms values, as a part of the produced SAT instance.

The optimization problem is reduced to its decision version by a simple trick: a
decision problem “Does there exist an n-node implementation of a given k-input
function?” is solved, whereas we start with n = 1. If the answer is negative, n
is increased. This procedure is repeated until a positive answer is obtained. The
solution witness is then the optimum solution for the original problem.*¢

Note that this incremental approach is not the only one possible; binary search is
one option, as also proposed in Ref. 36. However, for circuits with a relatively small
number of nodes, this approach is not efficient, since obtaining the upper size bound
may be excessively time-consuming.

The most basic procedure is outlined by a pseudo-code shown in Fig. 4. The input
to the algorithm is a truth table (a set of o 2* binary vectors, for an o-output
function) of the function to be implemented; the output is its optimal multi-level
implementation structure.

4.2. The CNF construction

The main procedure of the algorithm, the SAT instance generation (Generate_CNF in
Fig. 4), is described here.

Generate structure (truth table f, int k) {
n = 1;
do {
CNF = Generate CNF(f, k, n);
Sol = SAT Solve (CNF);
if (Sol.unsat) n++;
} while (Sol.unsat);
return Sol.extract structure;

}

Fig. 4. The basic size-optimal structure generation procedure.

1940010-11

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

Let us have a polymorphic circuit with & inputs and o outputs constructed of n
gates. As stated in Sec. 3.2, such a circuit can be represented as a DAG with at-
tributed (negated and/or polymorphic) edges. The following variables and con-
straints are introduced:

e For some special purposes (like a constant output in a multioutput function),
a constant node must be present. Therefore, the node indexed as 0 will be a
constant “0”. The constant “1” can be obtained from it using a negated edge;

e each PI and DAG internal node has a unique index, 1,...,n + k where DAG PlIs

are represented by the nodes indexed 1,...,%k and internal nodes are indexed
k+1,....,.n+k;
e the DAG has o outputs, each can be connected to any node 0,...,n + k (i.e., also

directly to the constant or a PI);

o the parent node always has a higher index than both its children;

o node inputs (exactly two here) are labeled 0 (left input) and 1 (right input);

e each node can implement any gate function from a given set of functions F. The
ordinary numbers of functions are binary-encoded, i.e., v variables are needed to
index the functions, v € {0,..., [logs|F|] — 1}. Since only two-input functions are
considered in this paper for simplicity, v € {0, ..., 3}, to be able to encode the 10
two-input functions. In practice, the number of functions can be even less, since
using only three two-input functions makes sense (see Sec. 3.5).

In order to design the desired network implementing a given Boolean function, two
sets of constraints must be encoded into the SAT instance: (1) the network structure
and (2) the network function, i.e., propagation of values from the PIs to POs.

For easier understanding of the following text, a sketch of the designed
network (DAG) with corresponding variables describing the structure (node labels)
and function (edge labels) is shown in Fig. 5 for a node ¢ with its attributed edges
(a); connection of a node j to the m* input of a node ¢ (b); and connection of a node 4
to the primary output w with its attributed edges (c). The circle node represents
the node 4, rectangle nodes describe edge value modifiers (negation, polymorphic be-
havior), and the diamond-shaped nodes represent the network interconnection. The
meanings of labels and signals in the figure will be described in the following text.

Let us note that different structure encodings can be used, e.g., as shown in
Ref. 35. In principle, different encodings offer a trade-off between the instance size
and its “simplicity” for SAT-solvers. In this paper, we present the encoding we think
is the most understandable to readers.

4.2.1. Network structure description

In the scenario given above, a set of Boolean variables describing the structure of the
network is defined. Note that the limits of variables’ indexes already impose some struc-
tural constraints to the network, which are necessary for its validity and unambiguity.

1940010-12

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

w

TONP wp

OPy,

ONy,p

ONy,

OV, p

>

Pio Pi1
F(i,O,p F(i,l,p
(a)

Fig. 5. Network structure with corresponding variables.

e N;,: The m™ input of node i is negated, defined for i € {k+1,...,n+k},
m € {0,1}.

e P;,,: The m'" input of node 4 is polymorphic, defined for i € {k+1,...,n+k},
m € {0,1}.

e C;;m: The output of the i** node is connected to the m™ input of the j' node,
defined for i € {0,...,n+k—1}, j € {max(i,k+1),...,n+ k},m € {0,1}.
Note: ¢ ranges to n + k — 1 only, since the last node (n + k) cannot be connected
to any other node.

Note: j ranges from i if 7 is an internal node or from k£ + 1 if 7 is a PI or constant,
to ensure that a PI would not be fed by any node.

e O,;: The w'™ output is connected to the i*® node, w € {0,...,0—1}, i€ {0,...,
n+ k}.

e ON,: The w'® output is connected to a node by a negated edge, w € {0,...,0— 1}.

th

e OP,: The w'™ output is connected to a node by a polymorphic edge, w € {0,...,
o—1}.

e F,,: The ™ node function selector, ie{k+1,....,n+k}, ve{0,...
[logy|F[] — 1}

Next, constraints (SAT clauses) are defined, to describe the network structure validity.
Note that the universal quantifiers actually represent conjunctions of SAT clauses.
The final CNF-SAT instance is then formed by conjunction of all the constraints.

1940010-13

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

(1) Each node input is connected somewhere — to a node with a smaller index
(including PIs and the constant):

VlE{k-‘rl,.,n-l-k},mE{O,l} Cj,i,m' (5)
7€{0,...,i-1}

(2) Each node output is connected somewhere — to a node with a higher index or to

an output:
Vie{k+1,...,n+k}: \/ Cijm
je{max(i+1,k+1),...,n+k}
me{0,1}
\ Oi,w . (6)
wed{0,...,0-1}

(3) Each node input has only one source:
Vielk+1,...,n+k}, 1€{0,...,a—1},

In simple words, if the m'™ input of the node j is connected to the node i (C; ;), it

must not be connected to the node h.
This is in CNF:

Vie{k+1,...,n+k}, i€{0,...,i—1},
he{0;5—-1}, h#i, me{0,1}:C ;0 VCjm- (8)
Note that it is allowed to connect both node inputs to one source (the h # i
condition enables this). This feature can be used in polymorphic circuits. For ex-
ample, assume a node x connected to both inputs of an AND gate, while one input
edge is polymorphic. Then, the operation z - (x @ P) = x - P is performed by the
AND node, which is meaningful. On the other hand, in the case of no demand for

polymorphic operation, nodes connected to only one source become redundant, and
from the nature of the algorithm, they will never be produced.

(4) Each primary output is connected to at least one node or primary input, or the
constant:

vwe{0,...,0-1}: \/ O (9)

(5) Each primary output is connected to one node or primary input, or the constant
at most:

Vwe {0,...,0-1}, i€{0,...,n+k},
jef{i+1,...,n+k}:0,;=0,;. (10)

1940010-14

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

In simple words, if the output w is connected to node i (O,,;), it must not be con-
nected to node j.

This is in CNF:
Yw e {0,...,0—1}, i€{0,...,n+k},
je{i+1,...,n+k}:0,;VO,;. (11)

4.2.2. Network function description

Next, the desired function must be enforced. This means that the network must
output the correct functional value for each input combination, i.e., for all 2% min-
terms for all outputs.

For this purpose, additional Boolean variables, specific for each p € {0,...,2%F —
1} minterm, are defined:

e Y, is the i, node output value, i € {0,...,n + k}.

For i € {1,...,k}, it represents a PIL
For ¢ = 0, it is the constant “0”.
e X, ., is the value of the m' input of node 4, defined for i € {k+1,...,n+k},
m € {0,1}.
e XN;,,, denotes the value of the m™ input of node 7, after possible negated edge
following the polymorphic edge, defined for i € {k+1,...,n+ k}, m € {0,1}.
e XP,,,, is the value of the m'™ input of node 4, after possible polymorphic edge,
defined for i € {k+1,...,n+ k}, m € {0,1}.
e OV, , is the w output node value.
e ON,, is the w™ output node value, after possible negation.
e ONP,, is the w'™ output node value, after possible polymorphic edge, following
the negation.

e P, denotes the polymorphic stimulus value.
Next, constraints enforcing the function are defined:
(6) Polymorphic edges:

Vie{k+1,...,n+k}, me{0,1}:
X-Pi,m,p = (-Pz,m = Pp @ Xi,m.,p) \ (FTm = Xi,m,p) . (12)

In simple words, in the presence of a polymorphic edge (P;,,), negate or copy the
value based on the polymorphic stimulus value (P,). Copy the value otherwise.

1940010-15

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

This is in CNF:

Vie{k+1,...,n+k}, me{0,1}:
(B V XB iy V Xignp V By) N (B V Xy V Xy V By)
N (B V XPijnpV XignpV B) N (B V XB iy V Xy V B)
A (H,m \% Xigm,p \% XPi,m,p) A (Pi,m \ ‘szﬂ,m,p \ XPL,m,p) . (13)

(7) Negated edges:
Vie{k+1,...,n+k}, me{0,1}: XN, =XP,,&N,. (14)

This is in CNF:
Vie{k+1,...,n+k}, me{0,1}:
(XNimpV XE NV Nigw) N XNV XP, p VN,)
A(XN, oy V XB 0y VN) ANXN, oy V XP,)V N) - (15)

(8) Nodes interconnection:

Vie{0,...,n+k—1}, je{max(i+1;k+1),...,n+k—1},
m & {071} : C(i,]ﬂ,m — }/zp = Xj,m.p' (16)

In simple words, if there is a connection between the node i and the m®™ input of
the node j, these values are equal. The output of the last node (n + k) cannot be
connected anywhere.

This is in CNF:

Vie{0,...,n+k—1}, je{max(i+L;k+1),...,n+k—1},

m € {0,1} : (Cim VYi, VX) NGy VY V X p) - (17)
(9) Negated output edges:
Vw € {0,...,0—1} : ON,, = OV,,, ® ON,,. (18)
This is in CNF:
Yw e {0,...,0—1}:
(ON,, Vv OV, v ON,) A (ON,,, Vv OV, V ON,,)
A (ON,, Vv OV, , VvV ON,) A (ON,,, VOV, ,VON,). (19)

(10) Polymorphic output edges:

vwe{0,...,0— 1} : ONP,, = ON,,, & (OP, A P,). (20)

w,p w,p

1940010-16

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

This is in CNF:

vw € {0,...,0—1}: (OB, V ONE,, V ON,,, V P,)

A (OE,V ONP,,V ON,, V P,)

A (OR,V ONP,,V ON,,V E))
A (OF, Vv ONF,, Vv ON,,V E)
A (OP,V ONP,,V ON,,)
A (OP,V ONE,,V ON,,). (21)
(11) Outputs:
Vwe {0,...,0—-1}, i€{0,....,n+k}:0,;,= (OV,,=Y;,). (22)

This is in CNF:
Vwe {0,...,0—1}, i€{0,....n+k}:(0,; VOV, VY;,)
A(Oy; VOV, ,VY,). (23)

(12) Node functions:
Vi € {If + 1, Lo, + k'} : YVZ'J) = XNi,O,p<Op>XNi,1,p . (24)

The CNF of the operator (op) (node functions) is constructed by deriving the onset
and offset of the operator function by simulation. That is, its characteristic function
in CNF is obtained. Depending on the function selection (variables F;), constraints
for the outputs (Y;,) and inputs (XN, ,,, XN;;,) of nodes are derived, based on this
node characteristic function. The resulting SAT instance will contain one clause per
minterm of the node function.

For the sake of brevity, we will omit a detailed formal description of the
procedure.

Just to give a simple example, if, e.g., F;; =0 selects that the node i will

implement an AND gate, these constraints will be generated:
V'L S {k + 1, ey + k} . E.O = O = (1/;717 = XNi.O,p . XNZ‘JYP) . (25)

As a result of enumeration of all minterms of the AND function and including the
condition F;y = 0, the following CNF is produced:

Vie{k+1,...,n+k}: (Fw \% XNZv’O’p V XN”[, vV Y;_p)
A(F;oV XN,V XN, VY,)

AN(FigV XN,V XN;1,VY,)
AN(FigV XN,V XN7,VY,). (26)

1940010-17

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

(13) The function — input and output values:

Vie{1,...,k}:Y;, = forced respective bit value,
P, = polymorphic stimulus value for the p™ minterm,
Vw € {0,...,0—1}: ONP,,, = forced outputs for minterm p.

These values are directly obtained from the truth table of the designed function and
the constraints are implemented in the CNF as unit clauses.

Finally, all the clauses stated in the above subsections are concatenated to form a
CNF, to produce a SAT instance. A solution of this instance, particularly the values
of variables N; ., P; 1, Ci jm;, Ouis ON,,, OP,,, and F;,, then represents the imple-
mentation of the desired DAG.

Note that the number of clauses describing the DAG validity grows linearly
with both k and n, but the number of clauses describing the function grows
exponentially with k, because of an exponential number of minterms. When
combined with an NP-complete SAT-solving repeatedly run in the process, it is clear
that this approach is feasible for small £’s only. However, it is fully sufficient for some
purposes.’

4.3. Ezxploiting special properties of gates

Some gates listed in Table 1 exhibit special properties, like symmetry and symmetry
to negation (of course, these properties can be generalized to any set of functions with
more than two inputs). These properties can be used to prune the search space
efficiently. Particularly, additional rules are introduced and SAT clauses are added
to prevent ambiguity.

4.3.1. Symmetric functions

For symmetric functions, a node with a lower index is always the left child of
its parent:

VlE{k—Fl,,n—i—k‘}, jE{O,,Z—l}, hE{O,,]}CN’OéC}HJ (27)
This is in CNF:
Vlé{k-l-l,,n—l—k}, 36{0,,1—1}, h€{07’]}q‘1,0\/ch‘2,1 (28)

If all allowed functions are symmetric, the above clauses are added to the CNF
without any modification. In case there are nonsymmetric functions allowed, the
clauses are extended by identification of the function implementing node i (£ ,).

4.3.2. Symmetry to negation

The property of a function a0 b = @o b = a ob (case of, e.g., a XOR function) allows
for a significant reduction of possibilities of placing the negation. In our implementation,

1940010-18

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

we prohibit using negated edges at both nodes’ inputs; if negation is required, it
is placed at the output of such a node (which is the input of another node or a PO).
If there is a chain of nodes with this property, the negation is placed at the output
of this chain.

The following constraints are added to the CNF, for nodes implemented as
functions symmetric to negations (which is given by F;, values):

Vie{k+1,...,n+k}, ve{0,...,[log|F|] -1}, me{0,1}:F,,= N_,. (29)
This is in CNF:

Vie{k,...,n+k}, ve{0,...,[log|F[] -1}, me{0,1}:F,VN,,. (30)

’

4.4. Enumeration

In order to obtain multiple or even all solutions, i.e., all optimum DAG structures
implementing the given function, an All-SAT-solver can simply be used. However,
this approach is not practical, since many structurally equivalent solutions with just
permuted node indexes would be produced. Therefore, we propose the procedure
shown in Fig. 6.

Here, the best n (the minimum number of nodes by which the function can be
implemented) with the initial solution is found first. Actually, this procedure is just
equal to the original algorithm (Fig. 4). Then the CNF is constrained so that such a
solution will not be generated by a consequent SAT-solver run. This is done by

Generate all (truth table £, int k) {

// find minimum n first

n = 1;

do {
CNF = Generate CNF(f, k, n);
Sol = SAT Solve (CNF);
if (Sol.unsat) nt++;

} while (Sol.unsat);

// enumerate all solutions
while (!Sol.unsat) {
All.append(Sol.extract structure);
for all feasible permutations P {
CNF.Constrain (P, Sol);
}
Sol = SAT Solve (CNF);

}

return All;

Fig. 6. All optimal structures generation procedure.

1940010-19

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

simply adding blocking clauses describing the solution, i.e., the disjunction of all
variables N; ,,, P; 1, C; j), Oyis ON,, OP,, and F; , to the CNF, while the polarities
of variables correspond to the variables’ values in the solution (e.g., if a variable x
value is “1” in the solution, the literal Z is present in the blocking clause). This is
done for all permutations of node indexes, which describe a valid DAG (i.e., where
conditions from Sec. 4.2 are satisfied).

Then the SAT-solver is invoked for this CNF instance. This procedure is repeated
until an unsatisfiable solution is obtained, indicating that no other feasible solutions
exist.

As a result, all feasible nonisomorphic solutions are produced.

4.5. Deriving depth-optimal implementations

Even though the procedures described above produce optimal implementations
in terms of nodes count, they need not be delay-optimal (or depth-optimal).
The approach presented in Ref. 36 uses SMT to evaluate the level of each node and
optimize the result according to this. Here the level is expressed as an integer variable
attached to each node. A SAT-based approach producing delay-optimal solutions is
presented in Ref. 35. In principle, a similar approach is adopted; the delays of each
node are represented by bitstrings.

For the sake of simplicity, we have opted for a different approach based on the
enumeration. The enumeration procedure is run (see Sec. 4.4) and only one depth-
optimal solution is selected as a result. Naturally, lower bounds on circuit depth can be
imposed. Thus this approach does not involve enumerating all solutions in most cases.

4.6. Customizable gate costs

The basic procedure presented in Sec. 4.1 assumed equal costs of all nodes. However,
this may not be always desired. Thus, we propose an approach based on PBO, which
can assume any integer cost of any node type. In its basic form, the implementation is
simple and straightforward. The CNF clauses from Sec. 4.2 are transformed into
PBO inequalities, as described in Sec. 3.4.

Next, the optimization criterion to be minimized is defined. The node functions
are primarily encoded in binary (variables F;,). This representation is however not
well suitable for the node cost computation in PBO. Thus, we first append its
“translation” to the one-hot encoding to the CNF, forming new variables:

e FH;, denotes the i*" node function selector in one hot encoding, i € {k+1,...,
n+k}, z€{0,...,|F| —1}.

We will not mention the respective CNF clauses performing the translation from F; ,
to FH, ,, for the sake of brevity.

1940010-20

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

Then, the optimization criterion to be minimized is defined, by summing
the costs:

FH; , - cost(z) | . (31)
ie{k+1,...n+k} \ 2€{0,...,|F|-1}

Here the function cost(z) returns the integer cost of the 2t gate type.

A solution of this PBO instance results in an implementation consisted of n gates
reducing the total cost.

This approach, however, cannot be directly used in the context of the overall
algorithm, see Sec. 4.1. For example, let us assume an implementation using AND
and XOR gates, with the XOR cost being 3 and the AND cost 1. Assume the initial
solution of n = 3 with one XOR gate has been found. Therefore, the total cost is 5
(two AND gates 4+ one XOR gate). However, we are not sure if there is not a cheaper
solution comprised of just four AND gates (i.e., having the cost equal to 4).

Therefore, the algorithm from Fig. 4 must be slightly modified, as shown in Fig. 7.
The algorithm starts similarly to the original one (Fig. 4); only a PBO-solver is used
instead. In this phase, the initial solution primarily minimizing the total number
of nodes and secondarily the cost is obtained. This solution is recorded as the best
solution found so far.

The second phase of the algorithm tries to find a “cheaper” solution consisted of
more nodes. Increasing n makes sense while it is lower than the cost of the best
solution obtained above; in case of equality, the best solution consists of the
“cheapest” gates only (the minimum cost is assumed to be 1).

When searching for a better solution having more nodes than the initial one, the
set of gates that can be used can be restricted, based on their cost (the ConstrainCost
procedure in Fig. 7). Also note that the PBO-solver needs not be employed in all cases
and a (faster) SAT-solver can be used instead. This happens when there is no freedom
left in the choice of gates. In practice, the PBO-solver is called only once or twice at the
beginning of the process, based on the gates’ cost span.

Let us recall the above example. After the initial solution is obtained (n =3,
cost = 5, two ANDs, one XOR), n is increased to four in the next phase. In order to
obtain a solution with smaller cost (i.e., four), no XOR gate can be used, and thus
there is also no freedom of gates choice. Therefore, the CNF is restricted so that only
AND gates are allowed and SAT is solved instead of PBO.

The enumeration and delay optimizing versions of the algorithm (see Fig. 6) must
be modified in a similar way. Thus, starting with the n value obtained from the
algorithm in Fig. 7, n must be increased up to the Best_Sol.cost value to find all
optimum solutions. The difference from the algorithm in Fig. 7 is the addition of
blocking clauses after each solution found, and repetition of the main loop, while
satisfiable solutions are generated, similarly to Fig. 6.

1940010-21

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

Generate structure (truth table f, int k) {
// find initial solution
n=1;
do {
CNF = Generate CNF(f, k, n);
PBO = CNF.ToPBO() ;
Sol = PBO_Solve (PBO);
if (Sol.unsat) n++;
} while (Sol.unsat);
Best Sol = Sol;

// try to find better solution
while (n < Best Sol.cost) {
n++; // increase nodes count
CNF = Generate CNF(f, k, n);
ConstrainCost (best cost — n);
if (best cost — n > 1) {
PBO = CNF.ToPBO () ;
Sol = PBO_Solve (PBO) ;
} else Sol = SAT Solve (CNF);
if (Sol.cost < Best Sol.cost) {
Best Sol = Sol;
}
}

return Best Sol.extract structure();

Fig. 7. The optimal structure generation procedure using PBO.

5. Experimental Results
5.1. Experimental setup

The experimental results are demonstrated in this section. MiniSAT?" has been
used as a SAT-solver, MiniSAT+ as a PBO-solver.*® All the computations were
performed on a computer cloud with Intel Xeon E5-2630v3 2.40-GHz CPUs and
128-GB RAM.

5.2. Synthesis of replacement structures for rewriting

15 is one of the

As it was stated above, the rewriting-based logic optimization
applications where optimum implementations of functions are required. Here, a logic
network is optimized by repeatedly replacing its k-input subgraphs by their optimum
implementations. For this purpose, we need optimum implementations of all &-input
functions, or, better, their representative NPN-equivalence classes.? *

In this experiment, we have synthesized all nonisomorphic implementations of

all representatives of the 222 NPN-equivalence classes of four-input functions.? As

1940010-22

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

Table 2. Four-input rewriting structures statistics.

Nodes XORs Count

AND:XOR Max. Avg. Max. Avg. Max. Avg. Total

1:1 7 6.60 5 2.78 7,401 144.86 32,160
1:2 8 6.38 3 1.41 2,436 42.58 9,453
1:3 10 8.02 3 0.23 3,056 95.45 21,190

the implementation basis, the set {AND, XOR} was chosen. No polymorphism was
used in this experiment. The AND node cost was set to 1, while the XOR cost varied
from 1 to 3.

The summary results are shown in Table 2, where the total numbers of nodes,
XORs, and the counts of produced structures are shown.

We can see that with an increasing XOR cost, the number of XOR gates present
in the implementation shrinks and the total number of nodes increases.

The runtimes are not present since this experiment was rather time-consuming;
there are functions that have far too many solutions (see the 1:1 ratio), making the
enumeration to run very slow, because of excessive size of blocking clauses. However,
computing a single replacement structure typically takes negligible time.

5.3. Synthesis of replacement structures for polymorphic rewriting

The idea of rewriting can be extended to polymorphic rewriting. Let us assume that
each subgraph may implement two different functions, based on the value of the
polymorphic stimulus. Thus, we need optimum implementations of all pairs of func-
tions. Since there are 222 NPN-equivalence classes of four-input functions, producing
all pairs may be prohibitive. However, for three-input functions it is feasible, as there
are only 14 such classes.” Thus, there are 142 = 192 such functions. Subtracting 14
nonpolymorphic functions, we need 182 different optimum implementations.

We have generated these implementations, with the gate basis comprised of AND
and XOR gates. Both the AND and XOR costs were set to 1. The statistics are
shown in Table 3.

We can see that implementations of most of the functions were generated very
quickly, in an almost unmeasurable time. Generation of the whole set of 182 func-
tions took less than 1 min. Therefore, we can credibly conclude that the presented
method can be efficiently used for online computation of rewriting structures for
polymorphic rewriting.

5.4. Synthesis of small polymorphic circuits

In this subsection, we present synthesis results for several smallest circuits from the
MCNC®! and ITC’99°? benchmark sets, plus generic adders. Combinational parts
of sequential circuits were extracted. These circuits were collapsed to a PLA by
ABC? to obtain a truth table. For the purpose of this experiment, we have defined a

1940010-23

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

Table 3. Polymorphic rewriting structures statistics
for three-input functions.

Min. Max. Avg. Sum

Gates 1 6 4.06 739
XORs 0 3 1.10 200
Polymorphic edges 1 8 4.19 762
Runtime (s) <0.01 301 1.66 41.58

scenario where the first circuit input is defined as the polymorphic stimulus, while the
other inputs remain the PIs. Such a scenario is not that unrealistic — one may
imagine a technology, where the function of multiple gates is influenced just by one
signal. The Si-NW technology is such an example.”*

Optimum implementations of the example circuits have been synthesized, with-
out polymorphism being used, and compared to their respective optimum poly-
morphic designs. The results are shown in Table 4 for AND-nodes-based circuits.
Similar results are presented in Table 5, with the nodes set extended by an XOR gate
(with its cost set equal to the AND gate cost).

After the circuit name, the numbers of its inputs and outputs (k,0) are given.
Then, results of standard optimum synthesis'' are shown, in terms of the number
of nodes (Nd.) and levels (Lev.), followed by the results of polymorphic

Table 4. Synthesis results — only AND nodes used.

Standard logic Polymorphic logic

Name ko Nd. Lev Time Nd. P. edges Lev. Time
0l-adder 3 2 7 4 0.20 3 6 2 0.04
02-adder 5 3 — — — 10 6 6 7.01
ITChO1 6 7 — — — 12 12 3 48.33
ITCbh02 4 4 — — — 9 12 4 1.62
ITCh06 10 14 10 4 17,429.40 5 9 2 6,033.40
bl 3 4 6 3 0.23 1 3 1 0.02
cl7 5 2 6 3 1.91 5 3 3 1.06
clpl 11 5 10 2 33,596.10 10 3 2 33,199.00
cm82a 5 3 — — — 10 11 5 5.68
daio 5 6 10 4 10.63 9 13 3 6.46
dcl 4 7T — — — 13 17 3 5.85
lion 4 3 9 4 1.71 5 6 2 0.30
majority 5 1 8 5 3.78 5 6 4 0.61
mc 5 7 — — — 9 7 3 7.94
newcwp 4 5 — — — 9 5 3 1.94
newtag 8 1 9 6 276.02 8 12 4 181.68
s27 7 4 7 4 42.10 7 6 3 48.98
t 5 2 6 3 1.96 6 5 3 1.33
wim 4 7 — 12 12 4 4.71
xorh 5 1 — — — 9 10 4 4.04
Sum 88 42 51,364.04 64 (27%) 72 29 (30%) 39,472.88(23%)

1940010-24

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

Table 5. Synthesis results—AND and XOR nodes used.

Standard logic Polymorphic logic

Name Nd. XORs Lev. Time Nd. XORs P. edges Lev. Time
01l-adder 5 2 2 0.10 2 1 6 1 0.04
02-adder — — — — 7 4 13 4 2.96
ITCbhb01 — — — — 10 3 14 5 51.56
ITCbh02 — — — — 9 1 10 5 4.03
ITC_b06 8 3 4 12,373.40 5 0 9 2 6,475.23
bl 3 2 2 0.10 1 0 3 1 0.02
cl7 6 0 3 2.03 5 0 3 3 1.02
clpl 10 0 2 52,105.60 10 0 2 2 51,541.30
cm82a 10 6 6 8.20 7 4 12 3 2.81
daio 7 2 3 5.08 7 3 9 3 4.01
del — — — — 12 2 17 3 6.33
lion 9 2 6 1.85 5 0 4 2 0.43
majority 8 3 4 3.80 5 0 4 4 0.92
mc 10 5 4 14.89 9 1 6 3 6.98
newcwp 8 5 3 1.70 6 3 8 3 0.80
newtag — — — — 8 1 8 6 201.56
s27 7 0 4 44.10 7 0 5 3 46.08
t 6 0 2 2.10 6 0 6 2 1.73
wim — — — — 11 2 14 3 3.86
xorH 4 4 3 0.64 3 3 5 3 0.29
Sum 101 34 48 64,563.59 78 (23%) 15 (56%) 82 35 (27%) 58,081.65(10%)

implementations. As mentioned above, the first circuit input was always selected as
polymorphic stimulus, the “P. edges” column gives the number of polymorphic edges
in the implementation.

Results of only 20 circuits are shown in the tables, with summary values given in
the last rows, together with the overall percentage reductions compared to the
standard synthesis process. For some circuits we were not able to obtain imple-
mentations using standard (nonpolymorphic) logic, thus the summary results are
computed from the complete records only.

It is possible to see that the polymorphic implementations exhibit smaller area
and number of levels in most of the cases, assuming that the polymorphic edges are
“for free”. Even though this observation is quite obvious, since the notion of poly-
morphism actually allows implementing implicit XOR gates (see Sec. 3.2), the
purpose of the experiments was to illustrate how much area can be saved by means of
using the polymorphic electronics paradigm.

6. Conclusions

A SAT-based method to generate optimum polymorphic circuits described by a
DAG was presented. The polymorphic behavior is implemented by the introduction
of polymorphic edges into the DAG.

1940010-25

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

The method is general, in the sense that any set of two-input gates can be used as
the circuit building blocks (DAG nodes). These gates can be assigned an arbitrary
cost (size), allowing to produce circuits minimizing this cost.

Since the complexity of the problem solved — the optimum circuit — is immense
(as it is a ¥ 2-complete problem), the method can be applied to functions having
typically up to 10 inputs. However, the method can still serve as a means of obtaining
lower bounds of complexity of polymorphic circuits.

The feasibility of the method has been illustrated by experimental results. We
have compared “standard” optimum implementations of several benchmark circuits
with their polymorphic counterparts. A scenario, where one circuit input serves as a
polymorphic stimulus, was used. As a result, polymorphic implementations exhibit
an average 27% improvement in the number of gates, when XOR gates are not
allowed, and an average improvement of 23% for AND-XOR logic. However, poly-
morphism is considered to be available “for free” in this scenario.

Presenting this experimental comparison, however, was not the main
purpose of this paper, since it is unrealistic unless particular technology is targeted.
Instead, the objective was to present the method itself, in its most general form.
Then, it can be used, e.g., as a part of more complex synthesis algorithms applied to
specific target technologies, where different design primitives with different costs are
to be used.

One of the promising application areas is the generation of optimum imple-
mentations of functions with a limited number of inputs, to be used in general logic
optimization processes, like rewriting.!"® Here, optimum implementations of “small”
functions are used to replace their functional equivalents in a circuit to be optimized,
to reduce its size. For this purpose, all implementations of all 222 NPN-equivalence
classes of four-input functions were generated for standard AND—-XOR logic and the
statistics were measured, as a part of the experiments. Next, representatives of 182
NPN-equivalence classes of pairs of three-input polymorphic functions were gener-
ated and the runtime was measured. Very good applicability of the approach to
online generation of replacement structures was illustrated this way.

Acknowledgments

This work was partially supported by the Grant GA16-05179S of the Czech Grant
Agency, “Fault Tolerant and Attack-Resistant Architectures Based on Program-
mable Devices: Research of Interplay and Common Features” (2016-2018). Another
support for this work has been gratefully provided by the Grant FIT-S-17-3994 of
Brno University of Technology, “Advanced parallel and embedded computer
systems” (2017-2019). Access to computing and storage facilities owned by parties
and projects contributing to the National Grid Infrastructure MetaCentrum, pro-
vided under the program “Projects of Large Research, Development, and Innova-
tions Infrastructures” (CESNET LM2015042), is greatly appreciated.

1940010-26

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

The authors acknowledge the support of the OP VVV MEYS funded Project

CZ.02.1.01/0.0/0.0/16_.019/0000765 “Research Center for Informatics”.

References

1.

10.

11.

12.
13.
14.

15.

16.

17.

18.

19.

A. Mishchenko, S. Chatterjee and R. K. Brayton, DAG-aware AIG rewriting: A fresh look
at combinational logic synthesis, Proc. 43th Design Automation Conf. (2006), pp. 532—
535.

M. A. Harrison, The number of equivalence classes of Boolean functions under groups
containing negation, IEEE Trans. Electron. Comput. EC-12 (1963) 559-561.

S. Muroga, Logic Design and Switching Theory (John Wiley & Sons, Ltd., 1979).

J. N. Culliney, M. H. Young, T. Nakagawa and S. Muroga, Results of the synthesis of
optimal networks of AND and OR gates for four variable switching functions, IEEFE
Trans. Comput. 28 (1979) 76-85.

I. Halecek, P. Fiser and J. Schmidt, Towards AND/XOR balanced synthesis: Logic cir-
cuits rewriting with XOR, Microelectron. Reliab. 81 (2018) 274-286.

E. Boros and P. L. Hammer, Pseudo-boolean optimization, Discrete Appl. Math. 123
(2002) 155-225.

C. Umans, The minimum equivalent DNF problem and shortest implicants, J. Comput.
Syst. Sci. 63 (2001) 597—611.

D. Buchfuhrer and C. Umans, The complexity of Boolean formula minimization,
J. Comput. Syst. Sci. 77 (2011) 142-153.

C. Barrett, R. Sebastiani, S. Seshia and C. Tinelli, Satisfiability modulo theories,
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, Vol. 185
(IOS Press, 2009), pp. 825-885.

P. Fiser and V. Simek, Optimum polymorphic circuits synthesis method, Proc. 13th IEEE
Int. Conf. Design and Technology of Integrated Systems in Nanoscale Era (DTIS) (2018),
p. 6.

P. Fiser, I. Halecek and J. Schmidt, SAT-based generation of optimum function imple-
mentations with XOR gates, Proc. 20th Euromicro Conf. Digital Systems Design (DSD)
(2017), pp. 163-170.

I. L. Markov, Limits on fundamental limits to computation, Nature 512 (2014) 147-154.
A. Stoica, Polymorphic electronics: A novel type of circuits with multiple functionality,
NASA New Technology Report No. NPO-21213, NASA (2000).

A. Stoica, EHW approach to temperature compensation of electronics, NASA Technical
Briefs No. NPO-21146, NASA (2004).

A. Stoica, R. S. Zebulum and D. Keymeulen and J. Lohn, On polymorphic circuits and
their design using evolutionary algorithms, Proc. 20th IASTED Int. Conf. Applied In-
formatics (2002), pp. 1-6.

A. Stoica and R. S. Zebulum, Multifunctional logic gate controlled by temperature,
NASA Tech Briefs No. NPO-30795, NASA’s Jet propulsion Laboratory, Pasadena, CA
(2005).

A. Stoica and R. S. Zebulum, Polymorphic electronic circuits, NASA Tech Briefs
No. NP0O-21213, NASA’s Jet Propulsion Laboratory, Pasadena, CA (2004).

7. Gajda and L. Sekanina, On evolutionary synthesis of compact polymorphic combi-
national circuits, J. Mult.- Valued Logic Soft Comput. 17 (2011) 607-631.

Z. Gajda, Evolutionary approach to synthesis and optimization of ordinary and poly-
morphic circuits, Ph.D. thesis, Department of Computer Systems, Faculity of Informa-
tion Technology, Brno University of Technology (2011), p. 92.

1940010-27

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Figer et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

R. Tesar, V. Simek, R. Ruzicka and A. Crha, Design of polymorphic operators for efficient
synthesis of multifunctional circuits, J. Comput. Commun. 4 (2016) 151-159.

A. Crha, R. Ruzicka and V. Simek, Synthesis methodology of polymorphic circuits using
polymorphic NAND/NOR gates, Int. Conf. Mathematical/Analytical Modelling and
Computer Simulation (2015), pp. 612-617.

E. L. Lawler, An approach to multilevel boolean minimization, J. ACM 11 (1964) 283-295.
R. M. Karp, F. E. McFarlin, J. P. Roth and J. R. Wilts, A computer program for
the synthesis of combinational switching circuits, Proc. 2nd Annu. Symp. Switching
Circuit Theory and Logical Design (1961), pp. 182-194.

J. P. Roth and R. M. Karp, Minimization over Boolean graphs, IBM J. Res. Develop.
6 (1962) 227-238.

P. R. Schneider and D. L. Dietmeyer, An algorithm for synthesis of multiple-output
combinational logic, IEEE Trans. Comput. C-17 (1968) 117-128.

E. S. Davidson, An algorithm for NAND decomposition under network constraints, IEEE
Trans. Comput. 18 (1969) 1098-1109.

T. Nakagawa, A branch-and-bound algorithm for optimal AND-OR networks (the
algorithm description), Report No. UIUCDCS-R-71-462. Department of Computer
Science, University of Illinois Urbana-Champaign (1971).

E. A. Ernst, Optimal combinational multi-level logic synthesis, Ph.D. thesis, The
University of Michigan (2009).

R. Drechsler and W. Giinther, Exact circuit synthesis, Proc. Int. Workshop Logic &
Synthesis (IWLS) (1998).

C. R. Baugh, T. Ibaraki and S. Muroga, Technical note: Results in using Gomory’s all-
integer integer algorithm to design optimum logic networks, Oper. Res. 19 (1971) 1090—
1096.

S. Muroga and T'. Ibaraki, Design of optimal switching networks by integer programming,
IEEE Trans. Comput. 21 (1972) 573-582.

S. Muroga and H. C. Lai, Minimization of logic networks under a generalized cost
function, IEEE Trans. Comput. 25 (1976) 893-907.

A. Kojevnikov, A. S. Kulikov and G. Yaroslavtsev, Finding efficient circuits using
SAT-solvers, Proc. Int. Conf. Theory and Applications of Satisfiability Testing (2009),
pp. 32-44.

I. Halecek, P. Fiser and J. Schmidt, Are XORs in logic synthesis really necessary? Proc.
IEEE 20th Int. Symp. Design and Diagnostics of Electronic Circuits & Systems (DDECS)
(2017), pp. 138-143.

M. Soeken et al., Practical exact synthesis, Proc. Design, Automation € Test in Furope
Conf. & Ezhibition (DATE) (2018), pp. 309-314.

M. Soeken et al., Exact synthesis of majority-inverter graphs and its applications, IEEFE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 36 (2017) 1842-1855.

N. Een and N. Sorensson, An extensible SAT-solver, SAT 2003: Theory and Application
of Satisfiability Testing, Lecture Notes in Computer, Science, Vol. 2919 (Springer-Verlag,
2004), pp. 333-336.

N. Een and N. Soerensson, Translating pseudo-Boolean constraints into SAT, J. Satisf.
Boolean Model. Comput. 2 (2006) 1-26.

S. B. Akers, Binary decision diagrams, IEEE Trans. Comput. 27 (1978) 509-516.

M. Fuyjita, P. C. McGeer and J. C. Yang, Multi-terminal binary decision diagrams: An
efficient data structure for matrix representation, Form. Methods Syst. Des. 10 (1997)
149-169.

1940010-28

JCIRCUIT SYST COMP 2019.28. Downloaded from www.worldscientific.com
by 178.22.116.251 on 04/11/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

SAT-based Generation of Optimum Circuits with Polymorphic Behavior Support

G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms (Kluwer
Academic, Boston, 1996).

P. Bjesse and A. Borlv, DAG-aware circuit compression for formal verification, Proc.
IEEE/ACM Int. Conf. Computer-Aided Design (2004), pp. 42-49.

P. A. Abdullah, P. Bjesse and N. Een, Symbolic reachability analysis based on SAT-
solvers, Proc. 9th Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems (2000).

A. Kuehlmann, V. Paruthi, F. Krohm and M. Ganai, Robust Boolean reasoning for
equivalence checking and functional property verification, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 21 (2001) 1377-1394.

A. Crha, V. Simek and R. Ruzicka, Towards novel format for representation of poly-
morphic circuits, Proc. 13th Int. Conf. Design & Technology of Integrated Systems in
Nanoscale Era (DTIS) (2018), pp. 1-2.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman & Co. (New York, 1990), p. 338.

F. Aloul, A. Ramani, I. Markov and K. Sakallah, PBS, a backtrack search pseudo-
Boolean solver, Proc. Fifth Int. Symp. Theory and Applications of Satisfiability Testing
(SAT) (2002).

V. M. Manquinho and O. Roussel, The first evaluation of pseudo-Boolean solvers,
J. Satisf. Boolean Model. Comput. 2 (2006) 103-143.

H. M. Sheini and K. A. Sakallah, Pueblo: A hybrid pseudo-Boolean SAT solver, J. Satisf.
Boolean Model. Comput. 2 (2006) 165-189.

O. Bailleux, Y. Boufkhad and O. Roussel, A translation of pseudo Boolean constraints to
SAT, J. Satisf. Boolean Model. Comput. 2 (2006) 191-200.

S. Yang, Logic synthesis and optimization benchmarks user guide: Version 3.0, MCNC
Technical Report, MCNC, NC, USA (1991).

F. Corno, M. S. Reorda and G. Squillero, RT-level ITC’99 benchmarks and first ATPG
results, Proc. IEEE Design Test of Computers (2000).

Berkeley Logic Synthesis and Verification Group, ABC: A system for sequential synthesis
and verification (2018), http://www.eecs.berkeley.edu/alanmi/abc/.

L. Amaru et al., New logic synthesis as nanotechnology enabler, Proc. IEEE 103 (2015)
2168-2195.

1940010-29

	SAT-Based Generation of Optimum Circuits with Polymorphic Behavior Support∗
	1. Introduction
	1.1. Polymorphic circuits

	2. Related Works
	2.1. Optimum circuits generation
	2.2. Polymorphic circuits design

	3. Preliminaries
	3.1. Circuit representation
	3.2. Polymorphic circuits representation
	3.3. Boolean SAT problem
	3.4. PBO problem
	3.5. List of two-input functions

	4. The Proposed Method
	4.1. The basic procedure
	4.2. The CNF construction
	4.2.1. Network structure description
	4.2.2. Network function description

	4.3. Exploiting special properties of gates
	4.3.1. Symmetric functions
	4.3.2. Symmetry to negation

	4.4. Enumeration
	4.5. Deriving depth-optimal implementations
	4.6. Customizable gate costs

	5. Experimental Results
	5.1. Experimental setup
	5.2. Synthesis of replacement structures for rewriting
	5.3. Synthesis of replacement structures for polymorphic rewriting
	5.4. Synthesis of small polymorphic circuits

	6. Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

