
*
 Corresponding author: janku@fai.utb.cz

Detecting fire in video stream using statistical analysis

Karel Koplík1, Peter Janků2,*, Olga Voznyuk2, Tomáš Dulík2, Petr Snopek3

1Brno University of Technology, Faculty of Information Technology, Czech Republic
2Tomas Bata University in Zlin, Faculty of applied informatics, Nad Stranemi 4511, 760 05 Zlin, Czech Republic
3 UNIS, a.s., Jundrovská 33, 624 00 Brno, Czech Republic, Czech Republic

Abstract. The real time fire detection in video stream is one of the most interesting problems in computer

vision. In fact, in most cases it would be nice to have fire detection algorithm implemented in usual industrial

cameras and/or to have possibility to replace standard industrial cameras with one implementing the fire

detection algorithm. In this paper, we present new algorithm for detecting fire in video. The algorithm is based

on tracking suspicious regions in time with statistical analysis of their trajectory. False alarms are minimized

by combining multiple detection criteria: pixel brightness, trajectories of suspicious regions for evaluating

characteristic fire flickering and persistence of alarm state in sequence of frames. The resulting

implementation is fast and therefore can run on wide range of affordable hardware.

1 Introduction
In this paper, we present new algorithm for detecting fire
in video based on tracking suspicious regions in time with
statistical analysis of their trajectory. Our goal was to
develop a fast algorithm which can run on an affordable
hardware with minimum rate of false alarms.

The purpose of detecting fire in video is to improve
current systems based on traditional fire and smoke
detection sensors, which are limited in several ways: e.g.,
they cannot be used in industrial plants, where burning is
an inherent part of the manufacturing process and/or
where the occasional occurrence of smoke cannot be
avoided. The current sensors have also relatively short
range: they need to be close to the potential fire, so there
must be many of them in order to cover all dangerous
places.

Cameras can monitor much larger areas and their
operation can be more reliable then chemical or optical
smoke sensors, which need to be regularly checked,
cleaned or exchanged. Therefore, it is desirable to develop
a camera-based fire detection system which can become a
welcomed alternative to traditional fire and smoke
detection sensors.

Of course, there are already other systems for fire
detection in video streams. What makes our system
different is that it is very fast and doesn’t require too much
computation power.

2 Detailed description
The entire algorithm is very simple. It consists of the
following steps:

1. Detect suspicious regions

2. Find bounding rectangles
3. Track rectangles in time
4. Analyse trajectories
5. Check for persistence

In the following sections we will look at each step. To
demonstrate, let’s use a video of a burning tree as an
example.

Fig. 1. Burning fire.

2.1 Detecting suspicious regions

The regions of interest in this case would be those pixels
which have fire-like colour and also pixels which change

�

DOI: 10.1051/, 02055 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

2055

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

visibly in time (i.e. contain movement). Suspicious pixels
are then a union of these two sets.

2.1.1 Detecting pixels with fire-like colour

Finding pixels based on colour is very simple and it can
be done using different colour models like RGB, YUV,
YCbCr HSI or HSV. [1][6][7] First two focus on colour
spectrum and latter two on colour intensity. Fire is usually
the brightest part in the video so using brightness as an
additional criterion is very useful.

In our algorithm we work with RGB colour model
and the procedure looks like this: We take red (R), green
(G), and blue (B) channels and calculate colour saturation
(S).

Then the following rules are applied:

R >G>B
S >ST

where:
ST is saturation threshold.

Fig. 2. Fire colour map-

2.1.2 Detecting movement

To detect movement we actually need three frames.
Because we need the previous, current and the next frame,
the algorithm is always one frame behind a real-time
video stream from a camera.

Taking only greyscale frames, we basically subtract the
background to detect motion in foreground. First we
calculate an absolute difference between previous (fi-1)
and next (fi+1) frame. This will subtract the background.
Then we calculate an absolute difference between current
(fi) and the next frame. This will update that information.
Then we apply binary AND operator on the two
calculated differences to obtain information about the
movement in the foreground.

 | fi-1 -fi+1 |^| fi -fi+1 | (1)

It is also necessary to filter out lone pixels (i.e. noise) in
the result movement map. The amount of noise depends
on camera and lighting conditions.

Fig. 3. Movement map.

Fig. 4. Suspicious areas.

2.2 Founding bounding rectangles

The binary map of suspicious pixels will most likely
consist of lots of small disconnected areas concentrating
in separated larger regions. In one of our first attempt, we
tried to find bounding rectangles for each of them and then
to connect them into larger bounding rectangle if they
were close enough to each other. This worked but also
turned out to be very costly in terms of processing time.
The solution was to dilate the small areas using a
morphology operator.

Dilatation (as a morphological operation) consists of
convoluting an image with a small kernel shaped like a
simple shape (circle, square, etc.).

This results into much fewer bounding rectangles to
be found and aggregated in the next step and significantly
increases the algorithm speed.

2.3 Tracking suspicious regions in time

�

DOI: 10.1051/, 02055 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

2055

2

Similarly to [8] we test suspicious regions fire-like
characteristic in time. Our method consists of tracking.
Before we start we need to aggregate found areas in space
and then link them in time.

2.3.1 Aggregating regions in space

After we are done marking up areas of interest in each
frame we need to look into previous frames to find out if
we can link them to previously marked areas.

For that we use a tree data structure consisting of
two layers of bounding rectangles.

In first frame, we add rectangles to the root of the
tree. If a rectangle to be added overlaps (with added
tolerance) any rectangles stored in the tree, they are all
replaced with a rectangle which is based on the largest one
and is large enough to contain all of them. The parent
rectangle is not reduced in size in this step and they are
added as its children.

If they already have children, the children are moved
to the new parent and the original parent is discarded.

Once all the rectangles have been added to the tree,
the bottom layer is removed. Before that we check if each
top-layer rectangle has any children.

If it has, we find the smallest bounding rectangle for
all children and resize the parent to the average between
the original and the smallest size.

2.3.2 Linking regions in time

If the parent ends up with no children, we reduce its RTL
(right to live) parameter. If it has at least one child, we
will set RTL to predefined maximum value.

The RTL parameter basically tells us how long we
will keep a rectangle which has not been updated (e.g. for
3 frames).

In all of the following frames, we repeat the same
steps as with the first frame, but now we have preexisting
first-layer.

2.3.3 Tracking regions in time

The tracking is based on keeping the history of middle
points. These are not the centre points of bounding
rectangles. Instead, we take the original map of suspicious
regions (without applied dilatation) and average the
coordinates of suspicious pixels. The new average point
is then added to stack.

The reason we use the stack is that we remove points
if their count surpasses defined limit.

Fig. 4. Suspicious region’s trajectory.

2.4 Analysing trajectories

This and the following step are very important. Without
them, we would be detecting a large spectrum of objects
and features which are similar to fire in colour and in “not
being static”. The fire, however, has a very specific way
of moving. First of all, it stays in one place and is
characteristic by constant flickering. This is very useful
because it’s hard to find anything else what is (yellow and
bright and) constantly changing shape while staying in
one location. The trajectory of the middle points should
basically fit the normal distribution.

To test this with our suspicious regions, we use
horizontal and vertical coordinates of the middle points.
First we calculate the mean value μ and the standard
deviation σ for each axis. If the distribution is normal,
according to the gaussian curve, 68.2% of values should
belong to the interval:

 (μ-σ,μ+σ) (2)

Since we work with object that doesn’t only change shape
but also size over time, it is not wise to rely on too many
values to increase precision. Instead, we work with fewer
values (according to our tests, the optimal number seems
to be around 100) and expect some reasonable error. That
is why we had settled to expecting 60% of data to fall into
the above specified interval.

2.5 Checking for persistence

To further eliminate false alarms, we apply the last
criterion, which is persistence. If the previous step gives
us positive result, we don’t trigger the alarm yet but save
it. This we do for each frame.

Depending on the video source quality and captured
scene properties, we usually set the persistence limit to at
least 15 seconds (which would be 375 frames for 25 fps
video source) or even more. With such setting, we found
our algorithm gives satisfactory low false alarm rates.

�

DOI: 10.1051/, 02055 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

2055

3

Longer persistence limit could result in longer delay or
missing short positive detections.

To evaluate persistence, we don’t require the
positive test on normal distribution in each frame. It can
be just some higher percentage. Empirically, we had set it
to the top quarter.

Fig. 6. Output screen.

3 Algorithm parameters

There are several parameters which need to be set after a
camera providing video stream for our algorithm is
installed into a new environment.

3.1 Brightness threshold

Defines the minimum brightness needed for classifying
pixels as fire-coloured. Normally the best value would be
around 225 (out of 255) but in some test videos it had to
be adjusted because the fire was too dark due to the type
of video source.

3.2 Movement threshold

During the movement detection processing the camera
noise is reduced by filtering out some lone pixels. This
parameter sets the threshold. Usually in badly illuminated
areas the threshold needs to be set higher. This is
important because noise has normal distribution so it
could cause a false alarm.

3.3 Small regions gap size

Maximum distance between two bounding rectangles of
small regions that can be aggregated. This parameter
should have a small value (e.g. 10 px) and depends on
video resolution.

3.4 Regions minimal size

If there are too many very small regions found because of
camera noise, we eliminated them by setting a minimal
bounding rectangle size. If the size is set too high, small
flames will not be detected. If it’s too low, the noise can
trigger false alarm.

3.5 Region “right to live”

As was explained in the previous chapter, this parameter
sets how long we keep a region appearing to be empty in
a few frames.

This mostly happens when there is no movement
detected. Since the fire has multiple independently
moving flames it can be expected that with high
probability, it will not stop moving for more than few (e.g.
3) frames.

3.6 Number of middle points

The parameter defines how many middle points we want
to remember for each region before we test them for
normal distribution. It should be enough for this criterion
to be calculated relatively accurately but also not too
many so we adapt to changes in the scene quickly. We use
empiric value of 100.

3.7 Persistency interval

This parameter determines the number of frames, for
which a positive detection has to persist before triggering
the alarm. This parameter needs to be changed according
to number of frames per second in each video stream.

The higher this number is the harder it is to fool the
algorithm but also the longer delay we get. Fire keeps its
characteristic movement all the time, but most other
objects and phenomena move chaotically and in short
intervals. In our tests, 15 seconds turned out to be
sufficient minimal length.

4 Performance

To test our algorithm, we had acquired several
videos containing flames, moving bright objects and
phenomena similar to fire.

4.1 Algorithm speed

Our algorithm is very simple so when optimized, it runs
in real time on average hardware. It does not rely on
frequency of fire flickering unlike some algorithms so the
frame rate doesn’t have to be that high either.

How fast the algorithm detects flame really depends
on the camera setting and scene characteristics, but in
ideal conditions it depends solely on the defined length of
the minimal persistence interval.

Not ideal conditions would be e.g. the flame is too
small or too far from the camera, if the flame is not fully
visible in camera’s field of view or the flame movement
is being distorted by another moving object (in one test
video it was a burning piece of wire rolling out of flames).

4.2 Strengths and weaknesses

Similarly to other fire-detecting algorithms, the most
concerning weakness is false alarm ratio. Avoiding false
alarms is implemented by combining multiple criteria

�

DOI: 10.1051/, 02055 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

2055

4

[2][3][4][5]. If all criteria are fooled, the false alarm
occurs.

During our testing we had encountered some
problematic scenes. To test the constant movement with
normally distributed middle points of suspicious regions
we had used some videos of dancing people. Interestingly,
some types of dance don’t have the normal distribution of
movement and some do.

In the end, none of these videos triggered the alarm
but some were really close. When dancing, the movement
often briefly stops and that makes the persistence criterion
come out negative.

What was most problematic was white background
in some videos. Anything what moves in front of such
background can pass the movement-and-brightness
criterion because even when the object is not bright the
algorithm sees only bright areas changing shape as the
object covers and uncovers the background.

Other concern we have is with natural phenomena
similar to fire. When testing the algorithm on videos of
sunset being reflected on moderately moving ocean
surface, the false alarm was triggered every time. This
means that our algorithm cannot be used at locations
where something like this occurs. However, it can be
useful in locations such as a factory hall or a tunnel where
these phenomena don’t appear.

Other than that, our algorithm proved to work
without problems and was almost impossible to fool
intentionally when processing real time camera input.

5 Conclusion

We had developed and successfully tested a new
algorithm. In this stage in can be used with any camera
system and will work mostly without error. However,
there are certain situations in which the algorithm triggers
false alarm. This will be the subject of our future research.

Acknowledgement

This paper is supported by Technology Agency of the
Czech Republic (TA ČR) within the Visual Computing
Competence Center - V3C project No. TE01020415, by
Ministry of Education, Youth and Sports of the Czech
Republic within the National Sustainability Programme
project No. LO1303 (MSMT-7778/2014) and also by the
European Regional Development Fund under the project
CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.

References

1. T. Chen, P. Wu, and Y. Chiou, “An Early Fire-

Detection Method Based on Image Processing,” Proc.
IEEE Int. Image Process., (2004), pp. 1707-1710.
2. B.U. Toreyin, Y. Dedeoglu, and A.E. Cetin, “Flame

Detection in Video Using Hidden Markov Models,” Proc.
IEEE Int. Conf. Image Process., (2005), pp. 1230-1233,

2005.

3. W. Krüll et al., “Design and Test Methods for a

Video-Based Cargo Fire Verification System for

Commercial Aircraft,” Fire Safety J., 41, no. 4, (2006),

pp. 290-300.
4. T. Celik, "Fast and Efficient Method for Fire

Detection Using Image Processing," ETRI Journal, 32,

no. 6, (Dec. 2010), pp. 881-890.
5. L., Zhigang, G.Hadjisophocleous, G. Ding and Ch.S.

Lim. Study of a Video Image Fire Detection System for

Protection of Large Industrial Applications and Atria

[online]. (cit. 2013-12-01).
6. Poobalan, Kumarguru and Liew, Siau-Chuin. Fire

Detection Algorithm using Image Processing Techniques.

In: E-Proceeding of the 3rd International Conference on

Artificial Intelligence and Computer Science

(AICS2015), 12-13 (October 2015) , BayView Hotel,

Penang, Malaysia. pp. 160-168.. ISBN 978-967-0792-06-

4.
7. Jiang, B., Lu, Y., Li, X. et al. Multimed Tools Appl

(2015) 74: 689. doi:10.1007/s11042-014-2106-z.
8. A. E. Gunawaardena, R. M. M. Ruwanthika, A. G. B.

P. Jayasekara, "Computer Vision Based Fire Alarming

System", in Proceedings of the 2nd International

Moratuwa Engineering Research Conference (MERCon),

pp. 325-330, Moratuwa, Sri Lanka, (April 2016).

�

DOI: 10.1051/, 02055 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

2055

5

