
Bilateral Symmetry in Central Retinal Blood
Vessels*

Sangeeta Biswas∗∗
Centre of Excellence IT4Innovations
Faculty of Information Technology

Brno University of Technology
Brno 61200, Czech Republic

biswas@fit.vutbr.cz

Johan Rohdin
Centre of Excellence IT4Innovations
Faculty of Information Technology

Brno University of Technology
Brno 61200, Czech Republic

rohdin@fit.vutbr.cz

Martin Drahansky
Centre of Excellence IT4Innovations
Faculty of Information Technology

Brno University of Technology
Brno 61200, Czech Republic

drahan@fit.vutbr.cz

Abstract—Symmetry can be defined as uniformity, equivalence
or exact similarity of two parts divided along an axis. While
our left and right eyes clearly have a high degree of external
bilateral symmetry, it is less obvious to what degree they have
internal bilateral symmetry. This is especially true for central
retinal blood vessels (CRBVs) which are responsible for supplying
blood to retinas and also can be used as a strong biometric. In
this paper, we study whether CRBVs of the left and right retinas
possess strong enough bilateral symmetry so that we reliably tell
whether a pair of CRBVs of the left and right retinas belongs to
a single person. We evaluate and analyse the performance of both
human and neural network based bilateral CRBVs verification.
By experimenting on a large publicly available data set, we
confirm that CRBVs have bilateral symmetry to some extent.

Index Terms—retina, symmetry, central retinal blood vessels,
deep neural network

I. INTRODUCTION

Symmetry can be defined as uniformity, equivalence or ex-
act similarity of two parts divided along an axis. Paired organs
such as eyes, ears, hands, legs, etc., give an approximate-
bilateral symmetrical look (i.e. almost identical left and right
forms) to the exterior of our human body by dividing it into
two parts through an imaginary left-right axis. Symmetrical
left and right eyes not only give us a sense of beauty but also
full field of vision and depth of perception. Even though we
can easily see outward symmetry in our left and right eyes,
seeing symmetry in the internal parts of our two eyes is not
easy. This is especially true for the retina which is a thin,
semi-transparent, multi-layered, neural tissue that covers two-
thirds of the interior of our each eye. It is anatomically and
physiologically considered as an extension of our brain. It is
mainly responsible for converting incoming electromagnetic
signals from the world outside of our eye into neural signals,
and then handing the neural signals to the optic nerves. The
neural signals, relaying through the optic nerves, form images
into the visual cortex of our brain, and therefore, we can have
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a sense of vision [1], [2]. Any kind of disturbance in retina
can have negative effect on our vision. Severe pathology in
retina even can cause irreversible partial or complete vision
loss.

The retina is one of the most metabolically active tissues
in the human body. It consumes high level of oxygen and
nutrients to ensure our visual functionality. Two kinds of
well-organized blood vessels, central retinal blood vessels
(CRBVs) and choroidal blood vessels (CBVs), are responsible
for supplying oxygen and nutrients to the retina, as well as
transporting away waste from the retina. Not only for their
contribution in our visual system, but also for their unique
and almost lifetime permanent patterns, CRBVs and CBVs
draw huge research interest [3]–[21]. They are considered as
retina based biometric, and used for identifying individuals in
order to control the access to highly confidential and secured
environments.

In medical science, bilateral symmetry between different
anatomical structures and layers of the left and right retinas is
a well studied topic under the term interocular symmetry [22]–
[27]. It helps ophthalmologists to use one retina as a proxy of
the other retina as well as to detect development of pathology
in the retina. In retina based biometric, bilateral symmetry
may open a possibility of developing side independent retina
based person authentication system in which one side retina
can be used to access a system developed for the opposite side
retina. This will increase user flexibility especially when the
registered retina is affected by severe pathology. The study of
bilateral symmetry may also help us to understand how strong
a biometric system would be if both side retinas are used. If
the left and right retina of a person were completely different
then an authentication system using both side retina would
be two times stronger than an authentication system using one
side retina. However, with the exception of our previous works
(i.e., [28], [29]), studies on bilateral symmetry are almost non-
existent in the retina based biometric research. In [28], [29],
we reported that in color fundus photographs as well as in
CRBVs segmented from the color fundus photographs, it is
possible to see similarity between two retinas, and, therefore,
to decide whether a pair of a left and a right retinal images
belongs to the same person or to two different persons.
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In this paper, we try to find bilateral symmetry in CRBVs.
Our work in this paper is similar to our previous works [28],
[29]. Differences are that our previous works were based on
the opinion of only four untrained volunteers and on very small
data sets. Moreover, the simple similarity measurements (i.e.,
structural similarity and cosine similarity) used in our previous
works were highly prone to the orientation of the optic disc
and macula. Therefore, we could not claim anything firmly
based on our findings. In this paper, we report the results of
20 untrained volunteers. The volunteers are asked to find the
similarity between pairs of CRBVs without being instructed
what to look for or where to look. Instead of simple similarity
measurements, we train a Y shaped neural network (YNN) to
find bilateral symmetry. We do experiments on a set of 1, 752
pairs of CRBVs, which is much larger than the largest set used
in our previous works, which had only 64 pairs.

II. BACKGROUND

A. Brief Description of CRBVs

The approximately 0.5 mm thick retina is sandwiched
between the avascular vitreous and the highly vascular choroid.
Branching out from the ophthalmic blood vessels, CRBVs
pierce the optic nerve and enter the internal side of the retina
through the optic disc (as shown in Fig. 1(a)). On the other
hand, branching out from the ophthalmic blood vessels, cilliary
blood vessels enter the choroid and form CBVs to supply
blood to-and-from the external side of the retina by diffusion.
The internal side of the retina is the side that comes first when
we look at a retina from the outside through the lens and the
vitreous. It is composed of eight basic layers: internal limiting
membrane (ILM), retinal nerve fiber layer (RNFL), ganglion
cell layer (GCL), inner plexiform layer (IPL), inner nuclear
layer (INL), outer plexiform layer (OPL), outer nuclear layer
(ONL) and outer limiting membrane (OLM). On the other
hand, the external side is the side of the retina which is close
to the choroid. It is composed of the photoreceptor layer (PRL)
and the retinal pigment epithelium (RPE) layer [1], [2]. Using
the optical coherence tomography (OCT), we can see these
layers as well as CRBVs (see Fig. 1(b)).

Even though it is possible to see blood vessels in deeper
layers of retina in OCT photographs, until now retina biometric
research is mainly based on fundus photographs. As shown
in Fig. 1(c), in a color fundus photograph, we can see the
almost circular, colored foreground of a retina on a dark
background. Most of the foreground of a retina is covered
by tree structured central retinal arteries (CRAs) and central
retinal veins (CRVs). The CRAs and CRVs together form the
CRBVs. Other anatomical structures such as macula, fovea,
optic disc (OD), optic cup (OC), neuroretinal rim (NR), are
also visible in a color fundus photograph. Depending on the
fundus camera, we may see a side indicator (i.e., triangle or
oval shaped bump) always at the right side which helps us
determine whether it is a left or right side retina. If OD is
in the same side as the side indicator (SI) in a retinal image,
then that image belongs to a right-side retina. If OD is in

the opposite side of SI, then that image belongs to a left side
retina.

Coming out from the OD on the nasal side, the CRBVs form
four branches: inferior, superior, nasal and temporal branches.
The first bifurcation of the CRBVs can be occurred inside the
optic nerve, or at the mouth of OD, or a bit upper of the
OD. There is no CRBV in the center of the fovea, i.e., in the
foveal avascular zone (FAZ). The CRAs appear, in general,
bright red when compared to the purple-red CRVs. Generally,
the CRAs have smaller caliber than the CRVs inside the OD
area as well as surrounding the OD area. Near to the boundary
of the foreground of the retina, it is hard to distinguish CRVs
from CRAs either by color or by caliber, though.

B. CRBVs as Biometric

Last 120 years the CRBVs have been playing an important
role in retina based biometric which is considered to be one of
the high performing biometrics. In 1899, Dr. Levinsohn first
mentioned in one of his German articles that retinal images
can be used for human identification. Along with the size
and shape of the OD, and its border, he mainly considered
the arrangement of the CRBVs to distinguish humans from
each other. In 1918, Haber showed that by placing a fine
screen in front of the fundus photographic plate, CRBVs
can be represented as a sketch on a chess board. Later
Dr. Blascheck wrote a formula in his unpublished work to
distinguish individuals considering the external appearances
of the OD and macula, visibility of the CBVs, atrophy of the
choroid, certain permanent abnormalities such as as coloboma,
etc., the location of the first bifurcation of the CRA, and the
number of the CRVs and the CRAs intersecting two parallel
lines in the superior and inferior parts and the crossing patterns
of the CRAs and CRVs through those lines from the left to
the right. Details of these works can be found in Türkel’s
book [30] written in German and a short note in English can
be found in [4]. In 1935, Dr. Simon and Dr. Goldstein claimed
in [3] that even though the patterns of both CRAs and CRVs
can be jointly used for human classification, only CRVs are
good enough, since they have more distinctive appearance than
the CRAs, being larger and their lumen photographing darker.

In the patent US 4,109,237 [6], the patterns of CRBVs of
subjects were captured by illuminating the retina by visible
monochromatic green light, since this light is absorbed by the
dark red of blood vessels and substantially reflected by the
retinal tissue which results a high contrast between tissue and
vessels. Later it was found that the brightness of the visible
illuminating light needed in order to get a recognizable pattern,
caused discomfort to the subjects being identified. It also
caused the pupil of the eye to constrict, making it more difficult
to get CRBVs pattern. Therefore, in the later patents such as
US 4,393,366 [7], US 4,620,318 [8], US 5,532,771 [10], etc.,
near infrared (IR) light was used. The wavelength of IR light
is invisible to human eye, therefore, subjects do not feel any
discomfort. Moreover, it has a cost saving advantage as well.
However, scanning with IR light provides reflections from the
CRBVs as well as the CBVs. In fact, CBVs reflect most of the



Fig. 1. (a) Very simple schematic diagram of human eye drawn to understand the blood supply to-and-from the retina. (b) Visibility of different layers of
a healthy right side retina in a OCT photograph. S: Superior, I: Inferior, N: Nasal and T: Temporal. (c) Visibility of main anatomical structures in a color
fundus photograph of a healthy right retina. Note that, the boundaries of macula, fovea, FAZ, OD, OC, NR are not accurately drawn.

useful information needed to identify subjects. Therefore, in IR
based retina identification system, the contribution of CRBVs
is very small. Since choroid is not a part of retina but is located
underneath the retina, it is a bit misleading to consider CBVs
as a retina based biometric. However, retina identification is
a familiar term, therefore, CBVs based identification is also
termed as retinal identification [9].

Research works [12]–[19], [21] considered only the features
extracted from the CRBVs, such as ridge endings, ridge bi-
furcations, crossovers, vessels’ diameter size, vessels’ position
and orientation, skeleton of the whole structure of CRBVs, and
so on, for authentication.

III. OUR APPROACH

None of our paired body organs have identical left and
right forms. That means our human body show approximate-
bilateral or pseudo-bilateral symmetry instead of perfect-
bilateral symmetry. And this approximate-bilateral symmetry
is generally less obvious inward than outward for paired
organs. It is in particular true for our eyes, especially when
2D color fundus photographs are used for left and right
retinas. The unique tree like structure of the CRBVs spreading
over the retina gives an interretinal asymmetrical look to
color fundus photographs at the first glance. Poor quality
of retinal image can increase this asymmetrical look by
displaying different colors as well as overexposing and under
exposing different parts of the CRBVs. Many factors such as
experience level of the operator, operator’s finger movement
or shaking, different settings of fundus cameras, subject’s eye
movement or blinking, different amounts of light reflection by
different parts of retina because of its natural curved structure,
inadequate illumination, variation of pupil dilation, poor focus,
lossy compression-decompression techniques, noisy transmis-
sion channels and so on can result in poor quality retinal
images. Beside these factors, some pathology can have unilat-
eral effects which can cause asymmetry. Therefore, in order
to check bilateral symmetry in CRBVs, we do not expect to
see a perfect mirror or reflection symmetry, especially when
we work on publicly available data.

Instead of measuring length or caliber of CRBVs, as is
typical in research of medical science, we investigate if it
is possible to tell whether a pair of the CRBVs of the left
and right retinas belong to a single person or to two different
persons. Our assumption is that when there is substantial
bilateral symmetry in such a pair, there is a high probability
that the pair belongs to a single person. In order to support
our assumption we took opinions from 20 volunteers along
with one deep neural network based system. In order to get
rid of the effect of color or different anatomical structures of
retina (i.e., OD, macula, etc.,), we segmented CRBVs using a
U shaped convolutional neural network (U-Net) [31].

A. Experimental Setup

We did all implementations using TensorFlow’s Keras API
2.1.6-tf and Python. We used a standard PC with Intel(R)
Core(TM) i9-9900K having 8 Cores and 31 GB memory, and
with two NVIDIA GeForce GTX 1080 GPUs having 8 GB
Memory per GPU.

To segment CRBVs from RGB colored retinal images, we
trained a U-Net which is well-known for its requirement of
very few images in the training phase. For example, in [31],
only 30 images were used to train a U-Net which outperformed
a sliding window CNN for the ISBI neuronal structures in
EM stacks challenge 2012. We used 40 RGB images, and
their corresponding manually segmented CRBVs of a publicly
available data set named DRIVE [32] to train our U-Net. As
a validation set we used 28 RGB retinal images and their cor-
responding manually segmented CRBVs of another publicly
available data set named CHASE DB1 [33]. Figure 2 shows
the model architecture of our U-Net. We set mean-squared-
error (mse) as the loss function; RMSProp with a learning
rate of 0.001 as the optimizer and mini batch size = 8.
After 3400 iterations, we achieved 0.021 mse.

To do the verification, we used RGB retinal images of the
Kaggle data set [34], provided by EyePACS, and publicly
available via Kaggle online community of data scientists and
machine learners for the competition of diabetic retinopathy
detection. This database has 42, 111 pairs of images. In each



Fig. 2. Architecture of U-Net used to extract CRBVs from RGB retinal images.

pair there is a left and a right retinal image belonging to a
single subject ID. Therefore, there is in total 84, 222 RGB
retinal images belonging to 42, 111 subject IDs. There are
27 types of resolutions. We chose images with resolutions
3264 × 4928 and 3168 × 4752, because the foreground of
these two resolutions have complete circular shape.

We prepared three sets i.e., Kaggle A, Kaggle B and Kag-
gle C, from our chosen images for three purposes (see Table I
for details). We prepared two test sets (i.e., Kaggle SetA.1 and
Kaggle SetA.2) using the images of Kaggle SetA, and one
test set (i.e., Kaggle SetC) using the images of Kaggle SetC.
In principle, it is possible to build 150 positive pairs (i.e., the
left and right retinal images of a pair belonging to a single
subject ID) and 150 × 149 = 22, 350 negative pairs (i.e., the
left and right retinal images of a pair belonging to two different
subject IDs) using the 150 pairs of Kaggle SetA. However,
for human volunteers it is difficult and time consuming to
give decision about 150 + 22, 350 = 22, 500 pairs. Therefore,
we decided to reduce the number of pairs while keeping the
variability among pairs as much as possible. For fulfilling that,
we divided 150 subjects into 3 groups: the first 50 subjects
were for the positive pairs (PPs), the second 50 were for the
left side of negative pairs (NPs) and the third 50 were for
the right side of NPs. In this way, we kept only 50 PPs and
50 × 50 = 2, 500 NPs in Kaggle SetA.1, and 50 PPs and
50 NPs in Kaggle SetA.2. The PPs were the same in both
test sets, whereas the NPs of Kaggle SetA.2 were a subset
of the NPs of Kaggle SetA.1. In Kaggle SetC, there were
1, 752 PPs and 1, 752 NPs. Even though it was possible to
make 1, 752× 1, 751 = 3, 067, 752 NPs from 1, 752 pairs, we
chose only 1, 752 NPs in order to keep a balance between the
PPs and NPs. Contrary to Kaggle SetA.1 and Kaggle SetA.2,
there was subject overlap between the PPs and NPs, as well
as between the left and right sets of NPs in Kaggle SetC.

Since the background dark pixels do not provide any
necessary information, the background was cropped so that
the foreground could touch the boundary without loosing
any important pixels of the foreground. Because of different
resolutions of different data sets, we re-sized all images to

TABLE I
DATA SETS USED FOR VERIFICATION.

Data Set Resolution # Pairs Purpose
Kaggle SetA 3264× 4928 150 manual and automatic verification
Kaggle SetB 3168× 4752 7034 training YNN
Kaggle SetC 3264× 4928 1752 only automatic verification

Fig. 3. An example frame for collecting volunteers’ opinions. When a
volunteer clicked on any pair its boundary turned into red color and it meant
that the volunteer considered that pair belonged to a single person. Numbers
1, 2, 3, 4 were the pair numbers, 19/25 was the frame number and cross
sign was for closing the frame.

256 × 256 by bicubic interpolation. Then we re-scaled pixel
values to [0, 1] for simple contrast stretching. Except that, no
other pre-processing was applied to any images.

B. Manual Verification

For manual verification, we asked 20 untrained volunteers
who did not know where to find symmetrical properties in
retinas to participate in a test. In this test, 25 frames were
shown to each volunteer, where each frame contained four
pairs of CRBVs side-by-side (as shown in Fig. 3). The right
side CRBVs were flipped to make the comparison task easier
for the human volunteers. All volunteers (i.e., ID 1-20) saw the
same 50 PPs but in random orders. Different volunteers with
ID 1-10 saw 50 different NPs which were randomly chosen
from the 2, 500 NPs of Kaggle SetA.1, so that they were not
exhausted by seeing too many NPs. Volunteers with ID 11-20
saw the same 50 NPs but in random orders.



The task of the human volunteers was to click on a pair
when they thought there is high probability that pair belongs
to a single person. Volunteers were allowed to select/deselect
any pair as many times as they wanted and spent as much
time on the verification task as they wanted. But after closing
any frame they were not allowed to see the previous frame
any more. After closing the last frame, each volunteers were
asked to write about what factors they considered in order to
make a decision. Twenty volunteers participated in 20 separate
sessions. None of them were aware about the true answers.
All volunteers were requested not to share their assumptions
with other volunteers. When writing their points, they were
informed of retina related terms to make their writing easier.

As shown in Fig. 4, there were some easily recognizable
positive pairs (see the 1st and 3rd row of Fig. 4) in Kag-
gle SetA.1 and Kaggle SetA.2, which were recognized by all
volunteers and some difficult pairs which confused almost
all volunteers (see the 2nd and 4th row of Fig. 4). Even
though most of the volunteers were not familiar with CRBVs
segmented from color fundus photographs, they were able to
see strong similarity in some PPs and strong dissimilarity in
some NPs by considering different factors. Many volunteers
considered segmented CRBVs as venation i.e., the arrange-
ment of veins in a leaf. Some of the factors figured out by the
untrained volunteers are thickness of clearly visible CRBVs;
overall structure of CRBVs looking from the far; angles of
CRBVs while leaving the root (i.e., OD area), branching
pattern; grouping tendency of vessels; vessel pattern close to
the empty space (i.e., macula); curvature of the thickest/thicker
vessel(s) considering straightness and tortuosity (or waviness)
of vessel(s); density of vessels; alignment of the root (i.e., OD)
with the empty space (i.e., macula); how vessels are spreading,
and so on. Some factors overlapped within some volunteers.
As shown in Table II, even the lowest performance was more
than a random chance.

Our summary is that it is not easy to see bilateral symmetry
in grayscaled pairs of segmented CRBVs. It is hard to figure
out similarity/dissimilarity between a pair of CRBVs espe-
cially when we do not have pre-knowledge. This task becomes
harder when the images do not have the same alignment of OD
and macula, because different alignment can make even two
images of CRBVs taken from the same retina look different.
Even the quality of the color fundus photographs and the
existence of pathology also play important roles. The U-Net
may end up segmenting very few or discontinuous CRBVs
from poor quality fundus photographs. Some pathology (such
as retinal hemorrhages) can cause some parts of the blood
vessels to be invisible, which can make a pair of CRBVs from
the same person look different.

C. Automatic Verification

We trained a deep neural network having a lying Y shaped
architecture (YNN) as shown in Fig 5. We set binary crossen-
tropy as the loss function; RMSProp with a learning rate of
0.0001 as the optimizer. For all other settings, we used the
default values of TensorFlow’s Keras API 2.6.1-tf. Contrary

Fig. 4. 1st row: three easily recognized PPs in Kaggle SetA.1 and Kag-
gle SetA.2 [(a) & (b)] two PPs recognized by all 20 volunteers, and (c) a PP
recognized by 19 out of 20 volunteers. 2nd row: three difficult PPs. (d) a PP
recognized by only 1 out of 20 volunteers, [(e) & (f)] two PPs recognized
by 6 out of 20 volunteers. 3rd Row: three easily recognized NPs in SetA.2.
[(g), (h) & (i)] three NPs decided by 10 out of 10 volunteers. 4th Row: three
difficult NPs. [(j), (k) & (l)] three NPs selected as PPs by 9, 8 and 7 out of
10 volunteers, respectively.

Fig. 5. Architecture of automatic verifier. Vertical text shows the output shape
of the corresponding layer.

to standard verification tasks, e.g., hand written signature, face
and voice, the left and right retina are, although approximately
symmetric, not the same entity so it is not obvious that they
should be processed in the same way. Therefore, we tried
both tied and untied weights for the two legs of YNN. The
output of the concatenate layer of YNN showed that it looked
thick blood vessels, area surrounding OD and macula, and
so on, to make its features. As shown in Table II, the tied
YNN was marginally better than the untied YNN, and both
YNNs performed clearly better than the human volunteers.
However, it is important to notice that, contrary to the human
volunteers, the automatic system made use of labeled training
data. Volunteers would have better performance if they could
get opportunity to train themselves before participating the
manual verification task.



TABLE II
RESULTS OF MANUAL AND AUTOMATIC VERIFICATION. [AVG.: AVERAGE]

Kaggle SetA.1 Kaggle SetA.2 Kaggle SetC
Untrained Volunteers Untrained Volunteers YNN YNN

Volunteer ID 1 2 3 4 5 6 7 8 9 10 Avg. 11 12 13 14 15 16 17 18 19 20 Avg. Untied Tied Untied Tied
Accuracy (%) 64 66 66 71 77 74 62 66 72 65 68.3 66 68 69 76 69 72 76 66 63 69 69.4 88 89 85 88
Precision (%) 62 62 90 72 75 87 57 71 89 63 72.8 72 70 73 73 69 76 77 72 81 68 73.1 81 83 77 80
Recall (%) 74 82 36 68 80 56 92 54 50 70 66.2 52 64 60 82 70 64 74 52 34 72 62.4 100 98 99 99
F1 Score (%) 67 71 51 70 78 68 71 61 64 67 66.8 60 67 66 77 69 70 76 60 48 70 66.3 89 90 87 89

IV. CONCLUSION

Is there any similarity between the central retinal blood
vessels (CRBVs) of the left and right retinas of human eyes?
Our answer is yes, there is. Based on previous works by other
researchers, our own analysis and investigation, findings of
20 volunteers and a deep neural network, we can say that
CRBVs in our two eyes possess enough similarity so that we
can decide whether a pair of left and right retina belong to a
single person or to two different persons. However, there is
space for a debate on whether that much similarity is good
enough for using the term, bilateral symmetry. We hope our
findings would help us to develop side independent central
retinal blood vessels based biometric systems in future which
would give more flexibility to users especially when user’s
registered retina is highly affected by severe pathology.
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