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Abstract. Estimation of execution parameters takes centre stage in
automatic offloading of complex biomedical workflows to cloud and high
performance facilities. Since ordinary users have no or very limited knowl-
edge of the performance characteristics of particular tasks in the work-
flow, the scheduling system has to have the capabilities to select appro-
priate amount of compute resources, e.g., compute nodes, GPUs, or pro-
cessor cores and estimate the execution time and cost.

The presented approach considers a fixed set of executables that can
be used to create custom workflows, and collects performance data of suc-
cessfully computed tasks. Since the workflows may differ in the structure
and size of the input data, the execution parameters can only be obtained
by searching the performance database and interpolating between simi-
lar tasks. This paper shows it is possible to predict the execution time
and cost with a high confidence. If the task parameters are found in the
performance database, the mean interpolation error stays below 2.29%.
If only similar tasks are found, the mean interpolation error may grow
up to 15%. Nevertheless, this is still an acceptable error since the cluster
performance may vary on order of percent as well.

Keywords: Workflow management system · Performance data
collection · Interpolation · Job scheduling · HPC as a service

1 Introduction

Computation of complex scientific applications may no longer be satisfied by
personal computers and small servers manually operated by highly experienced
users. First, the extent of data being processed and the computational require-
ments highly exceed the capacity of such machines. Increasing number of appli-
cations is thus moving to the cluster or cloud environments. Second, scientific
applications often feature a very complex processing workflows consisting of
many particular tasks employing different computer codes, and complex data
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dependencies. Third, scheduling, execution and monitoring of such workflows
require automated tools to remove the burden from the experienced users, enable
ordinary users to routinely execute their applications, and increase the through-
put of the computing facilities.

To face these challenges, the scientific and software development communities
have adopted the workflow paradigm to describe the processing flow. The most
common formalism used is the weighted directed acyclic graph (DAG) defining
computational tasks by the nodes, and the dependencies and data movements
by the edges. The weights in the nodes describe the computational requirements
while the weights on the edges denote the amount of data being transferred
between tasks [15].

In order to automate workflow execution, several workflow management sys-
tems (WMSs) have been developed and used within the scientific community.
The most popular tools such as Pegasus [2,3], Globus [4] or Kepler [12] now offer
automated execution of scientific workflows on remote computational resources
in a more or less general way. However, these tools focus on expert users who
know the behaviour of the computational codes used within the workflow, and
are able to estimate the amount of computational resources needed by each task.
The scheduling and mapping of the workflow on the computational resources are
usually left to the cluster batch processing systems such as PBS1 or Slurm2.

These task schedulers provide their best effort to execute the tasks in the
earliest possible time depending on the cluster workload and user/task priorities.
However, what they cannot deal with is the execution parameters settings. If
the user overestimates the amount of the computing resources, the tasks may
be waiting in the queue for much longer time while making only little benefit
from increased amount of resources, e.g., processor cores. On the other hand,
underestimating these requirements may lead to the premature task termination
due to exhausting the execution time.

This paper focuses on the heuristic-based selection of the execution param-
eters for a list of predefined computing codes used in the biomedical workflows
supported by the k-Wave toolbox [18]. Since all binaries are fixed and known in
advance, their performance characteristics such as strong and weak scaling can
be automatically collected and used for prediction. Limiting the users in upload-
ing their binaries also enables fine-grain performance tuning of the underlying
codes for target machines and simplifies the workflows composition by the use
of high-level processing blocks.

The next section describes the k-Plan system supporting the design of ultra-
sound workflows via a graphical user interface, and workflow offloading, schedul-
ing, execution and monitoring using the k-Dispatch module. Section 3 describes a
single pass optimization of the workflow execution parameters and related inter-
polation heuristics. Section 4 investigates the quality of interpolation for known
and unknown tasks, and Sect. 5 concludes the paper.

1 https://www.altair.com/pbs-works/.
2 https://slurm.schedmd.com/.
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2 Automatic Offloading of k-Wave Workflows

The k-Wave toolbox [18] is an open source Matlab toolbox designed for the time-
domain simulation of acoustic waves propagating in tissues. The toolbox has a
wide range of functionality, but at its heart is an advanced numerical model that
can account for both linear and nonlinear wave propagation, an arbitrary dis-
tribution of heterogeneous material parameters, power law acoustic absorption
and its thermal effects on the tissue. During recent years, k-Wave has attracted
a lot of attention amongst biomedical physicists, ultrasonographers, neurologists
and oncologists. Many k-Wave-based applications have been reported in photoa-
coustic breast screening [13], transcranial brain imaging [14], and high intensity
focused ultrasound treatment planning for kidney [1,16], liver [7] or prostate
tumour ablations [17].

However, all these applications require very intensive computations. During
the last decade, the simulation core has been rewritten in C++ and parallelized
by various technologies, such as OpenMP for shared memory systems [19], CUDA
for GPU accelerated systems [10], and MPI for large distributed clusters [8].
These implementations now cover a wide range of ultrasound simulations in
domains of various sizes reaching the limits of the top supercomputers.

To support clinicians in executing ultrasound workflows, a complex system
called k-Plan [9], consisting of tree modules, is being developed, see Fig. 1:

1. TPM - Treatment Planning Module implements user front-end with the
graphical user interface to compose the processing workflow. Advanced users
may also use a Matlab interface or third-party applications.

2. DSM (k-Dispatch) - Dispatch Server Module is responsible for the workflow
offloading to remote computing facilities. It also schedules particular tasks,
estimates computing requirements, and monitors the workflow progress.

3. SEM - Simulation Execution Module covers the deployed binaries necessary
to run particular tasks. Due to strict medical restrictions, all binaries have to
be certified, thoroughly tested and properly deployed.

Although designed for the k-Wave toolbox, k-Dispatch remains as general
as possible to support other applications and workflow types. User applications
such as TPM communicate with k-Dispatch through the Web server, see Fig. 2.
The Dispatch database maintains users and groups, their resource allocations,
history of calculated and submitted workflows, available computing facilities,
executable binaries with their performance characteristics, etc. Besides decod-
ing the workflows, data transfers, monitoring and communication with remote
computing facilities, the k-Dispatch core performs the optimization of the work-
flow execution parameters.

Users can create new ultrasound procedures by altering predefined work-
flow templates and packing them with the patient’s data. Once delivered to
k-Dispatch, the execution workflow is constructed from the provided input file.
Next, the list of available computing resources is scanned to find a suitable one,
e.g., the one with the lowest actual workload. Consequently, appropriate bina-
ries for particular tasks are filled in to the workflow template according to the
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Fig. 1. Architecture of the k-Plan system. The dispatch server module (k-Dispatch)
arranges for the workload scheduling, execution, monitoring and data transfers between
client applications and computing facilities.

tasks input data size and available hardware. Since k-Dispatch knows the perfor-
mance scaling of the given binaries, it can optimize the amount of computational
resources (i.e., number of nodes) assigned to particular tasks and minimize sev-
eral objectives such as cost, execution time and queuing time, see Algorithm 1.

After the tasks have been submitted to the computational queues, k-Dispatch
keeps monitoring them, detects anomalies such as frozen/crashed jobs, and
restarts them if necessary. After the workflow computation has been completed,
the results are downloaded from the remote computing facility back to the k-
Dispatch and the user is notified that the results are available for download.

Fig. 2. k-Dispatch stands between user applications and remote computational
resources. The communication with user applications is based on standard web services
while the SSH protocol is used to communicate with remote computational resources.
The dispatch core is responsible for the workflow submission, monitoring and other
service mechanisms.
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Algorithm 1: Adaptive execution planning algorithm

Presumptions :
1 Let G = (V, E) be a workflow where V is a set of tasks and E ⊆ V × V is a set

of task dependencies.
2 Let C be a set of active resource allocations with enough resources to satisfy the

workflow G. It holds C ⊆ A, where A is a set of all allocations the user has got
access to.

3 All executable binaries for supported task types available in a given allocation
a ∈ A are defined as D ∈ (B1, B2, . . . , BN ), where N is the number of task
types within the workflow G, and Bi = {b1, b2, . . . , bM} is the set of available
binaries for a given task type. Bi may be an empty set.

4 Let p : G × C × D → R+ be a price function returning the aggregated
computational cost of the workflow G.

5 Let t : G × C × D → R+ be a function returning the aggregated execution time
of the workflow G. This value is calculated as a critical path through the
workflow considering both the net execution time e and the queuing time q.

6 Let workflow evaluation f serving as quality metric be defined as
f = α · p + (1 − α) · t, where α is a selectable ratio prioritizing the minimal
computational cost or the execution time.

Algorithm :
1 Create a workflow G = (V, E) from the workflow template and input data.
2 Select a set of candidate allocations

C = {c ∈ A+ | c.status == active ∧ c.hours left > 0.0}.
3 Set appropriate execution parameters for all tasks and evaluate the workflow G

for all combinations of candidate allocations C and binary executables D.
4 Return the best parameters for a given workflow G as argmin(c∈C,d∈D) f(G).

3 Optimization of Workflow Execution Parameters

A typical course an ordinary user takes when executing a complex workflow is to
use default execution parameters for each task, often consisting of one compu-
tational node and 24 h of wall time. If a task fails due to insufficient memory or
time, another node or more time is allocated and the workflow restarted. Never-
theless, experienced users usually run a few benchmarks with various input sizes
and number of nodes to create a strong scaling plot and predict the extent of
computational resources for each task, which is the idea k-Dispatch has adopted.

In [9], three levels of workflow optimization were introduced. The naive one
using the default execution parameters was implemented to compare k-Dispatch
with other WMSs which use firmly set values directly provided by the users.
This paper deals with a single-pass, task level optimization, processing each
task independently. As we will show later, this is a viable solution with a linear
time complexity providing sufficient results when execution cost and time is only
considered. However, optimizing also for the queuing time requires a multi-pass,
global optimization which may lead to an exponential time complexity, and needs
a cluster simulator loaded with actual snapshots of cluster workload.
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3.1 Single-Pass Optimization

The goal of the single-pass optimization is to independently find such execution
parameters for each task i that minimize the workflow evaluation given by

f =
N�

i=1

(α ∗ pi + (1 − α) ∗ ei) (1)

where α is a weight preferring either execution cost or time, p is the execution
cost and e is the net execution time. The queuing time is omitted here. Currently,
the execution parameters to be optimized only cover the number of allocated
nodes/cores and the execution time. Nevertheless, it is straightforward to extend
the optimization to select the most suitable code, computational queue, node
type (accelerated/fat/slim), etc.

Figure 3 illustrates the optimization of the task execution parameters as a
black box with a task type and task input file provided by the workflow as the
inputs. The task input file is parsed to extract information necessary to estimate
the computational requirements. This information typically includes the size of
the simulation domain, the simulation timespan, type of the medium, transducer
definition, etc. Next, the collected performance data is searched to find similar
records. Having a filtered out performance dataset, the plot of strong scaling
can be constructed and several interpolation techniques can be used to estimate
the task duration and cost for suitable amounts of resources. Once the best
execution parameters are selected, the machine specific job scripts are generated
and submitted to the computing queue. After the task has been properly finished,
the performance data is used to update the performance database.

Fig. 3. Optimization of the execution parameter for a given task using a couple of
heuristics and historically collected performance data for known code types.
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3.2 Interpolation Heuristics

The goal of interpolation heuristics is to estimate the execution time and cost
using the measured performance data from previous runs. Since the users are
not limited in the size of the simulation domain and many other simulation
parameters influencing the execution time, the performance data will never be
complete.

There are three basic situations which may happen during the execution time
and cost estimation:

1. The same simulation has been seen before. In such a case, the execution time
and cost can be taken as a median value over multiple records stored in the
database. If the values for particular amount of resources are unknown, an
interpolation is used. Figure 4a shows this situation for four different domain
sizes where the performance data are only known for 1, 2, 4 and 8 threads.
The values for other numbers of threads have to be interpolated, see the
question marks.

2. The simulation has not been seen before. In such a case, similar simulations
are sought for in the database. First, the total number of grid points is calcu-
lated as a product of the dimension sizes. This may, however, unfavourably
impact the estimation, since the actual shape does have an impact on the
execution time, see Sect. 3.3. Next, all simulations with the number of grid
points close to the one being estimated are selected. Finally, the execution
time and cost are interpolated from the selected data. Figure 4b shows a sit-
uation where the performance data was only measured for 4 different domain
sizes. The others have to be interpolated, see the yellow area.

3. The interpolation fails and it is necessary to use queue default wall time
and amount of compute resources. This may happen if the simulation is too
far from the known ones, or the interpolation method begins to oscillate
and produces, e.g., negative values. Fortunately, this is a transient situation
because as soon as the task is executed at least once, the measured values
can be used next time.

Four interpolation methods offered by the SciPy [20] Python package were
investigated in this paper:

– linear interpolation (LI),
– cubic spline interpolation (CS),
– nearest neighbour interpolation (NN),
– radial basis function interpolation (RBF).

As the quality measure for the interpolation methods, L1-, L2- and L-Infinity
norms were used [6]. Additionally, the mean percentage error of the obtained
data series with respect to the measured values was calculated using Eq. (2).

meanPercentError = mean(
|a − b|

|a| ) × 100 (2)

where a is a vector of reference data series and b is a vector of interpolated data
series.
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(a) Simulation size already seen. (b) Simulation size not seen before.

Fig. 4. (a) The performance database misses data (highlighted in yellow) for some
numbers of threads. The interpolation works with the corresponding strong scaling
curves. (b) The performance database misses data for a range of domain sizes (high-
lighted by yellow areas). The interpolations works with several strong scaling curves
from the close proximity. (Color figure online)

3.3 k-Wave Workflow Properties

A typical biomedical ultrasound workflow consists of several data processing and
numerical simulation tasks. Together, they form a workflow with approximately
100 tasks. Figure 5 shows an example of the neurostimulation workflow. While
the pre- and post-processor tasks require only a single computing node, the
aberration correction, forward planning, and thermal simulations may employ
various executables to run on a single node, a single GPU, or multiple nodes.

The simulation domain size and timespan is given by the subject anatomy,
transducer position, and the ultrasound frequency. Considering small animal
neurostimulations, the domain sizes can be as small as 162 × 192 × 128 grid
points with 3,000 simulation time steps. The move towards human patients may
expand the simulation domain size up to 768×900×600 grid points with 16,800
simulation time steps.

Figure 6 shows the performance behaviour of the distributed MPI version
of the k-Wave toolbox for the largest practical domain normalised to a single
simulation time step. The execution times were measured on the Anselm super-
computer using 1 to 16 compute nodes, each of which with 16 cores and 64 GB
of memory. It can be seen that the performance scaling is not perfect with the
maximum speed-up of 6.5 yielding the parallel efficiency of 40%. The yellow,
green and orange dots mark the ideal amount of computational resources for
three different values of the α parameters. If the execution time is preferred, the
highest possible number of nodes is selected. On the other hand, if the execution
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Fig. 5. A neurostimulation workflow consisting of several data processing and simula-
tion tasks. The task dependencies are shown by the arrows, meaning the simulations
depicted in red or blue may be executed concurrently. (Color figure online)

Fig. 6. Strong scaling of the MPI version of the k-Wave simulation in a domain con-
sisting of 768 × 900 × 600 grid points. The yellow, green and orange dots show the
best number of nodes when minimizing the computational time, computational cost,
or composite workflow evaluation, respectively. (Color figure online)

cost is preferred, a single node is selected. Finally, if both the time and cost have
the same weight, two computing nodes looks as a good compromise.
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Fig. 7. Strong scaling of the MPI version of the k-Wave simulation on a domain of
768 × 900 × 600 domain size executed with the maximum (blue line) and optimal
(orange line) numbers of MPI processes (np). (Color figure online)

When working with the MPI version of the k-Wave toolbox, balanced work
distribution must be paid attention to. Since the code uses a one-dimensional
grid decomposition over the z dimension, and the grid is z-y transposed several
times every time step, the z and y dimensions must be divisible by the number
of MPI processes. Otherwise, the work is not balanced evenly and the code does
not scale well. Figure 7 shows the scaling of the code executed with the maximum
numbers of MPI processes for given number of nodes, and with reduced numbers
of processes ensuring commensurability. It is obvious, the optimized numbers of
processes yield higher performance.

3.4 Typical Problems of Performance Data Interpolations

The interpolation and extrapolation methods have several drawbacks that will
be discussed in this section. We used measured performance data from Fig. 6
and tried to manually fit interpolation curves through the measured data.

Generally, the k-Wave codes have a linearithmic computation complexity
O(n·log·n) due to extensive use of 3D Fourier transform. However, the significant
amount of communication stemming from the distributed FFT may lead to
quadratic communication complexity. Moreover, the proper workload balancing
as well as other restrictions imposed on the domain size make the scaling even
more difficult to predict [5,8]. Therefore, there are significant differences in the
course of the scaling curves at low and high numbers of threads/nodes.
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(a) Extrapolation based on the know-
ledge of scaling on 2, 4, 6 and 8 nodes.

(b) Interpolation based on the knowledge
of scaling on 1, 2, 4, 10 and 16 nodes.

(c) Interpolation based on the knowledge
of scaling on 2, 4, 10 and 16 nodes.

(d) Interval based interpolation, each in-
terpolation uses 2 or 3 closest values.

Fig. 8. (a) Unsuccessful extrapolation trained on a small number of nodes. (b) and
(c) Oscillation caused by distant known values. (d) Interval interpolation not suffering
from the oscillations.

Figure 8a shows a poor attempt to extrapolation where the performance data
is only known for 2, 4, 6 and 8 nodes. The estimation of the execution time for
number of nodes above 8 is not acceptable. The linear extrapolation as well as
cubic spline extrapolation predict much shorter execution time. Nevertheless,
the code scales much worse for higher number of nodes because the communica-
tion component starts to dominate. The nearest neighbour extrapolation could
be used as the worst case, however, Fig. 6 suggests that the performance can
even deteriorate with higher number of compute nodes. Finally, the radial basis
interpolation does not produce meaningful predictions.

Figure 8b and c point out the need to abide appropriate interval between
known values to eliminate oscillations. Figure 8b uses an additional value for one
node compared to Fig. 8c. This value is usually an outlier causing unintended
oscillations since having no communication. To reduce them, several interpola-
tions may be performed on smaller intervals. The impact of this technique is
shown in Fig. 8d, where the scaling data is divided into 5 intervals of 2 to 3
values. However, it is not clear how to determine the interval size automatically.
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4 Experimental Results

This section describes performed experiments and the results. The experi-
ments show the application of the selected interpolation methods in order to
autonomously find the suitable execution parameters.

Due to the necessity of collecting an extensive performance dataset, we lim-
ited ourselves to only consider the OpenMP k-Wave implementation running on
a single node, however, with various numbers of threads. The execution cost was
then calculated as a product of the execution time and the number of proces-
sor cores used. In principle, similar results are expected to be obtained for the
CUDA implementation of k-Wave. On the other hand, the MPI version poses
more restrictions and may feature different results, see Sect. 3.4.

The performance data collected for the OpenMP code was obtained on
Anselm with 16 cores per node, and Salomon with 24 cores per node. The per-
formance data was divided into the training and testing datasets both of which
containing over 6,500 records of the aberration correction k-Wave simulation
running over 24 different domain sizes (323 to 5123 grid points) and with various
number of threads.

4.1 Comparison of Interpolation Techniques for Known Simulation

We first investigated the behaviour of all four interpolation techniques on the
known domain size of 5123 grid points. The first experiment used 6 known exe-
cution times from the Anselm cluster measured for 1, 2, 4, 8, 12 and 16 threads.
Table 1 and Fig. 9 show the course of the interpolation functions. It can be seen
that the linear and cubic spline interpolation methods reached less than 3% mean
error. The linear interpolation can be thought of as a pessimistic one since over-
estimating the execution times. Although this may lead to a bit longer queuing
times, it is safer than underestimation produced by the cubic spline interpolation,
which may lead to premature termination of the simulation. The nearest neigh-
bour interpolation shows significantly worse accuracy as well as the radial basis
function interpolation deeply oscillating, especially for high numbers of threads.

The second experiment extended the number of measured values and also
included the Salomon cluster. For Anselm, the performance data was extracted
from the database for 1, 2, 4, 5, 8, 10, 13, and 15 threads, while for Salomon

Table 1. Comparison of selected interpolation methods for domain size of 5123 grid
points domain size and 6 known values measured on Anselm.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 1.27 0.59 0.46 2.89

Cubic Spline 0.93 0.42 0.35 2.29

Nearest Neighbour 4.60 2.40 2.06 9.85

Radial Basis Function 3.41 1.37 0.79 8.77
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Fig. 9. Comparison of various interpolation techniques for the OpenMP implementa-
tion of k-Wave running on Anselm with a domain size of 5123 grid points.

the set was further extended by performance data for 17, 20, 22, and 24 threads.
This covers 50% of all possible thread numbers usable on both clusters. The
domain size remained the same (5123 grid points).

Tables 2 and 3 show significant improvement in the prediction accuracy. The
mean error produced by the linear interpolation was reduced from 2.89% to
1.81%, and 1.27% on Anselm and Salomon, respectively. Even better results
were achieved for the cubic spline interpolation which produced estimation with
only 1.23% and 1.12% error. Even the other interpolation methods improved

Table 2. Comparison of selected interpolation methods for domain size of 5123 grid
points domain size and 8 known values measured on Anselm.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 0.80 0.45 0.41 1.81

Cubic Spline 0.56 0.38 0.37 1.23

Nearest Neighbour 2.99 2.03 1.95 5.70

Radial Basis Function 1.61 0.90 0.67 4.67

Table 3. Comparison of selected interpolation methods for domain size of 5123 grid
points domain size and 12 known values measured on Salomon.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 0.62 0.33 0.29 1.27

Cubic Spline 0.60 0.40 0.39 1.12

Nearest Neighbour 2.73 1.71 1.63 4.68

Radial Basis Function 1.08 0.69 0.66 2.01
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Fig. 10. Estimation of the best execution configuration according to the workflow
evaluation function for a domain size of 5123 grid points on the Anselm cluster produced
by linear and cubic spline interpolation.

the error close to or below 5%. This can be considered as a very good result
since there is always a slight variation in execution times between different runs
caused by the underlying cluster workload (mainly network and I/O parts), and
variations in clock frequency amongst different cluster nodes.

Figure 10 illustrates the result of the interpolation for linear and cubic spline
interpolation for the extended training set, and the domain size of 5123 grid
points. The curves show a very good agreement without any significant oscilla-
tions. The orange and grey curves are the visualizations of the workflow evalu-
ation functions with α = 0.5. If looking for the fastest solution, both the linear
and cubic spline interpolations predict 16 threads to be the best solution. In
the case the combined workflow evaluation metric is minimized, 3 and 5 threads
are predicted as best compromises by the cubic spline and linear interpolations,
respectively.

4.2 Comparison of Interpolation Techniques for Unknown
Simulations

This set of experiments evaluates the capabilities of the proposed interpolation
methods to estimate the execution time for simulations that have not been seen
before. In this case, the closest simulations in terms of the total number of grid
points are used to fit the interpolation curves. Since the results were similar for
both clusters, we only present measurements on Anselm.

Three different unknown domain sizes were tested:

1. Tested simulation size 256×2242, training set containing simulations of 2243,
2562 × 224, and 2242 × 192 grid points.

2. Tested simulation size 1602 ×128, training set containing simulations of 1443,
1603, and 132 × 1282 grid points.
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3. Tested simulation size 1443, training set containing simulations of 1603, 160×
1282, and 132 × 1282 grid points.

Figure 11 shows the results of selected interpolations on the first two sim-
ulation domains. Both linear and cubic spline interpolations show a very close
agreement with the reference data stored in the testing set. As Tables 4 and 5
quantify, the mean error for the biggest domain reaches 4.7% and 3.1% for linear
and cubic spline interpolations, respectively. For the smaller domain, the error
decreases to 1.75% and 2.25%. Interestingly, the cubic spline produces slightly

(a) Domain size of 256 × 2242 grid points

(b) Domain size of 1602 × 128 grid points

Fig. 11. Comparisons of linear and cubic spline interpolation methods for unknown
domain sizes. The reference data points are used for the error evaluation.
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Table 4. Comparisons of selected interpolation methods for an unknown domain sizes
of 256 × 2242 grid points.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 0.17 0.056 0.034 4.724

Cubic Spline 0.11 0.037 0.025 3.073

Nearest Neighbour 0.84 0.271 0.191 22.35

Radial Basis Function 352 99.26 47.99 11492

Table 5. Comparisons of selected interpolation methods for an unknown domain sizes
of 1602 × 128 grid points.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 0.015 0.005 0.003 1.75

Cubic Spline 0.023 0.007 0.005 2.25

Nearest Neighbour 0.252 0.089 0.068 17.7

Radial Basis Function 0.371 0.121 0.089 29.2

worse estimations here. The nearest neighbour interpolation gives much worse
estimation with a mean error of 22% and 18% for those two cases. Finally, the
radial basis interpolation appears to be unusable for the largest domain. The
extreme error is caused by high oscillations. In case of the medium-sized domain,
the error decreases to 29%. Unfortunately, this still exceeds acceptable values.

The smallest domain size of interest suffers from very poor results which are
summarized in Table 6 and Fig. 12. The only usable estimations are provided by
the linear interpolation, however, with a mean error of 16%. The cubic spline
completely fails in this case while the best estimation is surprising provided by
the nearest neighbour interpolation. The radial basis interpolation also fails on
this domain size. The overestimation is very likely caused by a small domain size
when a single grid can fit into L3 cache memory leading to much faster execution
of the Fourier transforms and overall algorithm speed-up. On the other hand,
even overestimation by 200% may be thought of as acceptable considering such
a simulation is executed within 2 min using 16 threads.

Table 6. Comparisons of linear and cubic spline interpolation methods for an unknown
domain sizes of 1443 grid points.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean difference [%]

Linear 0.196 0.061 0.041 15.99

Cubic Spline 2.080 0.527 0.185 212.6

Nearest Neighbour 0.177 0.064 0.050 13.40

Radial Basis Function 4.050 1.024 0.356 416.8
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Fig. 12. Comparisons of linear and cubic spline interpolation methods for unknown
domain size of 1443. The reference data points are used for the error evaluation.

5 Conclusions

The need for offloading complex scientific workflows to cluster and cloud environ-
ment is ubiquitous. k-Dispatch is a workflow management system providing auto-
mated execution, planning and monitoring of biomedical workflows composed of
k-Wave ultrasound and thermal simulations. Its interface enables connection
of various user applications and unifies the access to different computational
resources.

One of the key challenges in automated execution of complex workflows is the
proper setting of execution parameters for particular tasks. Since the end users
have no or very limited knowledge about the amount of computational resources
to be allocated for each task, it is necessary to provide as good estimation as
possible based on the performance characteristics of particular codes and actual
input data. Unsuitable values may lead to long queueing times or early tasks
termination due to exhausted time allocation.

This paper has presented a single pass algorithm traversing the workflow
and optimizing the execution parameters for every task independently. For every
task, the input file is inspected, the task parameters retrieved, and the perfor-
mance database searched for similar ones. If there is a direct match, the execution
time and cost are loaded for known execution parameters, i.e., number of com-
pute nodes, GPUs, processor cores, etc. Missing values may be filled in using
interpolation techniques. However, if the task parameters have not been seen
before, the interpolation is used to estimate the execution time and cost using a
training set composed of tasks with similar parameters.

Four different interpolation techniques have been investigated. When the
task parameters have been seen before, the cubic spline interpolation showed
the best results with mean error between 1.12% and 2.29%. In the case the
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task parameters have not been seen before, the linear interpolation showed the
best results. Depending on the similarity of the records found in the performance
database, the mean error varies between 1.17% and 15%. It should be noted that
the highest error showed up only for very small tasks where the overestimation
of execution time or cost do not play a significant role.

5.1 Future Work

Future work will be focused on multi-pass optimization of workflow execution
parameters. The goal is to minimize not only the execution time and cost but
also the queuing times. This however requires the knowledge of the actual cluster
workload and queues occupancy as well as a cluster simulator to quickly estimate
the queuing times for the whole workflow under different execution parameters.
We are considering the adaptation of the ALEA simulator [11] to match the
scheduling algorithms and hardware configurations of IT4Innovations clusters,
and the characteristics of the k-Wave workflows.

We would also like to implement more sophisticated heuristics to select an
appropriate number of compute nodes as well as optimal number of MPI pro-
cesses for large simulations to avoid performance penalizations. Consequently,
we would like to study machine learning methods since we expect to have col-
lected large performance dataset, and perform experiments on both, artificial
and real-world workflows.
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