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Abstract—As the throughput of computer networks and other
peripheral interfaces is rising, developers are forced to use
ever-wider data buses in FPGA designs. However, utilization of
wide buses poses a serious threat of performance degradation,
especially for the shortest data transactions (packets), as aliasing
and alignment overheads on the bus can be extremely increased.

In this paper, we propose a novel design method for the
description of very wide data buses that we call Multi Buses. The
key idea is to enable the processing of multiple transactions per
clock cycle with very high and predictable effective throughput
even in the worst-case. The feasibility of the proposed method is
shown via analysis of achievable performance by both theoretical
means and selected proof of concept implementations. Thanks
to the proposed method, we were able to design FPGA cores
for key operations in networking (e.g. parser, match table,
CRC, deparser) with sufficient throughputs for wire-speed packet
processing of 400 Gbps, 1 Tbps and even 2 Tbps Ethernet links.

I. INTRODUCTION

The working frequency of current FPGAs can reach several

hundreds of MHz, however, it is unusual to see any complex

FPGA logic running at more than 500 MHz. The need to

increase the achievable frequency is documented by works of

major FPGA manufacturers in their latest chip families. Xilinx

came up with the Time Borrowing concept for UltraScale+

FPGAs [1]. It promises average maximal frequency (Fmax)

increase of 5.5 % to 8.5 %, depending on the scale of design

changes. Intel introduced the HyperRegisters [2] inside its

Stratix 10 FPGAs. These registers are spread across the FPGA

routing fabric and they are used to balance critical paths during

routing (when retiming is performed). The promised Fmax

improvement is up to 2× in some cases. Even with these

advances, practical FPGA firmware running at frequencies

over 1 GHz is not expected in the foreseeable future.

On the other hand, there is an ever-increasing demand

for communication throughput. It is driven mainly by traf-

fic generated by high-quality content delivery services and

aggregated at network backbones and in data centers. The

demand is also apparent in many related fields, like in high-

performance memories driven by wider adoption of stacked

DRAM solutions [3], [4] or in propositions of ever-faster

standards for serial system buses like PCI Express [5].

The flexibility and parallelism of FPGAs can solve many

challenges that high-speed communications face. For example,

the UltraScale+ VU13P FPGA has 128 GTY transceivers with

a raw aggregated full-duplex throughput of over 4 Tbps [6].

The pipelined stream processing of data frames, which is

typical for high-performance FPGA designs, has the benefit of

huge and predictable throughput with very little circuitry over-

head compared to instruction processing engines (CPUs). At

the same time, the structural programmability of FPGAs hides

the inflexibility of mostly fixed-function pipelined processing.

But employment of the massive parallelism needed for speeds

above a certain threshold can easily hit limits of convenient

design, causing a need for some extra care, and perhaps a level

of data bus design formalism. This is especially apparent when

the minimal length of protocol transaction becomes equal to,

or even smaller than, the data bus width.
Let’s take 100 Gbps Ethernet as an example here. The

shortest allowed length of L2 Ethernet frame is 64 B (512 b).

At the same time, a typical implementation of FPGA bus

transferring 100 Gbps of data is 512 b wide and running at

a clock frequency of at least 195 MHz. The shortest 64 B

Ethernet frame fits nicely into a single data bus word. But what

about 65 B, 66 B and similar frames? When a few frame bytes

spill into the second word, the rest of that word may remain

unused, yielding effective throughput of only around 50 % of

the bus raw capacity. Alternatively, that second word may be

somehow shared with the beginning of the next frame. This

improves achievable effective throughput significantly, but also

brings new complications into the design of processing logic –

suddenly fragments of two separate frames are present in the

same data word and need to be dealt with in the same clock

cycle. Furthermore, the frames must be allowed to start at

arbitrary offsets within the data word, not only at its first byte.
The problem of growing complexity gets much more se-

vere when even faster protocols are considered. Without a

significant increase in working frequency, buses become wider

than minimal transaction lengths. Therefore, processing of

multiple transactions or their fractions per clock cycle must

be possible to make effective use of raw bus capacity. Due to

the requirement of transferring multiple transactions per cycle,

we named such buses Multi Buses.
When creating cores for Multi Buses, the design cost of the

actual processing logic can be easily overshadowed by the cost

of just the parallelization for multiple transactions. Therefore,

questions like the following should be answered, considering

optimal resources utilization and achievable frequency:

• How many transactions per clock cycle to process?
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• What alignment rules (if any) should the bus follow?

• How to design reasonably simple processing replication?

• How to effectively route data to processing modules?

This paper aims to provide a consistent background theory and

guidelines for FPGA design decisions like these so that FPGA

processing pipelines and cores for high bandwidth interfaces

can be easily designed according to proposed Multi Buses

method. The contribution of our work is four-fold:

• Formalization of data buses capable of processing mul-

tiple frames per clock cycle and related metadata buses

carrying multiple values per cycle (Chapter II)

• Worst-case throughput analysis of Multi Buses to show

their superiority over single-transaction ones (Chapter III)

• Guidelines for how to design and implement efficient

processing cores for Multi Buses (Chapter IV)

• Evaluation of the proposed concept on simple but

reusable processing cores and an overview of achieved

results for selected complex engines (Chapter V)

Note that we do not claim wide buses design itself to be our

contribution, quite the opposite. This work stems from our

experience with various existing buses and is motivated by

the need for common ground (language) in this area, backed

by solid definitions, equations, and experimental results.

Since this paper is motivated mostly by the lack of relevant

theory and guidelines for effective wide buses design, we are

not able to provide the typical Related Work section. Instead,

we use the AMBA AXI4-Stream [7] protocol to highlight

the pieces that are often missing. The AXI4-Stream bus is

of arbitrary width in Bytes, which are grouped into Packets

(frames). There is a single-bit TLAST signal determining that

the current bus word carries the end of a packet. The next

packet can only begin in the next data word at the earliest.

This makes perfect sense for buses up to a certain width,

but after the further widening of the bus (for throughput),

we encounter severe problems. There is no native support

for carrying multiple packets within a single bus word, which

limits throughput especially for packets shorter than bus width.

There are also no rules to limit packet start position, which in

turn can be completely arbitrary thanks to Null and Position

bytes. Therefore, data processing cores must be able to start the

processing from any byte, resulting in overly complex logic.

Overall, if we were to use AXI4-Stream in a very wide

configuration, we would most likely end up defining a custom

specification on top of it, using optional TUSER signals to

convey additional information, such as multiple positions of

packet starts/ends. We would probably also have to define

custom packet alignment rules to reduce processing logic

complexity, and therefore, we wouldn’t be able to make use

of standard AXI4-Stream infrastructure modules. We would be

left with intuitive work and ad-hoc design of a new bus, with

adherence to the original AXI4-Stream specification being

more of an obstacle rather than an advantage. It becomes clear

that very wide buses require dedicated design effort. Our paper

aims at simplification and formalization of this effort.

II. MULTI BUSES CONCEPT

The key feature of our Multi Buses is their capability

to transfer multiple data transactions in each clock cycle.

By transaction we mean a data frame formed as a variably

long sequence of some homomorphic data elements (smallest

addressable/distinguishable pieces of transferred information).

For example, a network frame is a variably long sequence

of bytes, a memory burst is a variably long sequence of

read/written rows. Furthermore, we consider frames to be

transferred continuously over the bus – no holes inside the

frames are allowed so each frame is explicitly delimited just

by the position of its first and last element (start/end position).

The main objective when designing an effective Multi Bus

is to find a structure of its data word, which appropriately

constraints frames positioning. The constraints must be re-

strictive enough to maximally decrease the number of allowed

position combinations (to keep the processing logic as simple

as possible), while maintaining bus transaction aliasing and

alignment overhead acceptably low. The most general version

is, obviously, allowing frames to start and end at totally

arbitrary positions. It is clear that such word structure does not

create any alignment overhead. But on the other hand, it leads

to extremely complex architectures of cores in bus processing

pipelines, simply because they must expect that each word

element can potentially be a start of yet another new frame.

A potential way how the mentioned complexity can be

significantly reduced without considerable overhead is to take

advantage of the fact that frame lengths are usually limited.

The idea is to split elements of bus data word into multiple

regions and then allow only at most one frame to start and

at most one (not necessarily the same) frame to end in each

region. Now the number of potential frame start positions in

each bus word is reduced significantly – from the number of

elements to the number of regions. Also, when region size

is picked properly, considering the shortest transferred data

frames, none or minimal alignment overhead is added.

Another possibility to reduce processing complexity is to

constrain frame start positions inside regions. Each region

can be split into multiple blocks of data elements where

frames are allowed to start only aligned to these blocks. This

way, the number of potential frame start positions in each

region is reduced, thus the processing logic is simplified. On

the other hand, some alignment overhead is added for each

frame. Tuning the size of blocks enables a trade-off between

throughput efficiency and chip resource usage.

To summarize, each bus data word consists of regions

restraining the maximal number of frames per cycle, and each

region is separated into blocks of data elements to further

constraint positioning of frame starts. We call this arrangement

of the data word and each bus following it Multi Frame Bus
(MFB). Illustration of MFB word structure is shown in Figure

1 (upper part). A word with 16 data elements organized into 4

regions (4 elements per region) and 8 blocks (2 elements per

block, 2 blocks per region) can be seen. The lower part of the

figure shows an example of possible positioning of six frames
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Fig. 1. Structure of MFB word with illustration of possible frame placements.

(A to F ) transferred over three words of such MFB. Notice

that each frame must start aligned to start of a block, but can

end in any element (e.g. C and E ending in the middle of

blocks). In the first word, there is an unused data element 7

between A and B which cannot be utilized (block alignment

rule), showing a slight throughput inefficiency of MFB. On the

other hand, frames in the second word can be packed tighter –

D can start four elements sooner (at element 4). C can be

similarly moved by two elements (at element 0), but with no

effect to overall throughput, since the rule of at most one start

of a frame in each region prevents D to be moved further

left. This illustrates that MFB has rather high overhead when

frames are too short compared to region size (not optimal MFB

configuration as we explain later). Lastly, in the third word a

legal sharing of one region between parts of two frames is

shown –E ends in the same region in which F starts.

General description of MFB data word structure enables

definition of multiple buses with different parameters. We

formally describe them by the following four attributes:

• Number of regions (n) adjusts the maximal number of

frames transferred in each word.

• Region size (r) defines the number of blocks in each

region, thus affects overhead for very short frames.

• Block size (b) states the number of elements in each start

alignment block, thus controls the alignment overhead.

• Element width (e) defines the size of the smallest distin-

guishable piece of data in bits. Usually, buses work with

bytes (octets of bits), but other values can be also utilized.

To simplify the processing logic complexity, r and b should

be powers of 2. Using the main attributes of MFB, we derive

other useful parameters: data word width describing the actual

width of the whole bus data word in elements as we = n×r×b
or in bits as wb = n× r× b× e, and region elements showing

the size of each region in number of elements as re = r ×
b. Furthermore, we define a short notation of specific word

structure as MFB(n, r, b, e). For example, the bus in Figure

1 is MFB(4, 2, 2, ∗) (∗ denotes any value).

That concludes the concept description of Multi Buses

specifically designed for general data frames. Analogous to

these, buses that can transfer multiple single-value transac-

tions per clock cycle can be also defined. Such buses come

in handy especially as complements to MFB for relaying

Fig. 2. Structure of MVB word with illustration of transferred values.

metadata associated with the frames. Because only single-

value transactions are considered here, the word structure

is pretty straightforward – each bus data word consists of

multiple homogeneous data items (values) without any further

constraints. We call this arrangement of the data word and

each bus following it Multi Value Bus (MVB). Illustration of

MVB word structure is shown in Figure 2 (upper part). A

word of 16 bits organized into 4 items can be seen. The lower

part of the figure shows an example of six values (A to F )

transferred over three words of such MVB. Notice that their

positions are chosen to correspond with starting regions of

frames from Figure 1. As no constraints for value placements

are present, MVB does not create any throughput overhead.

Analogous to MFB, we describe versions of MVB by:

• Number of items (m) adjusts the maximal number of

values transferred in each word.

• Item width (i) represents the size of the values in bits.

Using these attributes, data word width is wi = i ×m and a

short notation MVB(m, i). For example, bus shown in Figure

2 can be now labeled as MVB(4, ∗).
Description of MVB concludes the Multi Buses concept

proposition. To wrap things up, we just want to point out that

MFB(1, 1, ∗, ∗) and MVB(1, ∗) configurations behave like

ordinary single-transaction buses, so single-transaction buses

(e.g. AXI4-Stream) can be viewed as a special case in our

proposed concept. Or in other words, the Multi Buses concept

can be seen as an extension of the single-transaction buses.

III. ACHIEVABLE THROUGHPUTS

The Multi Buses design introduces some constraints on

frame positioning, leading to possible transfer overheads that

reduce achievable throughput. Without deeper understanding

of characteristics of mentioned overhead, a simple way for

rule of thumb MFB worst-case throughput (T ) estimate is:

T ≈ F × n×min(Lmin, re)× e [b/s] (1)

Where n, re and e are as defined in previous section, Lmin is

the length of the shortest frame (in data elements) and F is the

bus clock frequency. To break down the equation, e is there just

for the transformation of units – from data elements to actual

bits. Term F × n defines the maximum theoretical number of

transactions per second that MFB can transfer because in each

of its n regions per word (clock cycle) at most one frame can

start. Finally, the min() clause represents the fact that if the

frames can be very short, the throughput for the shortest ones
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is simply limited by achievable framerate. On the other hand,

if regions are very small compared to frames, the throughput

is limited by the actual maximal amount of data that can be

transferred over the bus (known Tmax = F × wb = F ×
n × re × e). This leads to an assumption that it is generally

recommended to set MFB region size to be the same as the

length of the shortest legal frames.

The approximation 1 accurately accounts for the throughput

limitations created by the concept of regions in MFB. To

further generalize the equation, the other source of overhead

must be analyzed – concept of blocks. When a frame can start

only at the start of a block, then as soon as the first element of

that block is already used, a new frame cannot start there. In

other words, when at least one element of a frame spills into

a block, the whole block is used up, forcing the next frame

to start in the next block at the earliest. This feature leads to

block related MFB overhead of at most b − 1 elements per

frame varying based on the actual frame length.

When both sources of MFB overhead are put together, the

total number of elements required (allocated) on MFB (cost

C(L)) when transferring a frame of length L is:

C(L) =

{
re if L < re⌈
L/b

⌉× b otherwise
(2)

The first case is derived from region constraint overhead for

very short frames. Note that thanks to enabled sharing of a

region between two frames, the actual cost can be smaller than

re for some patterns of consecutive frames and their specific

positions. However, this does not have to be considered here,

as the worst-case scenario is examined. The second case of the

function represents the allocation of the whole blocks by any

last elements of the frame in them. Now, achievable efficiency

(η(L)) of MFB when transferring frames of length L is relation

between transferred amount of data and cost of the transfer:

η(L) =
L

C(L)
(3)

Worst-case efficiency (H) is just a minimal value of η(L):

H =
Lmax

min
L=Lmin

(η(L)) (4)

And finally, worst-case throughput of MFB (T ) is simply:

T = H × Tmax = H × F × n× re × e (5)

A demonstration of the achievable efficiency of different

MFB groups can be seen in Figures 3 and 4. The first graph

shows only the effect of block sizes (b) without region sizes

taken into consideration (r = 1, so re = b). Constantly

repeating drops in effectivity are getting more severe for

shorter frames. Also, drops are deeper as the value of b raises.

The second graph illustrates how the utilization of larger

regions degrades achieved efficiency for the shortest frames.

Here, b is set to 8 similarly as for MFB(∗, 1, 8, ∗) (squared)

line in the previous graph. A steady linear drop of efficiency

towards zero can be seen for all frames shorter than re. For

Fig. 3. Efficiency of MFBs with different block sizes (values of b).

Fig. 4. Effect of larger regions on achievable efficiency of MFBs.

frames longer than re the values follow the same pattern as

MFB(∗, 1, 8, ∗), resulting in a rather high efficiency.

A very common situation is that input data for the designed

bus are decoded (decapsulated) from another protocol with its

overhead being stripped away. Therefore, to properly adjust

the MFB parameters, a more complex approach needs to be

employed than just utilizing the worst-case bus efficiency.

Furthermore, our processing protocol can add some kind of

its overhead (encapsulation) that must be considered. For

example, our input data can be L2 Ethernet frames after

PCS/PMA layers decapsulation which removes the L1 over-

head of 20 B per frame (Preamble and Interframe Gap). Also,

our processing pipeline can append a few extra bytes to each

frame with additional useful information like arrival timestamp

or ingress interface number.

In the case described above, the aim is not just to achieve

the highest worst-case efficiency of frame transfers over the

bus, but rather to achieve a wire-speed processing of incoming

data. As a result, it suffices that the bus achieves at least

the same effective throughput as the input bus in every

case. To incorporate the described notion of this comparative

throughput efficiency, equations 3 and 4 are altered to:

ηC(L) =
Ein(L)

C(Eout(L))
(6)
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HC =
Lmax

min
L=Lmin

(ηC(L)) (7)

Where Ein(L) is the cost of the frame with length L in input

encapsulation that has been stripped away and Eout(L) stands

for the cost of the frame in our specific encapsulation. Note

that ηC and HC can reach values higher than 1 because they

just represent a comparative ratio between two efficiencies.

Also, a minimum value of ηC can now be present in the longest

frame lengths. So, to acquire desirable wirespeed throughput,

the following condition derived from equation 5 must be

satisfied for the worst-case:

Tin ≤ HC × F × n× re × e (8)

Where Tin is the input throughput including Ein encapsulation

cost. So for example, if 400 Gbps Ethernet is the input, the

encapsulation cost function is Ein(L) = L + 20 and input

throughput Tin is 400 Gbps.

After specifying the wire-speed throughput condition, it is

now possible to derive a technique for MFB parametrization:

1) Value of e should be defined by the type of data that are

dealt with. Also, Tin, Ein and Eout should be known.

2) Region size re is optimally equal to or slightly lower as

minimal legal frame length. This is to avoid considerable

efficiency degradation as seen in Figure 4.

3) As an effect of re on efficiency ηC and HC is removed

in the previous step, b remains the only parameter that

can affect them. Using the largest possible value which

preserves a reasonable HC value (around 1) should be

used. Also, after value of b is chosen, main attribute

r = re/b of MFB can be computed.

4) Finally, compute the required value of the remaining

product F × n. Explore trade-off between viable pairs

of values and select the best one.

To show the example of the proposed technique in action, an

example with Ethernet is again considered. Ethernet operates

with bytes (e = 8), already mentioned Ein(L) = L+ 20 and

shortest frames of 64 B (re = 64). The optimal value of block

size to achieve HC ≈ 1 is b = 16 (HC = 0.885 for b = 32),

considering MFB overhead of at most b − 1 bytes and given

Ein with overhead of 20 B. Therefore, r = 4 and the optimal

group of buses for Ethernet is MFB(∗, 4, 16, 8). Note that

MFB(∗, 8, 8, 8) may be more convenient as PCS/PMA layers

already align frames at 8 B blocks.

Continuing with the Ethernet example, the contribution of

proposed MFB design is illustrated in Figure 5. The graph

shows the efficiency of 400 Gbps Ethernet frames transferred

over buses with different features. The darkest line with circles

is the optimal MFB configuration that can achieve wire-speed

throughput utilizing clock frequency of 196 MHz. The line

with squares represents what happens when the unaligned

frame starts and region sharing is not allowed –HC = 0.6875
requiring 284 MHz for wire-speed, although it has the same

bus word width. The remaining two lines are MFBs with

inadequately big regions. They also illustrate the efficiency

of buses without the support of multiple frames per clock

Fig. 5. Comparative efficiencies of different MFBs with 400 Gbps Ethernet.

Fig. 6. Comparative efficiencies of different MFBs with 1 Tbps Ethernet.

cycle, but still supporting unaligned frame starts and shared

words. Line with triangles shows the same efficiency that a

1024 b single-frame bus would have –HC = 0.6563 requiring

596 MHz for wire-speed. A single-frame bus with a word

width of 2048 b (same as optimal MFB) would have efficiency

shown by the line with stars –HC = 0.3281 requiring also

596 MHz for wire-speed.

The efficiency of single-frame buses is even worse in the

processing of 1 Tbps Ethernet, as shown in Figure 6. The

optimally configured MFB (line with circles) with reasonable

region size retains its effectivity and can still achieve wire-

speed processing easily. However, effective throughput of

single-frame configurations (lines with triangles and stars)

plummets to very low values, leading to requirements of

around 1.5 GHz frequency for wire-speed processing.

IV. IMPLEMENTATION METHODS

This chapter aims to find a general way of how to reduce

the design and implementation complexity when creating

processing cores for Multi Buses. A very convenient way

would be to reduce the problem into two separate steps:

create a core for a single-transaction bus processing and then

replicate its logic for a given number of regions. To achieve

such division, a closer look must be taken on the basic

characteristics of the bus processing core structure. A simple
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Fig. 7. Basic abstraction of processing core.

Fig. 8. Abstraction of processing core for MFB.

abstraction is shown in Figure 7. The logic of a processing core

(gray cloud) somehow transforms the data on the bus and/or

computes some additional information (Result) from them. For

proper functionality, the logic also usually requires some kind

of context (State) to be retained between the processing of

individual words on the bus.

Now, a transition from single-transaction buses to proposed

Multi Buses can be viewed as an attempt to process what

would be multiple words of the original bus in a single word of

the new Multi Bus. This influences the structure of processing

architectures as illustrated in Figure 8 on MFB with 3 regions.

Original processing logic is simply replicated for each region

(gray clouds). The context (State) handling becomes more

complex. The logic of each region now requires the state

computed in the previous region and only the last one stores

its computed state for the next word. This attempt to preform

multiple state transitions in a single step leads to longer

logic paths on input states of individual regions, possibly

reducing the achievable frequency of the whole processing.

Furthermore, the state update paths cannot be pipelined as the

fully updated state is required directly in the next clock cycle

to correctly process the next bus word.

To address the described potential performance degradation,

a closer look at the general structure of processing logic should

be taken. This leads to a more detailed abstraction as shown in

Figure 9. Processing logic cloud is divided into three separate

parts. Bus data processing starts with preprocessing, including

all operations that do not require the knowledge of the current

state. All state-dependent operations with bus data are grouped

at the end in the postprocessing part. State update procedures

(simplified notation ⊕) themselves are shown as a separate

block. Preprocessing and postprocessing functionality and also

their connections to state information can all be pipelined, as

they are not part of the state update loopback. Therefore, the

negative effects of longer state update paths in Multi Buses are

effectively isolated to affect only ⊕ logic itself. Furthermore,

all logic of a processing core apart from ⊕ is simply replicated

for Multi Buses implementations.

Let us take a closer look at state update logic loopback

Fig. 9. More detailed abstraction of processing core for single-frame buses.

Fig. 10. State updates in Serial, Parallel, and PrefixSum form.

to optimize it. The first thing to do is to minimize the ⊕
procedure itself. This is achievable by thoroughly moving

all unnecessary functionality into preprocessing or postpro-

cessing stages. Next, complex state update procedures should

be divided into multiple simpler parts that can be treated

independently. Finally, the state update loopback connection

of ⊕ procedures itself can be realized in different ways. We

identified three possible solutions (Figure 10).

Serial form represents the basic connection schema as de-

scribed so far. Each region has the same state update logic and

the whole loopback is just a sequence of ⊕. Serial connection

leads to O(n) resource utilization and critical path length.

Parallel form requires a definition of
∑

i functions that

perform multiple steps of ⊕ at once. Now, each region has

its own
∑

i with appropriate size given by the number of

data inputs (notice
∑

0 = ⊕). This arrangement leads to

higher resources utilization but can reduce critical path length.

The idea is that, compared to sequences of ⊕, a faster

implementation of
∑

i can be achieved.

PrefixSum form is based on parallel prefix sum algorithm

[8]. It is relevant only when ⊕ is associative (the order

of state updates does not change the outcome). Because ⊕
are connected into two trees (as illustrated) the resources

utilization remains in O(n), but critical path is only O(log(n)).
Feasibility of individual implementation options is highly

dependent on the structure of ⊕. Frequency and resource

utilization trade-offs can be analyzed to select the best one.

V. PROOF OF CONCEPT RESULTS

To prove the feasibility of the proposed Multi Buses

methodology, we implemented several cores following the

techniques from the previous chapter. In the first part, we

chose some basic functions for general processing of MFB

frames and some MVB functions that might prove useful

as pieces of state update handling (parts of ⊕) in more

complex MFB engines. By measuring their performance in

terms of FPGA resources utilization and achievable working
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frequency, we demonstrate that the proposed Multi Buses

approach is indeed a practical and effective option for high

throughput applications. In the second part, we briefly show

actual results for selected complex MFB/MVB engines that

we have described in detail (including specific related work)

in our previous papers [9], [10], [11], [12], [13], [14].

A. Basic Functions

More detailed descriptions of implemented MFB and MVB

cores functionality are provided in the following paragraphs,

together with results (resources and frequency) for different

parameters of MFB/MVB and implementation forms (serial,

parallel and prefixsum). We provide results of implemen-

tation for Xilinx Virtex UltraScale+ FPGA XCVU9P with

speed grade -3 using Vivado 2018.2. We focused on group

MFB(∗, 8, 8, 8) that is appropriate for the processing of

Ethernet frames at wire-speed (ηC(L) is always 1 or higher).

Tested values of n and m were also chosen based on their

usability for 400 Gbps, 1 Tbps, and 2 Tbps Ethernet. In the

tables, we displayed only results of the best implementation

forms for each value of n or m.

Frame Counter (Table I) counts the number of frames trans-

ferred over the MFB. The results were measured for 64 b wide

counter. For 32 b wide counter the frequencies are a bit better

and resources are roughly halved. Also, the implementation is

not influenced by most of the MFB parameters, so the same

results are valid for all MFBs and MVBs (as Item Counter)

with the same n or m. The nature of this task (only the value

of the ’state’ register is used) favors the parallel form.

Frame Tagger (Table II) assigns consecutive tags (sequence

numbers) to frames transferred over MFB. These tags are

then provided on the output MVB with valid items aligned

with starts or ends of analyzed MFB frames. Transaction

tags can be used for round-robin distribution (e.g. to multiple

CPU cores) or as a mechanism for requests/responses pairing

in architectures with inconsistent latency (e.g. hierarchical

memory system). The results were measured for 16 b wide

tags, which should provide enough unique values for most

applications. Also, the implementation is not influenced by

most of the MFB parameters, so the same results are valid for

all MFBs and MVBs (as Item Tagger) with the same n or m.

Frame Measurer (Table III) acquires lengths of individual

frames transferred over MFB. These lengths are then provided

on the output MVB aligned with ends of analyzed MFB

frames. Shown results were measured for 16 b wide repre-

sentations of frame lengths, enough to support jumbo frames.

Element Extractor (Table IV) extracts data elements at given

offset from MFB frame start and provides them over MVB

on the output. This is an essential building block of packet

header parsers. The results were measured for 4 B extraction

and 16 b offset signal width. The state update loopback logic

in this core consists of multiple simpler functions and their

implementation forms are selected independently.

Last Valid Item (Table V) replicates each valid MVB item

into all the following empty items until another valid one is

reached. This can be useful in some complex MFB cores

n Best form LUTs FFs F [MHz]
2 all 65 64 1 342
4 parallel 65 64 1 257
5 parallel 65 64 1 204
8 parallel 71 64 943

10 parallel 71 64 830

TABLE I
RESULTS FOR FRAME COUNTER.

n Best form LUTs FFs F [MHz]
2 all 33 16 1 647
4 parallel 65 16 1 515
5 parallel 81 16 1 447
8 parallel 134 16 1 114

10 parallel 172 16 884

TABLE II
RESULTS FOR FRAME TAGGER.

n Best form LUTs FFs F [MHz]
2 all 50 47 1 303
4 serial 99 81 1 101
5 serial 128 96 975

8
serial 200 149 873

parallel 341 186 936
10 serial 265 183 735

TABLE III
RESULTS FOR FRAME MEASURER.

n Best form LUTs FFs F [MHz]
2 mixed 1 799 512 1 010
4 mixed 3 143 512 1 009
5 mixed 3 815 512 1 011
8 mixed 5 831 512 1 012

10 mixed 7 175 512 966

TABLE IV
RESULTS FOR ELEMENT EXTRACTOR.

m Best form LUTs FFs F [MHz]
2 all 132 65 1 841
4 serial 262 65 1 607

5
parallel 327 65 1 182

prefixsum 425 65 1 569
8 serial 522 65 956

10 serial 844 65 900

TABLE V
RESULTS FOR LAST VALID ITEM.

to retain state-related metadata of MFB frames throughout

their whole bodies (e.g. element extraction offset or trimming

length). Shown results are measured for 64 b wide items.

Results of all described cores support the feasibility of

the proposed Multi Buses approach. Achievable frequency is

always well above the values required for considered Ethernet

speeds. Also, the resources utilization scales reasonably with

the widening of the data bus (raising value of n or m). Finally,

proposed implementation forms (serial, parallel, prefixsum)

provide various trade-offs between resources and frequency,

where different form leads to the most effective results for

individual cores.

B. Complex IP Cores

Using the proposed methodology, we designed and imple-

mented several complex IP cores for key networking opera-

tions. A brief overview of the achieved results is presented in

Table VI. For each IP core, we selected the best configurations

(n or m and level of registering) to achieve at least a given
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IP Core Speed n/m Fmax LUTs FFs BRAMs

parser
400 GbE

2 441 MHz 18 476 24 900 -
4 230 MHz 36 097 29 301 -

1 TbE 8 334 MHz 73 395 77 653 -
2 TbE 16 247 MHz 133 922 154 107 -

match 400 GbE 2 545 MHz 1 818 887 46
table 1 TbE 4 524 MHz 3 050 1 530 93

(IPv4) 2 TbE 8 451 MHz 5 510 2 818 186
match 400 GbE 2 543 MHz 4 797 1 847 111
table 1 TbE 4 521 MHz 8 092 3 237 222

(IPv6) 2 TbE 8 447 MHz 14 992 6 077 445

CRC

400 GbE
2 426 MHz 8 815 4 980 -
4 294 MHz 16 711 6 057 -

1 TbE
4 531 MHz 17 859 6 829 -
8 320 MHz 36 738 14 401 -

2 TbE 8 500 MHz 38 525 26 589 -
0.2 Tbps 8∗ 798 MHz 6 340 3 728 -

deparser 200 GbE 2 280 MHz 5 559 8 451 -
(switch) 400 GbE 4 281 MHz 13 630 16 533 -
deparser 200 GbE 2 296 MHz 22 906 9 781 15
(GRE) 400 GbE 4 250 MHz 95 852 19 478 30

TABLE VI
RESULTS FOR THE SELECTED COMPLEX IP CORES.

Ethernet speed. We again provide results for the same MFB

configuration, FPGA, and tool version. More detailed informa-

tion for individual cores, especially specific architecture design

and related work, can be found in their respective papers.

Parser [9] of frame headers has a modular design that allows

specification of different protocol stacks. The shown results

are for stack of Ethernet, multiple VLAN, multiple MPLS,

IPv4/IPv6 (with extension headers), and TCP/UDP. Thanks to

extensive configurable pipelining, the parser can scale up to

2 Tbps while utilizing only a few percents of FPGA resources.

Match table [10], [11] is based on Cuckoo hashing principle

and enables exact matching of configurable keys. The shown

results are for flow matching (the key is a 5-tuple of IP

addresses, ports, and protocol) in IPv4 and IPv6 networks.

Also, the effective rule capacity is configured to be above

10 000 flows with 32 bits of data for each. Thanks to effective

memory replication scheme, the throughput can scale up to

2 Tbps (around 3 000 Mpps) in current FPGAs.

CRC [12], [13] computation is a critical operation in receiv-

ing and transmitting of Ethernet frames as well as in some

memory interfaces. Therefore, CRC core must be optimized

for resources as multiple instances are usually present in

one FPGA firmware. The results in the table show, that

only a fraction of FPGA resources will be used even when

multiple instances are present. Note that the last row (denoted

by ∗) do not contain results for Ethernet processing with

MFB(∗, 8, 8, 8), but shows configuration for Hybrid Memory

Cube interface [4] that operates with MFB(∗, 1, 1, 128).
Deparser [14] assembles the output frames based on

changes required by processing pipeline. The table shows

results for deparsing core in two applications: basic L2/L3

switch, and unpacking of GRE tunnels. Only speeds up to

400 Gbps can be achieved as this is currently a work in

progress, more optimized architecture will be presented soon.

VI. CONCLUSION

This paper presents a new description method for the design

of wide buses and processing cores that deal with multiple

transactions per clock cycle. The method enables thorough

performance analysis before any implementation effort even

begins. It also provides guidelines for obtaining suitable bus

configuration for a specific protocol and performance require-

ments. Also, three approaches for reducing the complexity

of core design are presented and evaluated using examples

of simple processing elements. Complex processing cores are

then designed following the presented guidelines and show

their feasibility. These cores perform critical operations of

network traffic processing (parsing, matching, CRC checking,

deparsing) and achieve throughput sufficient for wire-speed

processing of 1 Tbps (and even faster) Ethernet traffic in

current FPGAs. Overall, this paper provides formal guides

that reduce the intuitive work of the designer and minimizes

the chance of early bad design decisions. This method for

wide bus design also relieves the need for ever-increasing chip

frequency, since it becomes easier to use the chip area as the

dimension to scale system throughput. We also see our work

as a step towards automated design (high-level synthesis) of

high-speed logic, outside of the traditional domain of digital

signal processing.
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