
A Symbolic Algorithm for the Case-Split
Rule in String Constraint Solving

Yu-Fang Chen1, Vojtěch Havlena2, Ondřej Lengál2(B) ,
and Andrea Turrini3,4

1 Academia Sinica, Taipei, Taiwan
2 FIT, IT4I Centre of Excellence, Brno University of Technology,

Brno, Czech Republic
lengal@fit.vutbr.cz

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

4 Institute of Intelligent Software, Guangzhou, China

Abstract. Case split is a core proof rule in current decision procedures
for the theory of string constraints. Its use is the primary cause of the
state space explosion in string constraint solving, since it is the only
rule that creates branches in the proof tree. Moreover, explicit handling
of the case split rule may cause recomputation of the same tasks in
multiple branches of the proof tree. In this paper, we propose a symbolic
algorithm that significantly reduces such a redundancy. In particular,
we encode a string constraint as a regular language and proof rules as
rational transducers. This allows to perform similar steps in the proof
tree only once, alleviating the state space explosion. In our preliminary
experimental results, we validated that our technique (implemented in a
Python prototype) works in many practical cases where other state-of-
the-art solvers, such as CVC4 or Z3, fail to provide an answer.

1 Introduction

Constraint solving is a technique used as an enabling technology in many areas
of formal verification and analysis, such as symbolic execution [21,27], static
analysis [23,48], or synthesis [22,38]. For instance, in symbolic execution, feasi-
bility of a path in a program is tested by creating a constraint that encodes the
evolution of values of variables on the given path and checking if it is satisfiable.
Due to the features used in the analysed programs, checking satisfiability of the
constraint can be a complex task. For instance, the solver has to deal with dif-
ferent data types, such as Boolean, Integer, Real, or String. Theories for the first
three data types are well known, widely developed, and implemented in tools,
while the theory for the String data type has started to be investigated only
recently [2,4,5,11,15,16,24,26,31–33,47,50,52], despite having been considered
already by A. A. Markov in the late 1960s in connection with Hilbert’s 10th
problem [18,28,36].

c© Springer Nature Switzerland AG 2020
B. C. d. S. Oliveira (Ed.): APLAS 2020, LNCS 12470, pp. 343–363, 2020.
https://doi.org/10.1007/978-3-030-64437-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64437-6_18&domain=pdf
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0003-4343-9323
https://doi.org/10.1007/978-3-030-64437-6_18

344 Y.-F. Chen et al.

Most current decision procedures for string constraints involve the so-called
case-split rule. This rule performs a case split w.r.t. the possible alignment of
the variables. The case-split rule is used in most, if not all, (semi-)decision pro-
cedures for string constraints, including Makanin’s algorithm [34], Nielsen trans-
formation [37] (a.k.a. Levi’s lemma [30]), and the procedures implemented in
most state-of-the-art solvers such as Z3 [11], CVC4 [31], Z3Str3 [52], Norn [4],
and many more. In this paper, we will explain the general idea of our symbolic
approach using Nielsen transformation, which is the simplest of the approaches;
nonetheless, we believe that the approach is applicable also to other procedures.

Consider the word equation xz = yw, the primary type of atomic string
constraints considered in this paper, where x, z, y, and w are string variables.
When establishing satisfiability of the word equation, Nielsen transformation [37]
proceeds by first performing a case split based on the possible alignments of the
variables x and y, the first symbol of the left and right-hand sides of the equation,
respectively. More precisely, it reduces the satisfiability problem for xz = yw into
satisfiability of (at least) one of the following four (non-disjoint) cases (1) y is a
prefix of x, (2) x is a prefix of y, (3) x is an empty string, and (4) y is an empty
string. For these cases, the Nielsen transformation generates new equations that
we describe in the following paragraphs.

For the case (1), all occurrences of x in xz = yw are substituted to yx′,
where x′ is a fresh string variable (we denote this case as x ↪→ yx′), i.e., we
obtain the equation yx′z = yw, which can be simplified to x′z = w. In fact,
since the transformation x ↪→ yx′ removes all occurrences of the variable x, we
can just reuse the variable x and perform the transformation x ↪→ yx instead
(and take this into account when constructing a model). The case (2) of the
Nielsen transformation is just a symmetric counterpart of case (1) discussed
above. For cases (3) and (4), the variables x and y, respectively, are replaced
by empty strings. Taking into account all four possible transformations of the
equation xz = yw, we obtain the following four equations:

(1) xz = w, (2) z = yw, (3) z = yw, (4) xz = w.

If xz = yw has a solution, then at least one of the above equations has
a solution, too. Nielsen transformation keeps applying the transformation rules
on the obtained equations, building a proof tree and searching for a tautology
of the form ε = ε.

Treating each of the obtained equations separately can cause some redun-
dancy. Let us consider the example in Fig. 1, where we apply Nielsen transfor-
mation to solve the string constraint xz = ab∧wabyx = awbzv, where v, w, x, y,
and z are string variables and a and b are constant symbols. After processing the
first word equation xz = ab, we obtain a proof tree with three similar leaf nodes
wabyab = awbv, wabya = awbbv, and waby = awbabv, which share the prefixes
waby and awb on the left and right-hand side of the equations, respectively. If we
continue applying Nielsen transformation on the three leaf nodes, we will create
three similar subtrees, with almost identical operations. In particular, the nodes

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 345

Fig. 1. A partial proof tree of applying Nielsen transformation on xz = ab ∧ wabyx =
awbzv. The leaves are the outcome of processing the first word equation xz = ab.
Branches leading to contradictions are omitted.

near the root of such subtrees, which transform waby . . . = awb . . . , are going
to be essentially the same. The resulting proof trees will therefore start to differ
only after processing such a common part. Therefore, handling those equations
separately will cause some operations to be performed multiple times. In the case
the proof tree of each word equation has n leaves and the string constraint is a
conjunction of k word equations, we might need to create nk similar subtrees.

Fig. 2. A finite automaton encoding the three equations wabyab = awbv, wabya =
awbbv, and waby = awbabv.

The case split can be performed more efficiently if we process the common
part of the said leaves together using a symbolic encoding. In this paper, we use
an encoding of a set of equations as a regular language, which is represented by
a finite automaton. An example is given in Fig. 2, which shows a finite automaton
over a 2-track alphabet, where each of the two tracks represents one side of the
equation. For instance, the equation wabyab = awbv is represented by the word(
w
a

)(
a
w

)(
b
b

)(
y
v

)(
a
�

)(
b
�

)
accepted by the automaton, where the � symbol is a padding

used to make sure that both tracks are of the same length.

346 Y.-F. Chen et al.

Given our regular language-based symbolic encoding, we need a mechanism
to perform the Nielsen transformation steps on a set of equations encoded as
a regular language. We show that the transformations can be encoded as ratio-
nal relations, represented using finite transducers, and the whole satisfiability
checking problem can be encoded within the framework of regular model check-
ing (RMC). In the past, RMC has already been considered for solving string
constraints (cf. [7,49–51]). In those approaches, the languages of the automata
are, however, the “models of the formula”, so the approaches can be considered
“model-theoretic”. In our approach, the automata languages are the derived con-
straints. Hence the approach is closer to “proof-theoretic”. We believe this novel
aspect has a great potential for further investigation and can bring new ideas to
the field of string solving.

We will provide more details on how this is done in Sects. 3 to 5 stepwise. In
Sect. 3, we describe the approach for a simpler case where the input is a quadratic
word equation, i.e., a word equation with at most two occurrences of every vari-
able. In this case, Nielsen transformation is sound and complete. In Sect. 4, we
extend the technique to support conjunctions of non-quadratic word equations.
In Sect. 5, we extend our approach to support arbitrary Boolean combinations
of string constraints.

We implemented our approach in a prototype Python tool called Retro and
evaluated its performance on two benchmark sets: Kepler22 obtained from [29]
and PyEx-Hard obtained by running the PyEx symbolic execution engine on
Python programs [42] and collecting examples on which CVC4 or Z3 fail. Retro
solved most of the problems in Kepler22 (on which CVC4 and Z3 do not perform
well). Moreover, it solved over 50 % of the benchmarks in PyEx-Hard that could
be solved by neither CVC4 nor Z3.

2 Preliminaries

An alphabet Σ is a finite set of symbols and a word over Σ is a sequence w =
a1 . . . an of symbols from Σ, with ε denoting the empty word. We use w1.w2 (and
often just w1w2) to denote the concatenation of words w1 and w2. Σ∗ is the set
of all words over Σ, Σ+ = Σ∗ \ {ε}, and Σε = Σ ∪ {ε}. A language over Σ is
a subset L of Σ∗. Given a word w = a1 . . . an, we use |w| to denote the length n
of w and |w|a to denote the number of occurrences of the character a ∈ Σ in w.
Further, we use w[i] to denote ai, the i-th character of w, and w[i :] to denote
the word ai . . . an. When i > n, the value of w[i] and w[i :] is in both cases
⊥, a special undefined value, which is different from all other values and also
from itself (i.e., ⊥ �= ⊥). Given an alphabet Σ, we use Σk to denote the k-tape
alphabet Σ × · · · × Σ︸ ︷︷ ︸

k

.

Automata and Transducers. A (finite) k-tape transducer is a tuple T =
(Q,Δ,Σ, Qi, Qf) where Q is a finite set of states, Δ ⊆ Q × Σk

ε × Q is a set of
transitions, Σ is an alphabet, Qi ⊆ Q is a set of initial states, and Qf ⊆ Q is a set

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 347

of final states. A run π of T over a k-tuple of words (w1, . . . , wk) is a sequence of
transitions (q0, a

1
1, . . . , a

k
1 , q1), (q1, a

1
2, . . . , a

k
2 , q2), . . . , (qn−1, a

1
n, . . . , ak

n, qn) ∈ Δ
such that ∀i : wi = ai

1a
i
2 . . . ai

n (note that ai
m can be ε, so wi and wj may be of

a different length, for i �= j). The run π is accepting if q0 ∈ Qi and qn ∈ Qf , and
a k-tuple (w1, . . . , wk) is accepted by T if there exists an accepting run of T over
(w1, . . . , wk). The language L(T) of T is defined as the k-ary relation L(T) =
{ (w1, . . . , wk) ∈ (Σ∗)k | (w1, . . . , wk) is accepted by T }. We call the class of
relations accepted by transducers rational relations. T is length-preserving if no
transition in Δ contains ε. We call the class of relations accepted by length-
preserving transducers regular relations. A finite automaton (FA) is a 1-tape
finite transducer. We call the class of languages accepted by finite automata reg-
ular languages. Given two k-ary relations R1, R2, we define their concatenation
R1.R2 = { (u1v1, . . . , ukvk) | (u1, . . . , uk) ∈ R1 ∧ (v1, . . . , vk) ∈ R2 } and given
two binary relations R1, R2, we define their composition R1 ◦ R2 = { (x, z) | ∃y :
(x, y) ∈ R2 ∧ (y, z) ∈ R1 }. Given a k-ary relation R we define R0 = {ε}k,
Ri+1 = R.Ri for i ≥ 0. Iteration of R is then defined as R∗ =

⋃
i≥0 Ri.

Given a language L and a binary relation R, we define the R-image of L as
R(L) = { y | ∃x ∈ L : (x, y) ∈ R }.

Proposition 1 ([10]). (i) The class of binary rational relations is closed under
union, composition, concatenation, and iteration and is not closed under inter-
section and complement. (ii) For a binary rational relation R and a regular lan-
guage L, the language R(L) is also effectively regular (i.e., it can be computed).
(iii) The class of regular relations is closed under Boolean operations.

String Constraints. Let Σ be an alphabet and X be a set of string variables
ranging over Σ∗ s.t. X ∩ Σ = ∅. We use ΣX to denote the extended alphabet Σ ∪
X. An assignment of X is a mapping I : X → Σ∗. A word term is a string over the
alphabet ΣX. We lift an assignment I to word terms by defining I(ε) = ε, I(a) =
a, and I(x.w) = I(x).I(w), for a ∈ Σ, x ∈ ΣX, and w ∈ Σ∗

X
. A word equation

ϕe is of the form t1 = t2 where t1 and t2 are word terms. I is a model of ϕe

if I(t1) = I(t2). We call a word equation an atomic string constraint. A string
constraint is obtained from atomic string constraints using Boolean connectives
(∧,∨,¬), with the semantics defined in the standard manner. A string constraint
is satisfiable if it has a model. Given a word term t ∈ Σ∗

X
, a variable x ∈ X, and

a word term u ∈ Σ∗
X
, we use t[x �→ u] to denote the word term obtained from t

by replacing all occurrences of x by u, e.g. (abxcxy)[x �→ cy] = abcyccyy. We
call a string constraint quadratic if each variable has at most two occurrences,
and cubic if each variable has at most three occurrences.

2.1 Nielsen Transformation

As already briefly mentioned in the introduction, Nielsen transformation can be
used to check satisfiability of a conjunction of word equations. We use the three
rules shown in Fig. 3; besides the rules x ↪→ αx and x ↪→ ε that we have seen

348 Y.-F. Chen et al.

Fig. 3. Rules of Nielsen transformation, for x ∈ X, α ∈ ΣX, and u, v ∈ Σ∗
X. Symmetric

rules are omitted.

in the introduction, there is also the (trim) rule, used to remove a shared prefix
from both sides of the equation.

Given a system of word equations, multiple Nielsen transformations might
be applicable to it, resulting in different transformed equations on which other
Nielsen transformations can be performed, as shown in Fig. 1. Trying all possible
transformations generates a tree (or a graph in general) whose nodes contain
conjunctions of word equations and whose edges are labelled with the applied
transformation. The conjunction of word equations in the root of the tree is
satisfiable if and only if at least one of the leaves in the graph is a tautology, i.e.,
it contains a conjunction ε = ε ∧ · · · ∧ ε = ε.

Lemma 1 (cf. [17,34]). Nielsen transformation is sound. Moreover, it is com-
plete when the systems of word equations is quadratic.

Lemma 1 is correct even if we construct the proof tree using the following strat-
egy: every application of x ↪→ αx or x ↪→ ε is followed by as many applications
of the (trim) rule as possible. We use x�αx to denote the application of one
x ↪→ αx rule followed by as many applications of (trim) as possible, and x� ε
for the application of x ↪→ ε repeatedly followed by (trim).

2.2 Regular Model Checking

Regular model checking (RMC) [1,12,13] is a framework for verifying infinite
state systems. In RMC, each system configuration is represented as a word over
an alphabet Σ. The set of initial configurations I and destination configurations
D are captured as regular languages over Σ. The transition relation T is captured
as a binary rational relation over Σ∗. A regular model checking reachability prob-
lem is represented by the triple (I, T ,D) and asks whether T rt(I)∩D �= ∅, where
T rt represents the reflexive and transitive closure of T . One way how to solve
the problem is to start computing the sequence T (0)(I), T (1)(I), T (2)(I), . . .
where T (0)(I) = I and T (n+1)(I) = T (T (n)(I)). During computation of the
sequence, we can check if we find T (i)(I) that overlaps with D, and if yes, we
can deduce that D is reachable. On the other hand, if we obtain a sequence such
that

⋃
0≤i<n T i(I) ⊇ T n(I), we know that we have explored all possible system

configurations without reaching D, so D is unreachable.

3 Solving Word Equations Using RMC

In this section, we describe a symbolic RMC-based framework for solving string
constraints. The framework is based on encoding a string constraint into a regular

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 349

language and encoding steps of Nielsen transformation as a rational relation.
Satisfiability of a string constraint is then reduced to a reachability problem of
RMC.

3.1 Nielsen Transformation as Word Operations

In the following, we describe how Nielsen transformation of a single word
equation can be expressed as operations on words. We view a word equa-
tion eq : t� = tr as a pair of word terms eeq = (t�, tr) corresponding to the
two sides of the equation; therefore eeq ∈ Σ∗

X
× Σ∗

X
. Without loss of generality

we assume that t�[1] �= tr[1]; if this is not the case, we pre-process the equation
by applying the (trim) Nielsen transformation (cf. Sect. 3) to trim the common
prefix of t� and tr.

Example 1. The word equation eq1 : xay = yx is represented by the pair of word
terms e1 = (xay, yx). ��

A rule of Nielsen transformation (cf. Sect. 2.1) is represented using a (partial)
function τ : (Σ∗

X
× Σ∗

X
) → (Σ∗

X
× Σ∗

X
). Given a pair of word terms (t�, tr) of

a word equation eq , the function τ transforms it into a pair of word terms of
a word equation eq ′ that would be obtained by performing the corresponding
step of Nielsen transformation on eq . Before we express the rules of Nielsen
transformation, we define functions performing the corresponding substitution.
For x ∈ X and α ∈ ΣX we define

τx�→αx = { (t�, tr) �→ (t′�, t
′
r) | t′� = t�[x �→ αx] ∧ t′r = tr[x �→ αx] } and

τx�→ε = { (t�, tr) �→ (t′�, t
′
r) | t′� = t�[x �→ ε] ∧ t′r = tr[x �→ ε] }.

(1)

The function τx�→αx performs a substitution x �→ αx while the function τx�→ε

performs a substitution x �→ ε.

Example 2. Consider the pair of word terms e1 from Example 1. The applica-
tion τx�→yx(e1) would produce the pair e2 = (yxay, yyx) while the application
τx�→ε(e1) would produce the pair e3 = (ay, y). ��

The functions introduced above do not take into account the first symbols of
each side and do not remove a common prefix of the two sides of the equation,
which is a necessary operation for Nielsen transformation to terminate. Let us,
therefore, define the following function, which trims (the longest) matching prefix
of word terms of the two sides of an equation:

τtrim = { (t�, tr) �→ (t′�, t
′
r) | ∃i(t�[i] �= tr[i] ∧ ∀j(j < i → t�[j] = tr[j])

∧ t′� = t�[i :] ∧ t′r = tr[i :]) }.
(2)

Example 3. Continuing in our running example, the application τtrim(e2) pro-
duces the pair e′

2 = (xay, yx) while τtrim(e3) produces the pair e′
3 = (ay, y). ��

350 Y.-F. Chen et al.

Now we are ready to define functions corresponding to the rules of Nielsen
transformation. In particular, the rule x�αx for x ∈ X and α ∈ ΣX

(cf. Sect. 2.1) can be expressed using the function

τx � αx = τtrim ◦ { (t�, tr) �→ τx�→αx(t�, tr) | (t�[1] = α ∧ tr[1] = x) ∨
(tr[1] = α ∧ t�[1] = x) }

(3)

while the rule x� ε for x ∈ X can be expressed as the function

τx � ε = τtrim ◦ { (t�, tr) �→ τx�→ε(t�, tr) | t�[1] = x ∨ tr[1] = x}. (4)

If we keep applying the functions defined above on individual pairs of word terms,
while searching for the pair (ε, ε)—which represented the case when a solution
to the original equation eq exists—, we would obtain the Nielsen transforma-
tion graph (cf. Sect. 2.1). In the following, we show how to perform the steps
symbolically on a representation of a whole set of word equations at once.

3.2 Symbolic Algorithm for Word Equations

In this section, we describe the main idea of our symbolic algorithm for solving
word equations. We first focus on the case of a single word equation and in
subsequent sections extend the algorithm to a richer class.

Tx � αx =
⋃

x∈X,α∈ΣX

τx � αx

Tx � ε =
⋃

x∈X

τx � ε

Fig. 4. Transformation relations

Our algorithm is based on applying the
transformation rules not on a single equation,
but on a whole set of equations at once. Given
a set of equations, the transformation rules
are applied atomically, i.e., a single trans-
formation rule is applied on the whole set
of equations without interleaving with other
transformation rules. For this, we define the relations Tx � αx and Tx � ε that
aggregate the versions of τx � αx and τx � ε for all possible x ∈ X and α ∈ ΣX.
The signature of these relations is (Σ∗

X
×Σ∗

X
)×(Σ∗

X
×Σ∗

X
) and they are defined in

Fig. 4. Note the following two properties of the relations: (i) they produce out-
puts of all possible Nielsen transformation steps applicable with the first symbols
on the two sides of the equations and (ii) they include the trimming operation.

We compose the introduced relations into a single one, denoted as Tstep and
defined as Tstep = Tx � αx∪Tx � ε. The relation Tstep can then be used to compute
all successors of a set of word terms of equations in one step. For a set of word
terms S we can compute the Tstep-image of S to obtain all successors of pairs of
word terms in S. The initial configuration, given a word equation eq : t� = tr, is
the set Eeq = {(t�, tr)}.

Example 4. Lifting our running example to the introduced notions over sets, we
start with the set Eeq = {e1 = (xay, yx)}. After applying Tstep on Eeq , we obtain
the set S1 = {e′

2 = (xay, yx), e′
3 = (ay, y), (axy, yx), (a, ε)}. The pairs e′

2 and
e′
3 were described earlier, the pair (axy, yx) is obtained by the transformation

τy � xy, and the pair (a, ε) is obtained by the transformation τy � ε. If we continue

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 351

by computing Tstep(S1), we obtain the set S2 = S1 ∪ {(ax, x)}, with the pair
(ax, x) obtained from (axy, yx) by using the transformation τy � ε. ��

Using the symbolic representation, we can formulate the problem of checking
satisfiability of a word equation eq as the task of

– either testing whether (ε, ε) ∈ T rt
step(Eeq); this means that eq is satisfiable, or

– finding a set (called unsat-invariant) Einv such that Eeq ⊆ Einv , (ε, ε) /∈ Einv ,
and Tstep(Einv) ⊆ Einv , implying that eq is unsatisfiable.

In the following sections, we show how to encode the problem into the RMC
framework.

Example 5. To proceed in our running example, when we apply Tstep on S2,
we get Tstep(S2) ⊆ S2. Since e1 ∈ S2 and (ε, ε) /∈ S2, the set S2 is our unsat-
invariant, which means eq1 is unsatisfiable. ��

3.3 Towards Symbolic Encoding

Let us now discuss some possible encodings of the word equations satisfiability
problem into RMC. Recall that our task is to find an encoding such that the
encoded equation (corresponding to initial configurations in RMC) and satisfi-
ability condition (corresponding to destination configurations) are regular lan-
guages and transformation (transition) relation is a rational relation. We start
by describing two possible methods of encodings that do not work and then
describe the one that we use.

The first idea about how to encode a set of word equations as a regular
language is to encode a pair eeq = (t�, tr) as a word t� · = · tr, where = /∈ ΣX.
One immediately finds out that although the transformations τx � αx and τx � ε

are rational (i.e., expressible using a transducer), the transformation τtrim , which
removes the longest matching prefix from both sides, is not (a transducer with
an unbounded memory to remember the prefix would be required).

Another attempt of an encoding may be encoding eeq = (t�, tr) as a rational
binary relation, represented, e.g., by a (non-length-preserving) 2-tape transducer
(with a tape for t� and a tape for tr) and use 4-tape transducers to represent the
transformations (with two input tapes for t�, tr and two output tapes for t′�, t

′
r).

The transducers implementing τx � yx and τx � ε can be constructed easily and
so can be the transducer implementing τtrim , so this solution looks appealing.
One, however, quickly realizes an issue with computing Tstep(Eeq). In particular,
since Eeq and Tstep are both represented as rational relations, the intersection
(Eeq × Σ∗

X
× Σ∗

X
) ∩ Tstep , which needs to be computed first, may not be rational.

Why? Consider Eeq = { (ambn, cm) | m,n ≥ 0 } and Tstep = { (ambn, cn, ε, ε) |
m,n ≥ 0 }. The intersection (Eeq × Σ∗

X
× Σ∗

X
) ∩ Tstep = { (anbn, cn, ε, ε) | n ≥ 0 }

is clearly not rational.

352 Y.-F. Chen et al.

3.4 Symbolic Encoding of Quadratic Equations into RMC

We therefore converge on the following method of representing word equations
by a regular language. A set of pairs of word terms is represented as a regular
language over a 2-track alphabet with padding Σ2

X,�, where ΣX,� = ΣX ∪ {�},
using an FA. For instance, e1 = (xay, yx) would be represented by the reg-
ular language

(
x
y

)(
a
x

)(
y
�

)(�
�

)∗. Formally, we first define the equation encod-
ing function eqencode : (Σ∗

X
)2 → (Σ2

X,�)∗ such that for t� = a1 . . . an and
tr = b1 . . . bm (without loss of generality we assume that |t�| ≥ |tr|), we have
eqencode(t�, tr) =

(
a1
b1

)(
a2
b2

)
. . .

(
am

bm

)(
am+1

�

)
. . .

(
an

�

)
. We lift eqencode to sets in

the usual way and to relations on pairs of word terms τ as eqencode(τ) =
{ (eqencode(t�, tr), eqencode(t′�, t

′
r)) | ((t�, tr), (t′�, t

′
r)) ∈ τ }.

Let σ be a symbol. We define the padding of a k-tuple of words (w1, . . . , wk)
with respect to σ as the set padσ(w1, . . . , wk) = {(w′

1, . . . , w
′
k) | w′

i ∈ wi.{σ}∗}},
i.e., it is a set of k-tuples obtained from (w1, . . . , wk) by extending some of the
words by an arbitrary number of σ’s. We lift padσ to a k-ary relation R as
padσ(R) =

⋃
x∈R padσ(x). Finally, we define the function encode, which we use

for encoding word equations into regular languages and word operations into
rational relations, as encode = pad(�

�

) ◦ eqencode. Properties of encode are given
by the following lemmas.

Lemma 2. If T is a binary regular relation on pairs of word terms, then
encode(T) is rational. If L is a regular language, then encode(L) is regular.

Lemma 3. Given a word equation eq : t� = tr for t�, t� ∈ Σ∗
X
, the set encode(eq)

is regular.

Observe that because of the padding part, which introduces unbounded num-
ber of padding symbols at the end of an encoded relation, even if T is finite,
encode(T) is infinite. Using the presented encoding, when trying to express the
τx � αx and τx � ε transformations, we, however, encounter an issue with the
need of an unbounded memory. For instance, for the language L =

(
x
y

)∗, the
transducer implementing τx � yx would need to remember how many times it
has seen x on the first track of its input (indeed, the image { encode(u, v) | ∃n :
u = (yx)n ∧ v = yn�n } is no longer regular).

We address this issue in several steps: first, we give a rational relation
that correctly represents the transformation rules for cases when the equa-
tion eq is quadratic, and extend our algorithm to equations with more occur-
rences of variables in Sect. 4. Let us define the following, more general, restric-
tion of τx � αx to equations with at most i ∈ N occurrences of variable x as
τ≤i
x � αx = τx � αx ∩ { ((t�, tr), (w,w′)) | w,w′ ∈ Σ∗

X
, |t�.tr|x ≤ i }. We define

τ≤i
x � ε, τ≤i

x�→αx, and τ≤i
x�→ε similarly.

Lemma 4. Given i ∈ N, the relations encode(τ≤i
x � αx) and encode(τ≤i

x � ε) are
rational.

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 353

Input: Encoding I of a formula ϕ (the initial set), transformers Tx � αx, Tx � ε,
and the destination set D

Output: A model of ϕ if ϕ is satisfiable, false otherwise
1 reach0 := ∅;
2 reach1 := I;
3 processed := reach0;
4 T := Tx � αx ∪ Tx � ε;
5 i := 1;
6 while reachi �⊆ processed do
7 if D ∩ reachi �= ∅ then
8 return ExtractModel(reach1, . . . , reachi);
9 processed := processed ∪ reachi;

10 reachi+1 := T (reachi);
11 i++;

12 return false;
Algorithm 1: Solving a string constraint ϕ using RMC

Ieq = encode(t�, tr)

Deq =
{(�

�

)}∗

T eq
x � αx =

⋃

x∈X,α∈ΣX

encode(τ≤2
x � αx)

T eq
x � ε =

⋃

x∈X

encode(τ≤2
x � ε)

Fig. 5. RMC instantiation for
a quadratic equation

In Algorithm 1, we give a high-level algo-
rithm for solving string constraints using RMC.
The algorithm is parameterized by the follow-
ing: a regular language I encoding a formula ϕ
(the initial set), rational relations Tx � αx and
Tx � ε, and the destination set D (also given
as a regular language). The algorithm tries to
solve the RMC problem (I, Tx � αx ∪Tx � ε,D)
by an iterative unfolding of the transition rela-
tion T computed in Line 4, looking for an ele-
ment wi from D. If such an element is found
in reachi, we extract a model of the original word equation by starting a back-
ward run from wi, computing pre-images wi−1, . . . , w1 over transformers Tx � αx

and Tx � ε (restricting them to reachj for every wj), while updating values of
the variables according to the transformation that was performed.

Our first instantiation of the algorithm is for checking satisfiability of a single
quadratic word equation eq : t� = tr. We instantiate the RMC problem with
(Ieq , T eq

x � αx ∪ T eq
x � ε,Deq) defined in Fig. 5.

Lemma 5. The relations T eq
x � αx and T eq

x � ε are rational.

Lemma 6. If eq : t� = tr is quadratic then Algorithm 1 instantiated with
(Ieq , T eq

x � αx ∪ T eq
x � ε,Deq) is sound and complete.

4 Solving a System of Word Equations Using RMC

In the previous section we described how to solve a single quadratic word equa-
tion in the RMC framework. In this section we focus on an extension of this app-
roach to handle a system of word equations Φ : t1� = t1r ∧ t2� = t2r ∧ . . . ∧ tn� = tnr .

354 Y.-F. Chen et al.

In the first step we need to encode the system Φ as a regular language. For this
we extend the encode function to a system of word equations by defining

encode(Φ) = encode(t1� , t
1
r).

{(
#
#

)}
.

{(
#
#

)}
.encode(tn� , tnr), (5)

where # is a delimiter symbol, # /∈ ΣX. From Lemma 3 we know that
encode(ti�, t

i
r) is regular for all 1 ≤ i ≤ n. Moreover, since regular languages

are closed under concatenation (Propostion 1), the set encode(Φ) is also regular.
Because each equation is now separated by a delimiter, we need to extend the
destination set to

{(�
�

)
,
(
#
#

)}∗.

For the transition relation, we need to extend τ≤i
x � αx and τ≤i

x � ε from Sect. 3
to support delimiters. An application of a rule x�αx on a system of equations
can be described as follows: the rule x�αx is applied on the first non-empty
equation and the rest of the equations are modified according to the substitu-
tion x �→ αx. The substitution on the other equations is performed regardless
of their first symbols. The procedure is analogous for the rule x� ε. A series of
applications of the rules can reduce the number of equations, which then leads
to a string in our encoding with a prefix from

{(�
�

)
,
(
#
#

)}∗. The relation imple-
menting x� αx or x� ε on an encoded system of equations skips this prefix.
Formally, the rule x� αx for a system of equations where every equation has
at most i occurrences of every variable is given by the following relation:

T eqs,i
x � αx = Tskip .encode(τ≤i

x � αx).
({(

#
#

)
�→

(
#
#

)}
.encode(τtrim ◦ τ≤i

x�→αx)
)∗

, (6)

where Tskip =
{(�

�

)
�→

(�
�

)
,
(
#
#

)
�→

(
#
#

)}∗. The relation T eqs,i
x � ε is defined similarly.

Lemma 7. The relations T eqs,i
x � αx and T eqs,i

x � ε are rational.

4.1 Quadratic Case

Iq-eqs
Φ = encode(Φ)

Dq-eqs =
{(�

�

)
,
(
#
#

)}∗

T q-eqs
x � αx =

⋃

x∈X,α∈ΣX

T eqs,2
x � αx

T q-eqs
x � ε =

⋃

x∈X

T eqs,2
x � ε

Fig. 6. RMC instantiation for
a system of quadratic equations

When Φ is quadratic, its satisfiability prob-
lem can be reduced to an RMC problem
(Iq-eqs

Φ , T q-eqs
x � αx ∪ T q-eqs

x � ε ,Dq-eqs) where the items
are defined in Fig. 6.

Rationality of T q-eqs
x � αx and T q-eqs

x � ε follows
directly from Proposition 1. The soundness and
completeness of our procedure for a system of
quadratic word equations is summarized by the
following lemma.

Lemma 8. If Φ is quadratic then Algorithm 1 instantiated with (Iq-eqs
Φ ,

T q-eqs
x � αx ∪ T q-eqs

x � ε ,Dq-eqs) is sound and complete.

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 355

Input: System of word equations Φ
Output: Equisatisfiable cubic system of word equations Ψ

1 Ψ := Φ;
2 while There is a word variable x that occurs more than three times in Ψ do
3 Replace two occurrences of x in Φ by a fresh string variable x′ to obtain

a new system Ψ′;
4 Ψ := Ψ′ ∧ x = x′;
5 return Ψ;

Algorithm 2: Transformation to a cubic system of equations

4.2 General Case

Let us now consider the general case when the system Φ is not quadratic. In this
section, we show that this general case is also reducible to an extended version
of RMC.

We first apply Algorithm 2 to a general system of string constraints Φ to get
an equisatisfiable cubic system of word equations Φ′. Then we can use the tran-
sition relations T eqs,3

x � αx and T eqs,3
x � ε to construct transformations of the encoded

system Φ′.

Lemma 9. Any system of word equations can be transformed by Algorithm 2 to
an equisatisfiable cubic system of word equations.

One more issue we need to solve is to make sure that we work with a cubic
system of word equations in every step of our algorithm. It may happen that
a transformation of the type x� yx increases the number of occurrences of the
variable y by one, so if there had already been three occurrence of y before the
transformation, the result will not be cubic any more.

Ieqs
Φ = encode(Φ′)

Deqs =
{(�

�

)
,
(
#
#

)}∗

T vi,eqs
x � αx = TCvi

◦
⋃

x∈X,α∈ΣX

T eqs,3
x � αx

T vi,eqs
x � ε = TCvi

◦
⋃

x∈X

T eqs,3
x � ε

Fig. 7. RMC instantiation for
a system of cubic equations

More specifically, assume a cubic system of
word equations x.t� = y.tr ∧ Φ, where x and y
are string variables and t� and tr are word terms.
If we apply the transformation x� yx, we will
obtain x(t�[x �→ yx]) = tr[x �→ yx] ∧ Φ[x �→
yx]. Observe that (1) the number of occurrences
of y is first reduced by one because the first y
on the right-hand side of x.t� = y.tr is removed
and (2) then the number of occurrences of y can
be at most increased by two because there exist
at most two occurrences of x in t�, tr, and Φ.
Therefore, after the transformation x� yx, a cubic system of word equations
might become (y-)quartic system of word equations (at most four occurrences of
the variable y and at most three occurrences of any other variable).

Given a fresh variable v, we use Cv to denote the transformation from a single-
quartic system of word equations to a cubic system of equations.

Lemma 10. The relation TCv
performing the transformation Cv on an encoded

single-quartic system of equations is rational.

356 Y.-F. Chen et al.

To express solving a system of string constraints Φ in the terms of a (modified)
RMC, we first convert Φ (using Algorithm 2) to an equisatisfiable cubic sys-
tem Φ′. The satisfiability of a system of word equations Φ can be reduced to
a modified RMC problem (Ieqs

Φ , T vi,eqs
x � αx ∪ T vi,eqs

x � ε ,Deqs) instantiating Algorithm
1 with components given in Fig. 7.

For the modified RMC algorithm, we need to assume vi /∈ ΣX. We also need
to update Line 4 of Algorithm 1 to T vi := T vi

x � αx ∪ T vi
x � ε and Line 10 to

reachi+1 := T vi(reachi); X := X∪{vi}; to allow using a new variable vi in every
iteration. Rationality of T vi,eqs

x � αx and T vi,eqs
x � ε follows directly from Proposition 1.

Lemma 11. The modified Algorithm 1 instantiated with (Ieqs
Φ , T vi,eqs

x � αx ∪
T vi,eqs

x � ε ,Deqs) is sound if Φ is cubic.

Completeness. Since Nielsen transformation does not guarantee termination for
the general case, neither does our algorithm. Investigation of possible symbolic
encodings of complete algorithms, e.g. Makanin’s algorithm [34], is our future
work.

5 Handling a Boolean Combination of String Constraints

In this section, we will extend the procedure from handling a conjunction of word
equations into a procedure that handles their arbitrary Boolean combination.
The negation of word equations can be handled in the standard way. For instance,
we can use the approach in [4] to convert a negated word equation t� �= tr to the
string constraint

∨

c∈Σ

(t� = tr · cx ∨ t� · cx = tr) ∨
∨

c1,c2∈Σ,c1
=c2

(t� = x3c1x1 ∧ tr = x3c2x2). (7)

The first part of the constraint says that either t� is a strict prefix of tr or the
other way around. The second part says that t� and tr have a common prefix x3

and start to differ in the next symbols c1 and c2. For word equations connected
using ∧ and ∨, we apply distributive laws to obtain an equivalent formula in the
conjunctive normal form (CNF) whose size is at worst exponential to the size of
the original formula.

Let us now focus on how to express solving a string constraint Φ composed
of arbitrary Boolean combination of word equations using a (modified) RMC.
We start by removing inequalities in Φ using Eq. 7, then we convert the system
without inequalities into CNF, and, finally, apply the procedure in Lemma 9 to
convert the CNF formula to an equisatisfiable and cubic CNF Φ′. For deciding
satisfiability of Φ′ in the terms of RMC, both the transition relations and the
destination set remain the same as in Sect. 4.2. The only difference is the initial
configuration because the system is not a conjunction of terms any more but
rather a general formula in CNF. For this, we extend the definition of encode to
a clause c = (t1� = t1r ∨ . . . ∨ tn� = tnr) as encode(c) =

⋃
1≤j≤n encode(tj� , t

j
r). Then

the initial configuration for Φ′ is given as

Isc
Φ′ = encode(c1).

{(
#
#

)}
.

{(
#
#

)}
.encode(cm), (8)

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 357

where Φ′ is of the form Φ′ : c1 ∧ . . . ∧ cm and each clause ci is of the form
ci = (t1� = t1r ∨ . . . ∨ tni

� = tni
r). We obtain the following lemma directly from

Proposition 1.

Lemma 12. The initial set Isc
Φ′ is regular.

The transition relation and the destination set are the same as the ones in the
previous section, i.e., T vi,sc

x � αx = T vi,eqs
x � αx, T vi,sc

x � ε = T vi,eqs
x � ε , and Dsc = Deqs .

The soundness of our procedure for a Boolean combination of word equations is
summarized by the following lemma.

Lemma 13. Given a Boolean combination of word equations Φ, Algorithm 1
instantiated with (Isc

Φ′ , T vi,sc
x � αx ∪ T vi,sc

x � ε,Dsc) is sound.

Fig. 8. Automata accepting L

6 Implementation

We created a prototype Python tool called Retro, where we implemented the
symbolic procedure for solving systems of word equations. Retro implements
a modification of the RMC loop from Algorithm 1. In particular, instead of
standard transducers defined in Sect. 2, it uses the so-called finite-alphabet regis-
ter transducers (FRTs), which allow a more concise representation of a rational
relation.

Informally, an FRT is a register automaton (in the sense of [25]) where the
alphabet is finite. The finiteness of the alphabet implies that the expressive
power of FRTs coincides with the class of regular languages, but the advantage
of using FRTs is that they allow a more concise representation than FAs.

In particular, transducers (without registers) corresponding to the transform-
ers Tx � αx and Tx � ε contain branching at the beginning for each choice of x
and α. Especially in the case of huge alphabets, this yields huge transducers
(consider for instance the Unicode alphabet with over 1 million symbols). The
use of FRTs yields much smaller automata because the choice of x and α is
stored into registers and then processed symbolically. To illustrate the effect of
using registers, consider the following example.

Example 6. Consider the language L = {w ∈ Σ∗ | |w| ≥ 1 ∧ |w|w[1] ≤ 2 }.
Figure 8a shows an FA Aa accepting words starting with a and having at most
two occurrences of a (it corresponds to a single choice of the first symbol in L).

358 Y.-F. Chen et al.

We obtain the FA A for L as the union of all choices, i.e., A =
⋃

a∈Σ Aa (A has
1 + 2|Σ| states). On the other hand, Fig. 8b shows an FRT R accepting L with
just 3 states (for any alphabet size). ��

As another feature, Retro uses deterministic FAs (i.e., FAs having for each
state and each symbol at most one successor and having a single initial state) to
represent configurations in Algorithm 1. It also uses eager automata minimiza-
tion, since it has a big impact on the performance, especially on checking the
termination condition of the RMC algorithm, which is done by testing language
inclusion between the current configuration and all so-far processed configura-
tions.

7 Experimental Evaluation

We compared the performance of our approach (implemented in Retro) with
two current state-of-the-art SMT solvers that support the string theory: Z3 4.8.7
and CVC4 1.7.

The first set of benchmarks is Kepler22, obtained from [29]. Kepler22 con-
tains 600 hand-crafted string constraints composed of quadratic word equations
with length constraints. In Fig. 9, we give a cactus plot of the results of the solvers
on the Kepler22 benchmark set with the timeout of 20 s. The total numbers of
the solved benchmarks within the timeout were: 119 for Z3, 266 for CVC4, and
443 for Retro (out of which 179 could not be solved by CVC4). On this bench-
mark set, Retro can solve significantly more benchmarks than both Z3 and
CVC4.

Fig. 9. A cactus plot comparing Retro, CVC4, and Z3 on the Kepler22 benchmark

The other set of benchmarks that we tried is PyEx-Hard. Here we want
to see the potential of integrating Retro with DPLL(T)-based string solvers,
like Z3 or CVC4, as a specific string theory solver. The input of this component

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 359

Fig. 10. A cactus plot comparing the Virtual Best Solver with and without Retro on
the PyEx-Hard benchmark. We show ∼500 most difficult benchmarks (from 20,020).

is a conjunction of atomic string formulae (e.g., xy = zb ∧ z = ax) that is
a model of the Boolean structure of the top-level formula. The conjunction of
atomic string formulae is then, in several layers, processed by various string
theory solvers, which either add more conflict clauses or return a model. To
evaluate whether Retro is suitable to be used as “one of the layers” of Z3
or CVC4’s string solver, we analyzed the PyEx benchmarks [42] and extracted
from it 967 difficult instances that neither CVC4 nor Z3 could solve in 10 s.
From those instances, we obtained 20,020 conjunctions of word equations that
Z3’s DPLL(T) algorithm sent to its string theory solver when trying to solve
them. We call those 20,020 conjunctions of word equations PyEx-Hard. We
then evaluated the three solvers on PyEx-Hard with the timeout of 20 s. Out
of these, Z3 could not solve 3,232, CVC4 could not solve 188, and Retro could
not solve 3,099 instances.

Let us now closely look at the hard instances in the PyEx-Hard benchmark
set, in particular on the instances that either CVC4 or Z3 could not solve. These
benchmarks cannot be handled by the (several layers of) fast heuristics imple-
mented in CVC4 and Z3, which are sufficient to solve many benchmarks without
the need to start applying the case-split rule.1 The set contains the 3,232 bench-
marks that Z3 could not solve within 20 s. Out of these, CVC4 could not solve
188 benchmarks (CVC4 could solve every constraint that Z3 could solve), and
Retro could not solve 568 benchmarks. When we compared the solvers on the
examples that Z3 and CVC4 failed to solve, Retro could solve 2,664 examples
(82.4 %) out of those where Z3 failed and 111 examples (59.04 %) of those where
CVC4 failed. In Fig. 10, we give a cactus plot of the Virtual Best Solver on the
benchmarks with and without Retro. Given a set of solvers S, we use V BS(S)
to denote the solver that would be obtained by taking, for each benchmark, the

1 For instance, when Z3 receives the word equation xy = yax, it infers the length
constraint |x|+ |y| = |y|+1+ |x|, which implies unsatisfiability of the word equation
without the need to start applying the case-split rule at all.

360 Y.-F. Chen et al.

solver that is the fastest on the given benchmark. The graph shows that our
approach can significantly help solvers deal with hard equations.

Discussion. From the obtained results, we see that our approach works well
in hard cases, where the fast heuristics implemented in state-of-the-art solvers
are not sufficient to quickly discharge a formula, in particular when the
(un)satisfiability proof is complex. Our approach can exploit the symbolic rep-
resentation of the proof tree and use it to reduce the redundancy of performing
transformations. Note that we can still beat the heavily optimized Z3 and CVC4
written in C++ by a Python tool in those cases. We believe that implementing
our symbolic algorithm as a part of a state-of-the-art SMT solver would push
the applicability of string solving even further, especially for cases of string con-
straints with a complex structure, which need to solve multiple DPLL(T) queries
in order to establish the (un)satisfiability of a string formula.

8 Related Work

The study of solving string constraint traces back to 1946, when Quine [41]
showed that the first-order theory of word equations is undecidable. Makanin
achieved a milestone result in [34], where he showed that the class of quantifier-
free word equation is decidable. Since then, several works, e.g., [4,6,8,15,16,
19,20,32,35,39,40,43,44], consider the decidability and complexity of different
classes of string constraints. Efficient solving of satisfiability of string constraints
is a challenging problem. Moreover, decidability of the problem of satisfiability
of word equations combined with length constraints of the form |x| = |y| has
already been open for over 20 years [14].

The strong practical motivation led to the rise of several string constraint
solvers that concentrate on solving practical problem instances. The typical pro-
cedure implemented within DPLL(T)-based string solvers [3,5,9,16,24,45,46,52]
is to split the constraints into simpler sub-cases based on how the solutions
are aligned, combining with powerful techniques for Boolean reasoning to effi-
ciently explore the resulting exponentially-sized search space. The case-split rule
is usually performed explicitly. In contrast, our approach performs case-splits
symbolically.

A related topic is about automata-based string solvers for analyzing string-
manipulating programs. ABC [7] and Stranger [49] soundly over-approximates
string constraints using transducers [51]. The main difference of these approaches
to ours is that they use transducers to encode possible models (solutions) to the
string constraints, while we use automata and transducers to encode the string
constraint transformations.

Acknowledgment. We thank the anonymous reviewers for helpful comments on how
to improve the paper and Mohamed Faouzi Atig for discussing the topic. This work
has been partially supported by the Guangdong Science and Technology Department
(grant no. 2018B010107004), by the National Natural Science Foundation of China
(grant nos. 61761136011, 61532019, 61836005), the Czech Ministry of Education, Youth

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 361

and Sports project LL1908 of the ERC.CZ programme, the Czech Science Foundation
project 20-07487S, the FIT BUT internal project FIT-S-20-6427, and the project of
Ministry of Science and Technology, Taiwan (grant nos. 109-2628-E-001-001-MY3 and
106-2221-E-001-009-MY3).

References

1. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012)
2. Abdulla, P.A., et al.: Flatten and conquer: a framework for efficient analysis of

string constraints. In: PLDI, pp. 602–617 (2017)
3. Abdulla, P.A., et al.: Trau: SMT solver for string constraints. In: FMCAD, pp. 1–5

(2018)
4. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.

(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 10

5. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

6. Abdulla, P.A., Atig, M.F., Diep, B.P., Hoĺık, L., Jank̊u, P.: Chain-free string con-
straints. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 277–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3 16

7. Aydin, A., et al.: Parameterized model counting for string and numeric constraints.
In: SIGSOFT, pp. 400–410 (2018)

8. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. arXiv
preprint arXiv:1304.4150 (2013)

9. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

10. Berstel, J.: Transductions and context-free languages. Vieweg+Teubner Verlag
(1979)

11. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

12. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. STTT 14(2), 167–191 (2012)

13. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

14. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and
undecidable extensions of this theory. In: Mac Lane, S., Siefkes, D. (eds.) The
Collected Works of J. Richard Büchi, pp. 671–683. Springer, New York (1990).
https://doi.org/10.1007/978-1-4613-8928-6 37

15. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the ReplaceAll function. PACMPL 2(POPL), 3:1–3:29 (2018)

16. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. PACMPL
3(POPL), 49 (2019)

https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
http://arxiv.org/abs/1304.4150
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-1-4613-8928-6_37

362 Y.-F. Chen et al.

17. Diekert, V.: Makanin’s Algorithm, pp. 387–442 (2002)
18. Durnev, V.G., Zetkina, O.V.: On equations in free semigroups with certain con-

straints on their solutions. J. Math. Sci. 158(5), 671–676 (2009)
19. Ganesh, V., Berzish, M.: Undecidability of a theory of strings, linear arithmetic

over length, and string-number conversion. arXiv preprint arXiv:1605.09442 (2016)
20. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length

constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 21

21. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223 (2005)

22. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI, pp. 62–73 (2011)

23. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI (2008)

24. Hoĺık, L., Jank̊u, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4 (2018)

25. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)
26. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:

a solver for word equations over strings, regular expressions, and context-free gram-
mars. TOSEM 21(4), 25:1–25:28 (2012)

27. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

28. Kosovskii, N.K.: Properties of the solutions of equations in a free semigroup. J.
Math. Sci. 6(4), 361–367 (1976). https://doi.org/10.1007/BF01084074

29. Le, Q.L., He, M.: A decision procedure for string logic with quadratic equations,
regular expressions and length constraints. In: Ryu, S. (ed.) APLAS 2018. LNCS,
vol. 11275, pp. 350–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02768-1 19

30. Levi, F.W.: On semigroups. Bull. Calcutta Math. Soc. 36, 141–146 (1944)
31. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory

solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

32. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: POPL, pp. 123–136 (2016)

33. Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints,
counter systems, and Presburger arithmetic with divisibility. In: Lahiri, S.K.,
Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 352–369. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01090-4 21

34. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 145(2), 147–236 (1977)

35. Matiyasevich, Y.: Computation paradigms in light of Hilbert’s tenth problem. In:
Cooper, S.B., Lowe, B., Sorbi, A. (eds.) New computational paradigms, pp. 59–85.
Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5 4

36. Matiyasevich, Y.V.: A connection between systems of word and length equations
and Hilbert’s tenth problem. Zap. Nauchnykh Semin. POMI 8, 132–144 (1968)

37. Nielsen, J.: Die isomorphismen der allgemeinen, unendlichen Gruppe mit zwei
Erzeugenden. Mathematische Annalen 78(1), 385–397 (1917)

38. Osera, P.M.: Constraint-based type-directed program synthesis. In: TyDe, pp. 64–
76 (2019)

http://arxiv.org/abs/1605.09442
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/BF01084074
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-030-01090-4_21
https://doi.org/10.1007/978-0-387-68546-5_4

A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving 363

39. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In:
FOCS, pp. 495–500 (1999)

40. Plandowski, W.: An efficient algorithm for solving word equations. In: STOC, pp.
467–476 (2006)

41. Quine, W.V.: Concatenation as a basis for arithmetic. JSYML 11(4), 105–114
(1946)

42. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling
up DPLL(T) string solvers using context-dependent simplification. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 453–474. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63390-9 24

43. Robson, J.M., Diekert, V.: On quadratic word equations. In: Meinel, C., Tison, S.
(eds.) STACS 1999. LNCS, vol. 1563, pp. 217–226. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 20

44. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7 4

45. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in web applications. In: CCS, pp. 1232–1243 (2014)

46. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 218–
240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 12

47. Wang, H.-E., Tsai, T.-L., Lin, C.-H., Yu, F., Jiang, J.-H.R.: String analysis via
automata manipulation with logic circuit representation. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 241–260. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 13

48. Wang, Y., Zhou, M., Jiang, Y., Song, X., Gu, M., Sun, J.: A static analysis tool
with optimizations for reachability determination. In: ASE, pp. 925–930 (2017)

49. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 13

50. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. FMSD 44(1), 44–70 (2014). https://doi.org/
10.1007/s10703-013-0189-1

51. Yu, F., Shueh, C.Y., Lin, C.H., Chen, Y.F., Wang, B.Y., Bultan, T.: Optimal
sanitization synthesis for web application vulnerability repair. In: ISSTA, pp. 189–
200 (2016)

52. Zheng, Y., et al.: Z3str2: an efficient solver for strings, regular expressions,
and length constraints. FMSD 50(2–3), 249–288 (2017). https://doi.org/10.1007/
s10703-016-0263-6

https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1007/978-3-319-41528-4_12
https://doi.org/10.1007/978-3-319-41528-4_13
https://doi.org/10.1007/978-3-319-41528-4_13
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-016-0263-6
https://doi.org/10.1007/s10703-016-0263-6

	A Symbolic Algorithm for the Case-Split Rule in String Constraint Solving
	1 Introduction
	2 Preliminaries
	2.1 Nielsen Transformation
	2.2 Regular Model Checking

	3 Solving Word Equations Using RMC
	3.1 Nielsen Transformation as Word Operations
	3.2 Symbolic Algorithm for Word Equations
	3.3 Towards Symbolic Encoding
	3.4 Symbolic Encoding of Quadratic Equations into RMC

	4 Solving a System of Word Equations Using RMC
	4.1 Quadratic Case
	4.2 General Case

	5 Handling a Boolean Combination of String Constraints
	6 Implementation
	7 Experimental Evaluation
	8 Related Work
	References

