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a b s t r a c t 

A smart grid network is a part of critical infrastructure, and its interruption or blackout may cause fatal 

consequences on energy production, distribution, and eventually lives of people. Smart grid networks can 

be a target of cyber attacks coming from the outside or the inside of the network. Traditional smart grid 

protection includes firewalls and IDS/IPS devices that are usually deployed on edges of the network where 

they inspect incoming and outgoing traffic. This approach is adequate to cope with external threats. In 

case of internal threats caused by, for instance, the malware infecting the control station, it is not easy 

to detect malicious activity commonly masked as legitimate communication at the network edge. For the 

successful identification of cyber security attacks, two essential elements are necessary. 

The first is the visibility of the Industrial Control System (ICS) communication, which enables a smart 

grid operator to see real-time transmissions in the network. The second important part is an anomaly 

detection system that analyzes monitoring data and identifies possible cyber security attacks. This paper 

presents a novel system for monitoring ICS/SCADA protocols based on IP flows extended with application 

layer data obtained from ICS packet headers. The monitoring system provides an in-depth insight into ICS 

communication. By applying statistical-based methods or creating communication profiles using proba- 

bilistic automata, common security attacks, as well as unknown threats, can be identified. The proposed 

approach is demonstrated on IEC 60870-5-104 communication. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Industrial Control System (ICS) plays an essential role in moni-

oring and controlling industrial devices, processes and events. The

ain function of ICS is to gather real-time data from industrial

evices, realize device automation, and supervise the system [1] .

he ICS concept covers a variety of control systems including dis-

ributed control systems (DCS), supervisory control and data acqui-

ition (SCADA) system and others. 

ICS communication was originally designed for serial data links

hat were physically separated from external networks. Recently,

CS communication has been adopted to operate over Ethernet

ith the Internet Protocol (IP) and UDP/TCP transport. This solu-

ion opened possibility to interconnect ICS networks over wide-

rea networks (WANs) in order to provide remote control and on-

ine updates. 

Fig. 1 shows various industrial control protocols like MMS,

oose, Modbus, SV, or IEC 104 that operate within a smart grid

ubstation and interconnect the control system with Intelligent
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lectronic Devices (IEDs) and power equipment such as circuit

reakers, bay controllers, or relays. 

Interconnection of ICS systems with IP networks revealed se-

ious security flaws in industrial protocols design. ICS system is

ulnerable to cyber security threats as revealed by attacks against

kraine’s power grid in December 2015 [2] and 2016 [3,4] . The

CS system of Ukrainian power grid was infected by a malware in-

talled on operator’s control station without noticing it. The mal-

are called Industroyer by ESET or CrashOverride by Dragos, Inc.

ragos [5] masqueraded as a legitimate process and communicated

ith Remote Terminal Units (RTUs). At first, the malware scanned

he internal network for RTUs and learnt their addresses and func-

ions. Following that it tested ability to switch on and off RTU de-

ices. Since the malware was communicating inside the network,

t was unnoticed by an IDS system and firewall located at the edge

f the network. 

This case unveiled missing visibility of ICS communication

ithin the power grid as mentioned in Assante and Lee [6] . With-

ut advanced monitoring of ICS communication, it is not easy to

etect common cyber attacks like scanning, command injection,

ata spoofing, etc., when launched from the inside of the network.

Insufficiency of ICS network monitoring was highlighted in the

eport of European Union Agency for Network and Information Se-
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Fig. 1. SCADA communication in the substation. 
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curity (ENISA) [7] which states that without active network mon-

itoring, it is very difficult to detect suspicious activity, identify po-

tential threats, and quickly react to cyber attacks. NIST Guide to ICS

Security [8] recommends network segregation, application of fire-

wall rules, redundancy, etc. to secure ICS networks. However, these

techniques provides only limited security against internal cyber se-

curity attacks. In our approach, we propose a monitoring solution

that provides extended L7 visibility of ICS communication that can

be used for detection of both internal and external cyberattacks. 

The approach was inspired by IP networks where security mon-

itoring is well established. IP monitoring techniques include SNMP

monitoring [9] IP flow monitoring [10] , and system logging [11] .

These approaches can be applied to a certain extent also on ICS

systems. Since IP monitoring relies on IP layer, it cannot be easily

transferred to ICS protocols that run directly over link layer, e.g.,

Modbus or GOOSE. Due to the restricted hardware and firmware

of RTUs and IEDs, it is not easy to implement SNMP agents or Sys-

log clients on these devices. 

Feasible option for ICS networks is a passive flow monitoring

based on IPFIX protocol [12] . Flow monitoring system includes IP-

FIX probes that observe ICS traffic and create flow records ex-

tended with ICS application protocol data. The big advantage of

this solution is that probes can be deployed anywhere in the smart

grid network. They provide L7 visibility of ICS communication also

inside the network. Unlike IDS systems, flow monitoring probe

processes packet headers only which is fast and less demanding

comparing to the deep packet inspection (DPI) implemented in

IDS systems. The probe aggregates extracted header values into

flow records that are later sent to the collector. The IPFIX collec-

tor stores monitoring data from all probes. Collected data provides

a global view on the network communication in multiple points of

the network. The data can be further analyzed anomaly detection

methods and visualized on the dashboard. 

IPFIX standard supports flexible definition of monitoring infor-

mation using templates. For any ICS protocol we can defined a set

of headers that can be extracted from packets and transmitted to

the collector using IPFIX records. In case of IEC 104 communica-

tion, we can observe the cause of transmission (COT), ASDU type

or information object address, from GOOSE packets we can extract

control block reference, ID, or status number, etc. 

The proposed approach is demonstrated on monitoring of IEC

60870-5-104 (aka IEC 104) communication [13,14] . The paper de-

scribes how IEC 104 packets are processed by the probe and IEC

104 flow records created. We also show how to analyze flow data

using statistical-based approach which is able to identify majority
f common cyber security attacks described by NISTIR 8219 Report

15] as showed in the paper. 

Unlike common Internet traffic, ICS communication shows two

ypical features: stability and periodicity [16–18] . Based on this

eatures, ICS flow data can be used to create communication pro-

les. The paper shows how typical communication profile can be

escribed using probabilistic automata and used for anomaly de-

ection. 

.1. Structure of the text 

The paper is structured as follows. Section 2 gives an overview

f published work related to the monitoring and security of smart

rid communication. Section 3 describes a flow monitoring sys-

em for ICS communication, gives details about packet extraction

nd ICS flow record creation. It defines four levels of ICS visibility

epending on details extracted from ICS headers. The approach is

emonstrated on IEC 104 protocol. Section 4 reviews common se-

urity threats against ICS systems as described in NISTIR 8219 rec-

mmendation [15] . The section shows how selected threats can be

dentified in ICS flows. Section 5 presents how ICS communication

equences can be represented by probabilistic automata and used

or anomaly detection based on learnt communication profiles. The

ast section concludes this article. 

.2. Contribution 

The main contribution of this paper is an extension of IPFIX

onitoring system for ICS/SCADA protocols. ICS flow monitoring

rovides enhanced visibility of smart grid networks and creates

ata that can be used for common security incident detection as

escribed in Section 4 and Section 5 . 

This article is an extended version of original authors’ work pre-

ented at the 6th International Symposium for ICS & SCADA Cy-

er Security. This extended version adds implementation details

bout creating ICS flows and shows how it can be applied to any

CS/SCADA protocol. Since the whole monitoring system is based

n standardized IPFIX architecture, it is straightforward to incorpo-

ate flow monitoring to any Security Information and Event Man-

gement (SIEM) system with IPFIX support. Section 4 extends de-

cription of cyber security incidents in smart grid networks by

resenting typical security scenarios defined in NISTIR 8219 rec-

mmendation [15] . Section 5 brings a new unpublished work that

emonstrates how ICS communication profiles can be represented

y probabilistic automata. 

. Related work 

Protection of smart grid networks against cyber attacks has

een researched by many authors [19–22] . NIST Guide to ICS Se-

urity [8] presents a large overview of past attacks on ICS systems

ith recommendation how to secure ICS architecture using net-

ork segregation, firewall rules, NAT translation and other tech-

iques. 

Security of ICS/SCADA networks is often implemented by pro-

rietary IDS systems with deep-packet inspection (DPI) that an-

lyze selected ICS protocols. Generally, an IDS system parses ICS

ackets and extracts selected data from ICS protocol header and

ayload. The data is subject to further signature-based or behavior-

ased analysis. If a suspicious communication is detected, an alert

s risen and the traffic is filtered out. Real-time scanning and anal-

sis of ICS packets demand high processing power and fast mem-

ry. Each ICS protocol requires an ICS pre-processor (parser) to be

 part of an IDS system [23] . IDS systems are usually located at

he edge of ICS/SCADA networks. This limits protection to external

hreats only. The proposed IPFIX flow-based monitoring system can
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Fig. 2. IEC 104 topology. 
bserve communication both at the edge of the substation network

s well as in the inside of the network. 

Distributed monitoring system for protecting SCADA commu-

ication in power grid was proposed by Jarmakiewicz et al. [24] .

he authors deployed SCADA probes over the power grid network

hich observed IEC 104 and IEC 61850 communication. The probes

ad Snort and Bro software with SCADA protocol analysis installed.

hen a security incident was detected, the probe sent an alarm

o the SIEM system. In contrary to this system, the proposed ICS

ow monitoring system gathers data from IPFIX probes and stores

hem in the IPFIX collector where it can be analyzed using various

ethod. Detection does not depend on Bro or Snort rules but it

an be implemented using various anomaly detection methods. IDS

ystems for power grids based on Snort rules are also presented by

ang et al. [25] , Hong et al. [26] . Such systems can also implement

ulti-attribute analysis [27] . 

Barbosa et al. [28] propose flow-based monitoring for whitelist-

ng. Unlike our solution, their approach is based strictly on IP

ows. They observe packets and extract four properties to build a

ow: client address, server address, server-side port and transport

rotocol. During the learning phase, the system creates an initial

hite-list of legitimate flows. In detection phase, when a new flow

s detected that was previously not white-listed, an alarm is raised.

ur approach observes also L7 packet headers in addition to IP ad-

resses and ports which enhances visibility of ICS transmissions by

isplaying important details, e.g., ASDU types, GOOSE IDs, and also

rovides ICS-specific data for anomaly detection. 

Anomaly detection of smart grid communication mostly im-

lements rule-based methods as mentioned in the previous text.

here are also multiple works that observe ICS communication be-

avior like delays, periodicity, stability and other patterns. Such

ehavior-based IDS systems create communication profiles during

he learning phase by observing normal ICS traffic. In monitoring

r detection phase, behavior-based IDS systems compares passing

raffic with learnt profiles. If a new traffic does not match any

earnt profile, it is marked as anomalous and alarm is raised. The

roposed ICS flow monitoring may provide data for behavior-based

r statistical-based system, see Sections 4.1.2 and 5 . 

Anomaly detection systems may observe various communi-

ation features. Authors in Lin and Nadjm-Tehrani [29] observe

nter-arrival times of IEC 104 spontaneous events. Based on time

atterns, communication is classified into five previously defined

roups. Kleinmann and Wool [30] model Modbus traffic streams

sing Deterministic Finite Automata (DFA) with following charac-

eristics: a symbol is defined as a concatenation of message type,

unction code and address range, and a state is defined for each

essage in the periodic traffic pattern. During the learning phase,

he pattern length is revealed and DFA is built for each HMI-PCL

hannel. In the detection phase, traffic is monitored for each chan-

el using its DFA and proper events triggered. 

Caselli [31] models semantics of Modbus communication us-

ng discrete-time Markov chains (DTMC). He demonstrates his ap-

roach on a Modbus sequence which is defined as a time-ordered

ist of events where the event is a 3-tuple of transaction ID, op-

ration code and data. The sequence is represented by a state of

TMC where transitions model time relation. This approach is sim-

lar to probabilistic automata that we use for modelling IEC 104

ommunication, see Section 5 . 

Combination of rule-based anomaly detection and IP flow anal-

sis is described in Kwon et al. [21] where the authors use IP flow

tatistics like packet rate and packet size to classify traffic into

he four behavior characteristics in power equipment. Besides, they

bserve GOOSE communication and detects selected security inci-

ents using rule-based IDS. 

Martinelli et al. [32] describe SCADA communication using

imed automata. Attack vectors are represented by temporal logic
ormulae. Using employ model checking they verify if a property is

alid on the model. This is an interesting approach which is, how-

ver, not easy to implement for real-time communication. 

Statistical-based approach on IEC 61850 communication is pre-

ented by [33] . The authors extract features from GOOSE and MMS

essages and create statistical model created using mean, variance

nd standard deviation classified using support vector machine al-

orithm. Their approach can be also adopted to our flow monitor-

ng system, especially on the collector where anomaly detection

an be implemented using various methods. 

The article presents a novel flow-based monitoring system that

athers ICS flow data from monitoring probes using IPFIX proto-

ol. ICS flow data are later analyzed using statistical based ap-

roaches and probabilistic automata representing L7 communica-

ion between ICS devices. 

. Flow based monitoring of smart grid communication 

ICS communication in the smart grid includes industrial pro-

ocols like IEC 61850 GOOSE [34] , Modbus, IEC 60870-5-104 [13] ,

NP3, IEC 61850 MMS [35] , DLMS [36] and others.The protocols

ransmit control and status data from industrial processes run-

ing on RTUs or IEDs. Protocols like GOOSE and Modbus im-

lement publish-subscribe mechanism where an application (pub-

isher) writes the values into a local buffer that is periodically

ransmitted to subscribing agents using L2 multicast. ICS proto-

ols like IEC 104, DNP3, MMS or DLSM communicate using client-

erver model . In this model, controlled station (RTU slave) is mon-

tored or commanded by a master station. Controlling station (PC

ith SCADA system, RTU master) performs control of outstations.

CS client-server communication can be delivered in the monitor-

ng direction (from controlled station to the controlling station) or

n the control direction (RTU master sends commands toward the

TU slave), see Fig. 2 . 

Smart grid security requires awareness of active communication

n the network, e.g, what nodes are sending or receiving data, what

CS protocols are active in the network, what commands are is-

ued, how many packets were transmitted between two devices

ithin a given time window, etc. Traditional network monitoring

ystems provides visibility of network communication using SNMP

tatistics, syslog events or flow based records. This paper shows

ow flow based monitoring can be enhanced by ICS-specific meta

ata. 

.1. Architecture of ICS flow monitoring system 

Flow based monitoring system is composed of monitoring

robes that observe packets on the link, extract meta data from

assing flows and creates so called flow records that are sent to

he flow collector. Traditional IP flow is defined as a sequence of

P packets passing the observation point during a certain time in-

erval [10] . Packets belonging to a given flow have a set of com-

on properties. IP flow properties include source and destination
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Fig. 3. ICS flow monitoring system. 
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1 See https://www.fit.vut.cz/research/project/1101/.en [Dec 2019]. 
IP addresses, source and destination port numbers and the pro-

tocol type. An example of the IP flow is a HTTP request from a

client (identified by the src IP address and port) to a specific server

(identify by the dst IP address and port). For each flow the moni-

toring probe collects meta data, e.g., timestamp of the occurrence

of the first packet of the flow, the number of packets, the num-

ber of transmitted bytes, duration of the flow, etc. Meta data to-

gether with flow properties form a flow record . The probe creates

flow records of all flows that were transmitted over the link where

the probe is connected. The flow records are then deliver to the

IPFIX collector, see Fig. 3 . 

3.2. ICS Flow 

For ICS monitoring, we extend definition of IP flows by adding

property values extracted from ICS protocol headers. Let P be an

IP packet with a set of IP header fields, i.e. P = { p 1 , p 2 , . . . , p n } , T

be a transport layer (L4) protocol data unit (PDU) with L4 protocol

headers, i.e., T = { t 1 , t 2 , . . . , t m 

} , and A be an application layer (L7)

PDU with L7 headers, i.e., A = { a 1 , a 2 , . . . , a o } . We define flow prop-

erty Fprop as a subset of L3, L4 and L7 headers. The flow property

Fprop will be mapped to specific L3, L4, and L7 protocols, e.g., IP

protocol on Layer 3, TCP or UDP on Layer 4, and IEC 104 on L7. 

Fprop (ICS) ⊆ P (IP ) ∪ T (UDP/T CP ) ∪ A (ICS) (1)

For ICS protocols transmitted directly over the link layer, e.g.,

GOOSE or Modbus, the probe can skip L3 and L4 layer in the Fprop

or it can create virtual IP and TCP/UDP layers where, for example,

IPv6 link local addresses will be generated from MAC address as

recommended in RFC 4291 [37] . 

In case of IEC 104 protocol monitoring, L3 layer properties are

typically source IP, destination IP and protocol type, L4 layer prop-

erties include source and destination ports, and L7 properties of

IEC 104 may include APDU frame type, ASDU type, cause of trans-

mission (COT), number of information objects, origination address

(ORG) and ASDU address (COA). Thus, flow properties of IEC 104

can be expressed as follows: 

Fprop ( IEC 104 ) = { SrcIP , DstIP , IPpr ot , SrcP ort , DstP ort , APDU type , 

ASDU type , COT , Items , ORG , COA } (2)

Definition (1) is flexible in selection of protocol headers that

will be used for flow monitoring. This is important especially for L7

protocols where each protocol has different protocol structure and

protocol headers. Thus, Fprop will be mapped to any ICS protocol

similarly as shown in formula (2) . 

Let define ICS flow as a sequence of ICS packets passing the ob-

servation point during a certain time and having the same flow prop-

erty Fprop . ISC probe parses ICS packets, extracts selected header
alues and creates ICS flow records composed of these values.

or ICS monitoring, the ICS flow record is a basic set of data

btained during ICS traffic monitoring. The ICS flow record con-

ains Fprop data that identifies the flow and statistical data Fs-

at that describes behavior of the flow. Fstat set is computed by

he probe and includes start time of the flow, end time, number

f packets of the flow, total size of packets in the flow, etc., i.e.,

 stat = { t start , t end , packets, size, . . . } . Following that definitions, ICS

ow record Frec can be described as an union of ICS flow property

alues and statistical behavior of the flow. ICS flow record is then

apped to a specific ICS protocol, e.g., IEC 104, MMS, etc. 

 rec (ICS) = Fprop (ICS) ∪ F stat (3)

An example of IEC 104 flow record is in Fig. 4 . 

The Figure shows an IEC 104 flow composed of five packets. he

EC 104 flow record contains values from L3 layer (IP addresses), L4

ayer (ports) and L7 layer (selected IEC 104 headers). All these val-

es (properties) identify an IEC 104 flow. The flow record contains

roperty values plus statistical values related to the flow. The IEC

04 flow record is transmitted by IPFIX protocol to the IPFIX col-

ector where is stored. A set of flow records is then analyzed and

isualized through network management system. Technical details

bout creating IEC 104 flows are mentioned at [38] . 

Due to flexible definition of IPFIX flow record format, Frec ( ICS )

alues can be easily mapped into IPFIX flow records using IPFIX

emplates as defined in RFC 7011 [12] . For each ICS protocol, a

nique template with specific fields related to the protocol shall be

efined. For example, GOOSE template may include APPID, control

lock reference, data set or status number extracted from GOOSE

eader. 

ICS monitoring requires an ICS monitoring probe to implement

 ICS protocol parser for each supported protocol and definition

f an IPFIX template that maps Frec ( ICS ) fields into IPFIX record

ormat. Parsers for common ICS protocols as GOOSE, IEC-104, MMS

nd DLSM were implemented by the authors of this paper in frame

f research project IRONSTONE (2016–2019) and are available at

he project web site. 1 

.3. Collecting ICS flow data 

A big advantage of ISC flow-based monitoring is that ICS moni-

oring probes can be deployed anywhere in the smart grid network

s shown in Fig. 3 , thus providing monitoring data from overall

he network. The ICS-enabled monitoring probe passively observes

assing traffic. ICS flow records are transmitted via IPFIX protocol

o the IPFIX collector for further analysis and visualization. 

https://www.fit.vut.cz/research/project/1101/.en
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Fig. 4. Building an IEC 104 flow record from IEC 104 packets. 

Table 1 

Example IEC 104 flows (selected fields only). 
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Table 1 shows a raw format of IEC 104 flows extracted from

EC 104 communication. For space limit, not all flow items are

isplayed. Besides IP addresses and ports, IEC 104 flow record

ncludes APDU length (Len), frame format (Frame), ASDU type

Type), number of information objects (Items), cause of transmis-

ion (COT), originator address (ORG) and ASDU address (COA). 

Fields with nil value in first two rows indicate IEC 104 APDUs

ithout the ASDU payload, i.e., U-frames (frame type = 3). Only

-frames (frame type = 0) transmit ASDUs as showed in Fig. 4 . 

From the list of IEC 104 flows above, we can notice that there

s a controlling station with originator address ORG = 0 run-

ing on IP address 172.16.1.100. The third flow record describes

n I-frame (Frame = 0) that encapsulates ASDU data sent by a

ontrolling station with ORG = 2 to the controlled station with

SDU address 3. Type of this ASDU is 100 (interrogation com-

and) and cause of transmission (COT) is 6 (activation). The

ontrolled station responses with COT = 7 (activation confirma-

ion). Then we see packets transmitted in monitoring direction

rom station 172.16.1.1 with originator address ORG = 0 to station

72.16.1.100. TypeID = 1 means single point information ,
ypeID = 3 double point information , and typeID = 5

tep position information . The station sends monitoring

ata of active information objects with cause of transmission COT

 20 (interrogation). Value Items gives a number of information

bjects transmitted within the ASDU. 

o  
ICS flow records contain a list of active stations and commands

hat were exchanged. Having ICS flows enhances visibility in of ICS

ommunication in the smart grid. 

.4. Comparison of IP flows and ICS flows 

In this section we show benefits of ICS flows monitoring ap-

roach in comparison to traditional IP flows. The section discusses

hat levels of details can be obtained from ICS protocol headers

nd put into a flow record. Naturally, with the increased num-

er of details, more processing power and time is required from

he probe hardware. On the other hand, by reducing number of

CS headers processed by the probe, communication details will be

ost. The following part demonstrate how various levels of details

n ICS flow records impacts the visibility of ICS communication. 

The case will be demonstrated on IEC 104 traffic that was cap-

ured during the attack against the IED device. The attacker sent

ultiple IEC 104 activation commands in order to put a device

ut of order. The attack is expressed by repetition of ASDUs with

ause of transmission 6 (Activation), 7 (Activation Confirmation),

nd 10 (Activation Termination) and double command ASDU that

nvoked a switch on/off function on the target device. 

.4.1. IP flows 

As mentioned before, traditional IP flow monitoring focuses

nly on Layer 3 and Layer 4, e.g., IP addresses and ports. Table 2
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Table 2 

IP flows during the attack obtained by Silk. 

Table 3 

IP flows during the attack obtained by softflowd. 

Table 4 

IEC 104 flows during the attack. 
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3

shows IP flows related to the attack as obtained by the Silk Net-

Flow/IPFIX probe. 2 

Silk creates a unique IP flow for each ASDU packet without

parsing application data. By monitoring the attack, we may notice

intensive activity on the link using this approach but we cannot

determine ICS operations that were requested. 

Creating flows for each ASDU is not typical IP flow behavior.

The standard IP flow includes five key properties (srcIP, dstIP, sr-

cPort, dstPort, Protocol). Thus, the attack communication would

yield two IP flows only, see Table 3 . The result was obtained us-

ing softflowd probe. 3 

This example demonstrates limits of traditional IP flow moni-

toring which is not able to provide higher visibility of ICS commu-

nication and reveal ICS-specific attacks. 

3.4.2. ICS flows with standard ICS headers 

ICS flows monitoring adds selected L7 header values into the

flow records as described in Section 3.2 . Considering IEC 104 flows

with headers described in Fig. 4 , we obtain L7 monitoring data that

can reveal activity of the attacker. Table 4 with IEC 104 flows col-

lected during the attack shows a sending node with IP 172.16.1.100

that sends double command (type = 46) operation to the IEC de-

vice with address 3. This level of details does not provide informa-
2 See https://tools.netsa.cert.org/silk/ [May 2019]. 
3 See https://github.com/irino/softflowd [May 2019]. 

 

i  

p  

i  
ion which object on the device was requested, however, such ex-

ended data are valuable source of information for statistical-based

nomaly detection as described in Section 4.1 and behavior-based

nomaly detection as described in Section 5 . 

.4.3. ICS flows with extended headers 

ICS-enabled probe can also implement advanced ICS protocol

re-processing that extracts additional ICS headers from the pack-

ts. New headers extends a set of ICS flow record values Fprop . In

ase of IEC 104 packets, the probe adds the IOA address of an in-

ormation object that is involved in communication, see Table 5 . 

Pre-processing can go further, e.g., we can analyze IEC 104 in-

ormation elements in ASDUs and IEC 104 operations applied on

hem, see Table 6 . 

However, detailed pre-processing of packet headers requires

igher computational power on the probe, more fields in IPFIX

emplate transmitting ICS flows and also more space on the col-

ector to store monitoring data. Thus, it is necessary to find bal-

nce between the level of details obtained by ICS monitoring and

mplementation demands. 

.5. Visibility of smart grid communication 

As presented above, the proposed ICS flow monitoring system

s flexible because monitoring data can be extracted from any ICS

rotocol. A great advantage of this approach is that uses standard-

zed IPFIX protocol and IPFIX templates that allows a user to de-

https://tools.netsa.cert.org/silk/
https://github.com/irino/softflowd
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Table 5 

IEC 104 flows extended by IOA address. 

Table 6 

IEC 104 flows with information elements. 

Fig. 5. Levels of IEC 104 visibility. 
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ne its own IPFIX flow records. This means that ICS flow monitor-

ng can be incorporated into any SIEM system with NetFlow/IPFIX

upport. In addition, anomaly detection can be applied on histori-

al and current ICS flow data stored at the IPFIX collector. 

The level of visibility of ICS communication depends on im-

lementation of ICS pre-processor and operational requirements.

ig. 5 displays multiple levels of ICS flow monitoring for IEC 104

rotocol. 

As you can see, traditional IP flow monitoring offers only basic

tatistics about communication between two hosts on Layer 3 and

. This level does not provide sufficient visibility into ICS transmis-

ions, as demonstrated on scenario in Table 3 where we cannot

ee operations used during the attack. Nevertheless, traditional IP
ows provide useful data that may reveal a few types of cyber at-

acks, e.g., detection of a rogue device on the network, DoS attack,

etwork scanning, etc. However, without L7 information, we are

ot able to disclose details of the attack. 

By splitting the IP flow into ICS protocol-based flows as imple-

ented by Silk, see Table 2 , we can see detailed statistics about in-

ividual L7 packets without knowing what operation is requested,

hat objects are involved in communication, etc. The flows records

nclude Layer 3 and 4 headers only. No real ICS visibility is pro-

ided. 

The third level of ICS visibility requires Layer 7 processing of ICS

ackets by the monitoring probe. In case of IEC 104 ASDU pack-

ts, monitoring data includes APDU type, cause of transmission,
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Fig. 6. Recommended ICS header extracted from ICS protocols. 
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originator address, ASDU address and number of transmitted in-

formation objects. This level of visibility is sufficient for observing

daily communication of IEC 104 nodes. Using such data, we can

create statistical profiles describing communication of information

objects, detect IEC 104 resource scanning and provide rich input

data for behavior-based anomaly detection. 

The most detailed level of ICS visibility is obtained by process-

ing all embedded objects transmitted in ICS communication. In

case of IEC 104 communication, it means monitoring of informa-

tion objects and information elements transmitted in ASDU pack-

ets. Such ICS packet processing corresponds to full packet cap-

turing which processes both ICS packet header and payload. Full

packet processing requires high CPU performance and big memory,

it can be applied only on links with limited bandwidth (around

100 Mb/s) while ICS-enabled probes with level 3 monitoring can

process packets on links with tens of Gb/s. Our experiments show

that level 3 provides sufficient visibility of ICS communication for

most use cases. 

The ICS flow monitoring was also implemented in commercial

probes. 4 

4. Securing smart grid networks using ICS flows 

The imminence of ICS cyber security reflects the characteristics

of possible threats, which can range from script kiddies, disgrun-

tled employees, hacktivists, industrial espionage, terrorist or even

state-sponsored attacks. Instead of creating a comprehensive threat

model that considers all aspects related to these attacks we fo-

cus on threat categories as listed in the NISTIR 8219 report [15] .

The report aims to evaluation of available techniques for the iden-

tification of activities that can be a part of attack scheme. The

listed activities thus represent a representative sample of opera-

tions used by different types of attackers in the course of an at-

tack. Our goal is to demonstrate that flow-based security monitor-

ing and anomaly detection methods are able to identify such ac-

tivities that when reported as security events can lead to attack

detection. 

The presented approach is flexible and can be applied to any

ICS protocol by mapping specific protocol headers to ICS flow

record fields. Fig. 6 presents L7 headers of common ICS protocols
4 See https://www.flowmon.com/en/blog [March 2017] 

b  

s  

c  
hat can be subject of ICS flow monitoring. Recommended headers

ere chosen based on protocol behavior and application domain of

he protocol. 

The detection will be demonstrated on IEC 104 datasets using

imple statistical techniques. Each header transmits a value from

he set of values defined by the protocol standard. For example,

MS type defines 13 types of MMS packets, e.g., confirmed
equest (type = 0) that offers 86 services like getNameList ,
ead , write , etc. Using ICS flow monitoring, such values be-

ome visible to network administrator and can be analyzed using

nomaly detection system. 

.1. Statistical-based anomaly detection using flow data 

NIST report Securing Manufacturing Industrial Control Systems:

ehavioral Anomaly Detection [15] presents practical approaches for

trengthening cyber security in the manufacturing processes using

ehavioral anomaly detection (BAD) tools. This approach is also

seful for detecting anomalous behavior related, for example, to

quipment malfunctioning. Similar to our approach, the BAD re-

ort presents non-intrusive techniques to analyze industrial net-

ork communications. Passive monitoring by NIST tools is imple-

ented via port mirroring. The same solution is also used by ICS

ow monitoring probes that passively observe the traffic mirrored

o the probe. 

We argue that ICS flow monitoring data can be successfully

sed as source data for BAD classes as described in the NISTIR re-

ort. The list of BAD capabilities observed by NIST is summarized

n Table 7 . 

The report documents the use of BAD capabilities in two en-

ironments: a robotics-based manufacturing system and process

ontrol system in chemical industry. In the following text, we will

pply selected scenarios of the report on IEC 104 communication. 

.1.1. Rogue device detection 

The ICS flow data provides visibility that enables to detect

ogue devices on the network. Generally, ICS networks show signs

f stability in the number of connected devices as observed by Bar-

osa et al. [39] . Using flow based monitoring, active ICS nodes can

e learnt from TCP handshake [28] . This helps to determine which

tation is a client, which is a server and what type of communi-

ation is established. The authors apply whitelisting on flow data

https://www.flowmon.com/en/blog/network-visibility-in-the-scada-ics-environment
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Table 7 

Behavioral Anomaly Detection (BAD) classes [15] . 

Table 8 

Analyzing ASDU types of IEC 104 communication. 
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Fig. 7. IEC 104 node activation command sequence. 
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r

hich compares newly detected devices with the list of known de-

ices. This approach works well for ICS protocols over TCP but it

annot be applied to L2 protocols like GOOSE or Modbus. Our ap-

roach creates ICS flows also for ICS protocols directly encapsu-

ated in Ethernet, so it can be applied to protocols like GOOSE or

odbus. 

Table 8 shows how rogue devices can be easily identified using

CS flow data. 

Part A represents IP flow statistics aggregated by source IP ad-

ress and port. We can see three communicating nodes with-

ut being able to identify their roles. Part B is created from

CS flows. It reveals communication details through APDU type,

SDU type, and cause of transmission (COT). Flows with ASDU

ype 1 ( single point of information ), 2 ( double point
f information , 11 ( measured values ), or 70 ( end of
nitialization ) are initiated by the RTU slave. A flow with

SDU type 100 ( interrogation command ) is sent in control

irection, i.e., from the RTU master to the RTU slave. Thus, we can

ee also roles of devices. The anomaly detection system can learn

P addresses and roles of all communicating nodes in the system

uring the learning phase. When an unknown device or a device

ith an unknown role is detected using regular monitoring, an

larm is raised with details about the rogue device. 

.1.2. Abnormal network traffic 

ICS traffic exhibits long-term stability and periodicity

17,18,40] which can be expressed in terms of communication

atterns [29] . Any traffic with unusual behavior, e.g., an invalid

equence of commands, exceeding numbers of packets sent within

 given time window, or an atypical combination of values in

acket headers is considered as anomalous. 

An example of the communication pattern is depicted in Fig. 7 :

ctivation of an IEC 104 device. The pattern includes four ASDUs

xchanged between RTU master and slave. Such pattern is ex-

racted directly from ICS flow records as seen in Table 9 . 
Unlike traditional IP flows, we get sequences of ICS commands

xchanged between two ICS devices which can be used to cre-

te communication patterns. Patterns can be expressed by statis-

ical models as described below or by probabilistic automata as

xplained in Section 5 . 

Statistical techniques have been considered as a resource effi-

ient anomaly detection techniques (see, for instance, Proto et al.

41] and Caberera et al. [42] ). The statistical model is formally de-

ned as a pair ( S , P) , where: 

• S is the sample space of the model that comprises the set of all

possible tuples of features considered in the model, e.g., num-

ber of ICS packets exchanged between ICS devices, their sizes,

inter packet delay, etc. 

• P is a set of probability distributions on S . 

The statistical model is computed from the sample of ICS flows

epresenting normal behavior of the system as follows: 
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Table 9 

IEC 104 node activation. 

Fig. 8. Distribution of (a) Act and (b) ActTerm packets during the normal usage and the attack. 
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1. The flows are grouped in time windows of the predefined fixed

size, e.g., 60 s. 

2. For flows within the given window, features that are part of

the sample space of a model are extracted and added as a new

tuple to the set of samples. 

3. Step 2 is repeated until all windows are processed. 

4. Finally, the set of probability distributions P are determined

from all collected samples using a statistical inference method. 

In the demonstration scenario, we observe only the number of

specific ICS packets transmitted during a given time period, how-

ever, additional features can be also added as shown in Crotti et al.

[43] . For anomaly detection, different statistical techniques can be

applied. In this scenario, we consider a simple method that com-

putes a threshold to define the anomaly of traffic. The threshold

value is computed as follows: 

T = Q 3 + t · (Q 3 − Q 1 ) 

where Q i is the i th quartile of the set of samples. Constant t is

used to adjust the threshold value. Fig. 8 depicts a scenario where

an attacker manipulates with the IED node by sending IEC 104 Ac-

tivation and Activation Termination ASDUs. 

The blue line represents the number of Act commands (a), and

ActTerm commands (b), respectively, sent during 10 minutes of the

normal traffic. The green line depicts the number of Act and Act-

Term commands during the attack. We can see a peek where un-

expected number of Act commands was sent to the IED devices.

By comparing the number of sent Act ASDUs with the number

of received ActTerm ASDUs we notice that the number of Acts

and ActTerms messages is equal for normal communication which

means that all Act ASDUs are correctly confirmed by ActTerm AS-

DUs. However, during the attack, some Act commands are ignored

due to the high number of requests. The presented attack simu-

lates the behavior of the Industroyer malware [5] when an IED de-

vice was continuously switching on and off within a few seconds

interval. Using ICS flow monitoring we are able to detect such be-

havior. 
.1.3. Data exfiltration between ICS devices and file transfer 

Data exfiltration describes an attempt to download data from

n ICS system without proper authorization. Observing commu-

ication patterns, as mentioned above, can detect these types of

ttacks too. Fig. 9 shows long term communication between IEC

04 nodes within 3 days. We can see the stable number of ASDUs

ransmitted over the communication link. 

The green line represents ASDUs with COT = 3 (spontaneous

vent) sent in monitoring direction to the RTU master. The blue

ine depicts file transfers between two nodes (COT = 13, data trans-

ission). Using ICS flows, we can detect unauthorized data transfer

y observing ICS flows with COT = 13 and ASDU type 120–127 (file

ransfer). Without ICS visibility, we can only identify abundant ICS

ransmission without understanding its meaning. 

.1.4. Resource scanning 

Using ICS flow monitoring, we can detect not only new devices

ut also unknown or invalid resources. ICS device and port scan-

ing is usually a preparatory phase before the cyber attack when

he attacker tries to map network resources using various tools.

 typical device scanning attack on the IP layer is performed by

map tool. Some tools provide resource scanning on the L7 layer,

hich is more difficult to detect. 

Scanning attacks can be easily revealed by flow monitoring. IP

ows show a scanning attack based on the enumeration of IP ad-

resses and ports. Using ICS flows, we can detect resource scan-

ing on the L7 layer. Typically, the resource scanning attack yields

 large number of packets targeting one device within a short time

nd getting invalid responses. Such behavior can be detected using

tatistical patterns, as mentioned above. 

For example, by observing COT values in IEC 104 communica-

ion, see Table 10 , we can detect packets with unknown addresses

COT = 46), unknown information object (COT = 47) or unknown

OT type (COT = 45). 

All these packets indicate either resource scanning attack or

isconfiguration. In both cases, it is necessary to take action. 
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Fig. 9. IEC 104 communication. 

Table 10 

IEC 104 wrong data . 

Table 11 

Coverage of BAD capabilities by ICS monitoring . 
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.2. ICS flows and BAD capabilities 

As demonstrated above, ICS flows provide a valuable source of

onitoring data for the successful detection of common security

hreats. In comparison with network-based commercial tools like

yberXand and SecurityMatters SilentDefence, the monitoring is

ased on a standardized IPFIX framework with extended ICS proto-

ol headers extraction. Unlike IP flow monitoring, it gives more de-

ails about ICS communication, which are essential for cyber threat

etection. 

Since the system is based on passive monitoring of ICS traffic,

ome anomaly detection (BAD) capabilities as defined in NIST re-

ort [15] can be covered only partially or not at all. For example,

ow monitoring is not able to detect plain text password trans-

ission (BAD no. 1) in ICS protocols, however, it is able to detect

rotocols that may transmit plain passwords, e.g., SMB, telnet or

TP. ICS flow monitoring is not able to detect failed internet con-

ectivity (BAD no. 5) because it uses passive traffic observation

nd this capability requires active testing. Also, it is not able to

etect malware transmission since it does not process packet pay-

oad. However, the system can recognize unusual HTTP transfers

etween two devices, e.g., between an external site and the con-

rol station, which can be an indicator of malware activity. 
Table 11 shows how ICS flow monitoring and analysis covers

AD capabilities. 

Many BAD capabilities can be fully covered using ICS flow data

value yes ). In classes like plain text passwords detection or mal-

are detection, we cannot detect these threats from ICS flows but

t is possible to identify suspicious activity by analyzing L3 values

n flow records. There are also threats related to the hardware, e.g.,

AD capabilities no. 8 and 9, which cannot be detected by flow-

ased monitoring. 

. Anomaly detection using probabilistic automata 

This part presents a proof-of-concept model of profiling ICS

ommunication using probabilistic automata. The main idea be-

ind this concept comes from observation that machine to ma-

hine communication between two ICS devices or RTU master

nd slave is stable and communication patterns composed of ex-

hanged commands do not change very often. Thus, by observing

ypical communication sequences between two ICS devices we can

reate a finite state automaton (FSM) representing typical commu-

ication traces. FSM is augmented by probability value on the edge

hich says that several traces share a common sub-string. 
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Fig. 10. An exam ple of simple DPA. 
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This idea has been already explored in Wang et al. [44] where

the authors infer probabilistic time automaton (PTA) from network

communication traces. They apply the approach on SMTP protocol

and P2P file sharing. Similar approach was also used by Krueger

et al. [45] who create deterministic finite automata (DFA) for SIP,

DNS and FTP communication. 

5.1. Deterministic probabilistic automata (DPA) 

The probabilistic automaton is generalization of a non-

deterministic finite automaton (NFA) [46] with state and transition

probabilities. 

Definition 5.1. Probabilistic automaton (PA) is a tuple A =
(�, Q, δ, I , F ) where 

• � is an alphabet, 

• Q is a finite set of states, 

• δ : Q × � × Q → Q ∩ [0 , 1] is a (total) transition function as-

signing probabilities to each transition. If δ(q 1 , a, q 2 ) = 0 the

transition from q 1 to q 2 via symbol a is not actually there, 

• I : Q → Q ∩ [0 , 1] is a mapping assigning initial-state probabili-

ties, and 

• F : Q → Q ∩ [0 , 1] is a mapping assigning final-state probabili-

ties. 

Moreover the following conditions hold: 
∑ 

q ∈ Q 
I (q ) = 1 , 

and ∀ q ∈ Q , 

F (q ) + 

∑ 

a ∈ �,r∈ Q 
δ(q, a, r) = 1 . 

Definition 5.2. A PA A = (�, Q, δ, I , F ) is called deterministic, if 

• ∃ q ∈ Q . I (q ) = 1 (unique initial state), 

• ∀ q ∈ Q, ∀ a ∈ �. | { r | δ(q, a, r) > 0 } | = 1 (for each q ∈ Q and

a ∈ � there is a unique successor). 

Further we aim at the definition of the probability of a

word w . In the following, let A = (�, Q, δ, I , F ) be a PA and

w = a 1 . . . a n ∈ �∗ be a word. A trace π of the word w is a

sequence π = (q 0 , a 1 , q 1 ) . . . (q n −1 , a n , q n ) where δ(q i −1 , a i , q i ) > 0 ,

I (q 0 ) > 0 , and F (q n ) > 0 for 1 ≤ i ≤ n . (informally, it is a path

through automaton via w ending in a state with non-zero ac-

cepting probability). The set of all traces of a word w we de-

note as �w 

. Probability of the path π is then given as P A (π ) =
I (q 0 ) · δ(q 0 , a 1 , q 0 ) . . . δ(q n −1 , a n , q n ) · F (q n ) (we multiply probabili-

ties of transitions occurring in the sequence). Probability of a word

w is then given as P A (w ) = 

∑ 

π∈ �w 
P A (π ) (it is a sum of prob-

abilities of all traces for a given word). This is demonstrated on

Example 5.1 . 

Example 5.1. Consider a PA from Fig. 10 where states are labeled

with a name and the accepting probability, and transactions with a

symbol and the probability taking the transaction. Then probability

of accepting word abc is as follows: P A (abc) = 1 . 0 · 0 . 5 · 0 . 25 · 0 . 9 ·
0 . 1 + 1 . 0 · 0 . 5 · 0 . 4 · 0 . 3 · 0 . 1 . 
In our approach, DPAs represent communication sequences be-

ween two ICS devices obtained from ICS flows. Then, anomaly de-

ection has two phases: the learning phase where DPAs are cre-

ted from samples of ICS communication, and the detection phase

here unknown flow sequences are classified using DPAs. Both

hases are described in the following text. 

.2. Learning DPA using ICS flows 

The learning phase uses algorithm Alergia originally described

n Carrasco and Oncina [47] and de la Higuera [46] . The algorithm

akes as an input multiset of strings S and outputs a deterministic

robabilistic automaton corresponding to S , see Algorithm 1 . 

Algorithm 1: The algorithm Alergia. 

Input : A multiset of strings S, α > 0 , t 0 > 0 

Result : A DPA B 

1 A ← Fpt (S) ; 

2 Red ← { q ε } ; 
3 Blue ← { q a | a ∈ � ∩ Pref (S) } ; 
4 while Choose q b from Blue s.t. C(q b ) ≥ t 0 do 

5 if ∃ q r ∈ Red : Compatible (A , 
 ∇ 

, 
 � , α) then 

6 A ← � (A , 
 ∇ 

, 
 � ) ; 
7 else 

8 Red ← Red ∪ { q b } ; 
9 Blue ← { q ua | ua ∈ Pref (S) ∧ q u ∈ Red } \ Red ; 

10 return B = Normalize (A ) ; 

The algorithm proceeds in the following steps: 

1. Create a prefix tree with numbers of strings from S . The result-

ing DPA will be created by iterative merging of states of this

prefix tree. 

2. From the root state of the prefix tree iteratively search for “sim-

ilar” states. For this maintain two sets of states Red and Blue

set. The Blue set contains still unprocessed states of the prefix

tree. In each iteration take a blue state. If there is a “similar”

red state merge these two states together (and update values

on the transitions starting at the states). Finally update the Red

and Blue set. 

3. The automaton constructed in the previous steps contain an in-

teger on each transition. Normalize these values to obtain a DPA

with probabilities on transitions. 

Details about construction of the DPA, including computation

f a set of prefixes Pref (S) , merging states and normalization is

ritten in report [48] . 

For learning DPAs we use tool Treba [49] that implements

lgorithm Alergia [47] with three parameters: α that determines

hen to merge two states (the bigger the value, the less merges

re made), t 0 which determines the minimum number of strings

o a state that is being considered for merging, and prior(p) which

ives an amount of probability that is used to complete the result-

ng DPA transition function. 

To train DPAs for IEC 104 communication, we employed several

atasets with normal IEC 104 traffic, see Table 12 . Some dataset
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Fig. 11. DPA with ASDU and COT. 

Table 12 

IEC 104 datasets used for training. 

Dataset Packets ICS flows 

iec104 115 91 

10122018-104Mega-ioa (part 0) 9905 8876 

10122018-104Mega-ioa (part 1) 3011 206 

10122018-104Mega-ioa (part 2) 91,617 82,460 

13122018-mega104-ioa (part 0) 74,205 4798 

13122018-mega104-ioa (part 1) 62,040 55,772 

mega104-14-12-18-ioa 14,597 9657 

mega104-17-12-18-ioa 58,930 9657 

SCADA-normal-ioa 127 27 
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les are split into several parts so that each part contains only one

nd-to-end communication. 

From captured data, we obtain ICS flows. For each end-to-end

ata communication, we extract a multiset of training strings S

hich are in fact pairs (ASDU type, COT) representing abstrac-

ion of IEC 104 messages exchanged between these two entities. A

ime sequence of such pairs is based on timestamps and represents

 logical conversation between two nodes. Thus, the conversations

re strings of a language representing the communication. 

During learning phase we also tested combination of Alergia pa-

ameters α and t 0 where α ∈ {0.05, 0.1, 0.15, 0.2} and t 0 ∈ {2, 5,

0, 20, 50, 100, 200}.The parameter prior was set to 0.0. 

Resulting DPA automata contain states in form

state-id,accepting probability} and transitions in 

orm {symbol, probability} , where the symbol is a pair

 asduType , cot ). 
Graphical representation of a DPA built from IEC 104 communi-

ation extracted from iec104 dataset is depicted in Fig. 11 . 

In the automaton, we can see many spontaneous conversations

single messages with cot = 3). Beside the spontaneous conversa-

ions the model contains conversations transferring values. These

onversations begin with activation command ( cot = 6) and ends

ith termination activation ( cot = 10). The model represents the

ommunication learnt from IEC 104 flows extracted from iec104
ataset. 

Another DPA representing file transfer using IEC 104 messages

s depicted in Fig. 12 . 

From the automaton we can conclude that a half of all con-

ersations are spontaneous and a half were file transfer messages.

he file transfer begins with an initialization phase ( asduType
 122;120;122), followed by an arbitrary number of file seg-

ents ( asduType = 125), and finished by an acknowledgement

 asduType = 123;124). 

Results of other experiments with our datasets and details

bout creating DPAs are described in the technical report [48] . 

.3. Anomaly detection using DPA 

Here, we present our first results with detection of an at-

ack using IEC 104 communication using deterministic proba-

ilistic automata. We use the same scenario as described in

ection 4.1.2 where we applied statistical approach. Here, instead

f observing time delays and number of transmitted packets, we

ocus on conversations, i.e., sequences of transmitted messages

ent between IEC 104 nodes. 
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Fig. 12. DPA representing file transfer. 

Fig. 13. DPA with α = 0 ., t 0 = 1 . 
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m  
We demonstrate detection using two datasets

SCADA-normal-ioa and SCADA-attack1-ioa2 . The for-

mer contains normal traffic while the latter includes an attack.

The attack consists of repetition of initialization messages. The

anomaly detection is performed in the following steps: 

1. In the first step, we split ICS flows from

SCADA-attack1-ioa2 into a multiset of conversations

{ c 1 , . . . , c n } . 
2. We take a DPA A representing communication sequence of nor-

mal traffic learnt from SCADA-normal-ioa . 
3. For each c i where 1 ≤ i ≤ n we compute probability of the con-

versation c i wrt. A . In other words, we compute P A (c i ) . If the

probability is zero, the communication sequence c i ends in an

unknown state. It means unexpected communication sequence

which is anomaly. 

First we show an unsuccessful detection using overgeneralized

DPA. Consider a DPA obtained by learning algorithm Alergia with
Fig. 14. DPA with α
arameters α = 0 . 1 , t 0 = 1 using dataset SCADA-normal-ioa .
he automaton is show in Fig. 13 . 

If we apply the detection steps described above over this DPA

e did not get any anomaly. The reason is excessive generaliza-

ion (over-approximation) of the model, which is caused by a small

umber of conversations for learning combined with a small value

f t 0 . 

If we increase parameter t 0 = 2 , we obtain a new DPA with

ore states, see Fig. 14 . During detection phase, we receive an alert

ecause conversation {(46, 6)(46, 7)(46, 6)(46, 7)(46, 10)} has a

ero probability over this DPA. By further analysis we can see that

he conversation contains multiple initialization messages which is

ot a legitimate behavior learnt from the training dataset. 

We also provided experiments with other datasets. We used

he one third of each dataset for training and the two thirds for

etection. Since the datasets are regular and did not contain any

nusual communication sequences, no anomaly was found during

etection phase. We also tested various parameters. Selected resuls

re in Table 13 . The table show datasets used for learning (the first

hird of the file) and detection (two thirds of the file). Only the last

ow mentions a file used for detection while learning was done

sing SCADA-normal-ioa . The table also shows the number of

onversations used for training, the number of states of a DPA cre-

ted from samples and representing communication in the dataset,

nd the results of detection. We can see that even for higher num-

er of training strings the number of DPA states is acceptable and

oes not increases rapidly. This is because of stability of commu-

ication and predictability of exchanged communication sequences

etween IEC 104 nodes. 

Full results of our experiments are in Matoušek et al. [48] . 

.4. Discussion 

As said before, Section 5 extends the research of flow based

onitoring of ICS communication toward applications, namely
= 0 ., t 0 = 2 . 
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Table 13 

Results of learning and detection for pairs ( asduType , cot ). 

Dataset Parameters Conv. States Anomaly 

iec104 α = 0 . 2 , t 0 = 1 31 3 No 

10122018-104Mega-ioa α = 0 . 05 , t 0 = 200 6927 7 No 

10122018-104Mega-ioa (part 0) α = 0 . 1 , t 0 = 10 503 7 No 

13122018-mega104-ioa α = 0 . 1 , t 0 = 5 91,957 7 No 

13122018-mega104-ioa (part 1) α = 0 . 2 , t 0 = 200 3603 7 No 

mega104-14-12-18-ioa α = 0 . 1 , t 0 = 20 9125 7 No 

mega104-17-12-18-ioa α = 0 . 15 , t 0 = 200 37,661 2 No 

SCADA-normal-attack1 α = 0 . 1 , t 0 = 2 7 4 Yes 
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nomaly detection based on ICS sequences. Our primary interest

f this experiment was to find out if it is feasible to apply DPAs

or anomaly detection of ICS sequences and Alergia algorithm for

uilding DPA automatically. Preliminary results show that such re-

earch is promising and the number of states and edges is accept-

ble for describing ICS communication. 

It is obvious that learnt DPAs can be used for detecting anoma-

ies. For detection, a sequence of input messages obtained from

CS flow records is divided into conversations { c 1 , . . . , c n } . Then,

e compute probability for each conversation with respect to the

earnt DPA A which represents normal behavior. If probability

 A (c i ) is lower then threshold, it indicates anomaly or a new le-

itimate communication sequence that was not present in learning

ataset. Having a dataset describing ICS communication over the

etwork within a week, it should be sufficient to use it for learn-

ng since ICS communication shows stability and periodicity over

he week period [18] . 

As shown above, parameters α and t 0 also play important role

uring learning phase because they determine level of abstrac-

ion. If abstraction is high (lower values of the parameters), over-

pproximated DPA is built which also accepts anomalous conver-

ation. It depends on number of strings in a training dataset too.

n our future work we plan to find optimal values of these param-

ters depending on the characteristics of the dataset so that over-

pproximation is eliminated. 

. Conclusion 

Industrial systems are attractive targets for cyber criminals, ac-

ivists, professional hackers, disgruntled employees, etc. Critical in-

rastructure is among the most significant concerns for cyber war-

are/cyber defense organizations. Several vulnerabilities have been

xploited in ICS systems, demonstrating the need to improve the

ecurity of these critical systems. Many attacks were not cor-

ectly detected due to inadequate or wrongly implemented pro-

ection. To provide adequate network security monitoring in ICS

ystems, visibility into communication is an essential requirement.

lthough many ICS systems use IP-based networking, standard en-

erprise security systems cannot analyze ICS application protocols,

hus it is not able not to provide the required in-sight to net-

ork transactions. In this paper, we have introduced the concept

f the ICS monitoring system employing IPFIX flows extended with

pplication-level data extracted from ICS communication protocols.

he approach was demonstrated on the IEC 104 communication,

hich is the standard protocol suite for smart grid networks. The

roposed ICS flow monitoring is passive and does not affect net-

ork performance. 

Anomaly detection techniques can be integrated with the flow-

ased network monitoring system. Thanks to ICS transaction visi-

ility, it is possible to detect behavior anomaly detection cases as

pecified in the NISTIR 8219 report. We have demonstrated the

se of ICS flow data in statistical-based detection techniques in

ection 4 . In particular, we have provided examples of the detec-

ion of rogue devices, abnormal network traffic, data exfiltration,
nd resource scanning. The simple statistical model was created

ased on regular traffic and used for the detection of anomalies in

CS traffic. 

Another method for network profiling and anomaly detection

as been introduced in Section 5 . The network model is repre-

ented by deterministic probabilistic automata. Using ICS flow data,

e can observe L7 conversation and represent them by DPAs. Dur-

ng the learning phase, DPAs are created from conversations be-

ween pairs of communicating network hosts. In the detection

hase, we feed the automaton with messages of actual commu-

ication. The automaton yields the probability value, which gen-

rates an alarm if less than the defined threshold. Automata rep-

esent the refined model for a network communication profile by

bserving typical communication sequences between pairs of ICS

evices. As a machine to machine communication between two ICS

evices or RTU master and slave is stable and communication pat-

erns composed of exchanged commands do not change very often

his model is reliable and precise. 

We have demonstrated the advantages of applying flow based

etwork monitoring in the domain of ICS as one of the behav-

oral anomaly detection security methods that according to the

IST report represents the key element in a complex ICS secu-

ity solution. The future work focuses on a combination of dif-

erent anomaly detection techniques for ICS IPFIX data, including

resented statistical-based and automata-based methods. Further, 

e consider employing a machine learning approach for ICS traffic

attern classification. 
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