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ABSTRACT

The paper introduces basic graph notions and definitions to
describe few shortest-paths problems. Then, two standard
graph representations are described, and two classical algo-
rithms solving shortest-paths problems, namely Bellman-
Ford and Dijkstra algorithms, are explained. In the end,
new software tool supporting the explanation of graph al-
gorithms is presented.

1. INTRODUCTION AND MOTIVATION

From the theoretical point of view, a graph is a mathema-
tical structure representing a relation. In this introductory
paper, we focus on finite binary relations where both the gi-
ven set (so-called set of vertices) and the number of mem-
bers (so-called edges) are finite.

The finite variant has many practical advantages, such as
the possibility of intuitive graphical representation, which
is usually very beneficial, and we use it in this paper as
well. In the graphical representation, a vertex is represented
as a small circle or node with a label, and an edge is drawn
as a (labeled) connection or an arrow between two vertices.

Since a graph is an abstract mathematical notion, we can
represent various problems with it, and consequently, we
can use general properties and graph algorithms to solve
specific questions or problems. Of course, we must deeply
understand both the problem with its graph representation
and the graph algorithm(s) to apply in order to get the cor-
rect results.

In this paper, we focus on several variants of one problem—
finding the shortest path(s) in a given graph. Let us give two
brief motivation examples in transportation and optimiza-
tion. First, assume that we represent a map of cities and
roads between them with distances as a graph, and we want
to find the quickest/cheapest way from city A to city B. Se-
cond, more abstractly, assume we have a puzzle that can be
solved by the finite state-space exploration, and we want
to find an optimal solution, such as the minimal number of
steps (see (Demel, 2002)). In optimization problems, we
typically search for an optimal solution in a way that mi-
nimizes the cost based on the static state space exploration
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(e.g. knapsack problem, ...).

The rest of the paper is organized as follows. Section 2 gi-
ves all the basic terminology and definitions. In Section 3,
two the most common graph representations are discussed.
Then, Section 4 establishes the problems and introduces
several algorithms to solve them. Finally, Section 5 descri-
bes demonstrational software tool called Graph Simulator.
The presented algorithms can be studied in more details in
Chapters 22 through 25 in (Cormen et al., 2009).

2. PRELIMINARIES AND BASIC GRAPH DEFINITIONS

We assume that the reader is familiar with basic notions in
algebra, such as sets, sequences, and relations (see Sections
2.1 through 2.3 in (Meduna et al., 2013)).

2.1. Directed and Undirected Graphs

The section defines two kinds of graphs. In directed graphs,
the direction of every edge matters. On contrary, in undi-
rected graphs, we are not interested in the direction of an
edge, so it can be used to represent a symmetric binary re-
lation.

Definition 1. A directed graph or digraph, denoted as G,
is a pair G = (V, E) where V is a finite set of vertices
(nodes), and E C V2 is a set of edges (arrows, arcs).
From mathematical point of view, E is a binary relation
onV. An edge (u,u) is called a self-loop. If (u,v) is an
edge, we say that (u,v) is incident from u and incident to
v, that is v is adjacent fo u.

Figure 1. Directed graph Gy

To illustrate the set representation of a digraph, the graph
in Figure 1 can be written as G; = ({1,2,...,6}, {(1,2),
(2,2),(2,4), (2,5), (4,1), (4,5), (5,4), (6,3)}).

Definition 2. An undirected graph G is a pair G = (V, E)
where V and E has the same meaning as in a directed
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graph, but E C (‘2/), that is, E consists of unordered
pairs of vertices. Formally, an edge is a set {u,v}, where
u,v € V and u # v. As a convention, {u,v}, (u,v), and
(v, u) denote the same edge. That is, an undirected graph
is a digraph where the direction of edges does not matter
and self-loops are forbidden.

® ©

Figure 2. Undirected graph G

The graph in Figure 2 can be formally described as Go =
({1,2,...,6}, {{1,2}, {1,5}, {2,5}, {3,6}}).
Definition 3. A graph G = (V, E) together with a weight
Junction w: E — R is called a weighted graph.

2.2. Paths and Reachability

To describe some kind of tour through the nodes of a graph,
we use the notions of (simple) path, subpath, and cycle.
Definition 4. A path p = (vg,v1,v2,...,vk) is a con-
nected sequence of vertices where (vi_1,v;) € E for all
1=1,2,...,k k > 0. The length of p equals to the num-
ber of edges in p. Note that the length of a self-loop is 1.
If there is path p from u to u', we say that v’ is reachable
from u by p, denoted as u Lol A path is simple if all
vertices in the path are distinct. In other words, there is no
repetition of vertices in the sequence.

For example, in Figure 1, we can see (1,2,2,4,5,4) and
(4,1,2) as a path and a simple path, respectively. Notice
that we can give an example of a sequence of vertices such
as (2,1,4,5) that is not a path at all.

Definition 5. A subpath s of p = (vg,v1,v9,..
contiguous subsequence, s = (V;, Viy1,Viy2,...,0;), for
0<i<j<k Apathc= (vy,v1,va,...,0)isacycle, if
k > 1 and vy = vg. A closed simple path is called a simple
cycle. A graph containing no cycles is called acyclic.

For example, in Figure 1, (1,2,4,5,4,1), (1,2,4,1), and
(2,2) are a cycle, simple cycle, and self-loop, respectively.
In undirected graphs, we usually assume that a cycle have
to contain at least three distinct vertices. For instance in
G, (3,6, 3) is not considered to be a cycle, but (5, 1,2) is
a simple cycle.

Definition 6. A graph G' = (V', E’) is a subgraph of G, if
V' C Vand E' C E. An undirected graph is connected if
every pair of vertices is connected by a path. A connected,
acyclic, undirected graph is a tree.

E|=|V|-1.

L Ug)isa

Observe that, for a single tree,

2.3. Time and Space Complexity

In order to roughly analyze time and space complexity of
the algorithms and graph representations, respectively, we

assume that a step is a sequence of primitive actions in
the computational environment that takes always almost
the same amount of time, and, in analogy, a cell is able
to store some primitive value in the computational environ-
ment. For instance, in a computer, an 32-bit integer can be
stored in one cell and assigned to some variable in one step.
Since the notion of a step is really rough, a constant number
of assignments can be understood as one step as well.

3. GRAPH REPRESENTATIONS

In this section, we show two ways of a graph representa-
tion: (1) Adjacency-list and (2) Adjacency-matrix repre-
sentation. Hereafter, let G = (V, E) be a graph, n = |V/|,
and m = |E|. We call a graph to be sparse if m is signifi-
cantly lower than n? (written as m < n?); otherwise, it is
dense. For simplification, we assume that there is a linear
order on the set of vertices, so the vertices can be straight-
forwardly denoted by a consecutive list of integers, such as
V={1,2,...,n}.

3.1. Adjacency-list representation

A graph G = (V, E) is represented as an array Adj[1...n]
with n lists, where for each vertex u € V, the correspon-
ding list is unsorted and contains all vertices adjacent to u,
so Adj[u] stores all vertices v such that (u,v) € E.

This representation is effective for sparse graphs, and its
space complexity depends linearly on the number of verti-
ces and edges. Every edge is represented by a vertex in the
list referenced from some Adj[w € V; that is, the sum of
lengths of all lists of neighbors from Adj is m. In addition,
the array Adj has size linearly dependent on the number of
vertices; even for an isolated graph (no edges), we need n
storage cells in the array. In total, the space complexity is
about m + n cells.

In order to represent a weighted graph, we extend the ele-
ments stored in every adjacency list. For every (u,v) € E,
we store in Adj[u]-list a structure containing two items: (1)
vertex v and (2) value of w(u, v).

As a conclusion, notice that adjacency-list is beneficial for
sparse graphs in terms of space, but it takes linear time to
find whether some given edge (u,v) belongs to the given
graph as the answer requires to search of the whole unsor-
ted list Adj[u] with length up to n elements. For instance,
in G5 and its adjacency-list representation in Figure 4, we
can see that Adj[3]-list contains adjacent vertices 6 and 5,
so the check whether (3,5) € E takes about 3 steps (1
step to access index 3 of Adj, and 2 steps to go through the
linked-list until we reach vertex 5).

3.2. Adjacency-matrix representation

Let G = (V, E) be a graph and assume V' = {1,2,...,n}.
Adjacency matrix A = (a;;) is a matrix of size n x n such

that
1 if(i,j) € E,
Qi3 = 0

otherwise.
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Figure 3. Directed graph G'3

1| =2 ~4/
27ﬁ5/
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Figure 4. Adjacency-list representation of G5

The main advantage of this representation is that we can get
a quick answer whether two given vertices are connected by
an edge in just one step. For instance, given the adjacency
matrix for G5 in Figure 5, we can quickly see that A[4, 2]
is1,s0(4,2) € E.

QN N AW

Sooocog—
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SO~ =g W
—_ OO~ OO

Figure 5. Adjacency-matrix representation of G's

Since we always store the whole matrix in this representa-
tion, we need n? cells to represent a graph with n vertices.
Note that it does not matter how many edges the graph has
because we store yes/no information for every possibility
of an edge in comparison to the adjacency-list represen-
tation where only existing edges are stored. Therefore, the
adjacency-matrix representation is more effective for dense
graphs where the number of edges m is close to n2.

The transpose matrix of A = (a;;) is a matrix AT = (ag;-),
where az; = a;;. Observe that if adjacency matrix A re-
presents an undirected graph, then A = A”. That is, an
adjacency matrix is symmetric along its main diagonal, as
you can see for example in Figure 7 with adjacency ma-
trix for graph G4 (see Figure 6). Hence, it is enough to
store just one half of A. Note that if self-loops are for-
bidden, the main diagonal of adjacency matrix is made by
zeros only. Let G = (V, E) be a weighted graph, then we
can combine the adjacency-matrix representation and the

e

Figure 6. Undirected graph G4
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Figure 7. Adjacency-matrix representation of G4

information about the weight of each edge.

Qs = w(i,j) if (i,7) € E,
777 ] NIL otherwise,

where NIL is a special value, mostly 0 or oo, that is needed
to represent that this edge is not in the represented graph.

Example 7. Let deg_(u) and deg, (u) be the number of
edges incident from v and incident to u, respectively. Given
a vertex x and a digraph represented by the adjacency-list
or adjacency-matrix representation, respectively, how long
does it take to compute degrees deg_ (z) and degy (x)?

Solution. See the algorithms to compute degy for a given
vertex in Figures 8 and 9. Obviously, the time complex-
ity of the first algorithm depends linearly on the number of
edges in the whole graph. On the other hand, the time com-
plexity of the second solution is only dependent linearly on
the number of vertices which is usually lower (especially
for dense graphs).

IN-DEGREE-LISTS(Adj, x)
1 deg+ 0

2 foreachvertexu € V

3 do for each vertex v € Adj[u]

4 doifv =x

5 then deg < deg +1
6 returndeg

Figure 8. A procedure to find deg (z) in G represented by
an adjacency list, Adj.

Example 8. The transpose of a directed graph G = (V, E)
is the graph GT = (V, ET), where ET = {(v,u) € V x
V: (u,v) € E}. Thus, GT is G with all its edges reversed.
Describe an efficient algorithm for computing G from G
for the adjacency-list representation of G. Analyze the time
complexity of your algorithm.

Hint. Inspire yourselfin IN-DEGREE-LISTS procedure wh-
ere you can see how to traverse all edges of the graph in the
adjacency-list representation (see Figure 8).
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IN-DEGREE-MATRIX (A, x)

1 deg<0

2 fori<1ton

3 do deg «+ deg + Ali, x]
4 return deg

Figure 9. A procedure to find degy (x) using adjacency-
matrix representation, A.

4. SHORTEST PATHS

In this section, we first define notion of the shortest path
between two given vertices and its weight (or cost). Then,
several variants of the problem are discussed with deeper
focus on the single-source shortest-paths problem. Before
we explain algorithms solving the given problem, we des-
cribe how the shortest paths from a single source into all
other vertices can be effectively represented.

4.1. Definition

Given weighted directed graph G = (V, E) and weight
function w : E — R. The weight (or cost) of path p =
<Uo, Vg U],C> is

w(p) = Z w(vi—1,v;)

=1

The shortest-path weight from u to v is

5(u, v) = min{w(p) : u < v} if some u ~ v exists
’ 00 otherwise

A shortest path from u to v is any path p from u to v with
w(p) = 0(u, v).

Observe that there can be several shortest paths between u
and v or even none if v is not reachable from u.

4.2. Variants

To be complete, there are two kinds of the shortest paths
problems. First, when some starting vertex s is given, and
only paths outgoing from s are examined. Second, we are
looking for a shortest path, but between vertices that are not
known yet, so we compute the shortest paths for all pairs of
vertices.

The most common problem is to find a shortest path from
vertex s into some vertex ¢ (so-called single-pair shortest-
path problem). Since, during this kind of search, we also
find shortest paths into all other reachable vertices, we pre-
ferably discuss a generalized variant called the single-sour-
ce shortest-paths problem. If you are solving a problem
how close all other vertices are to the given target vertex
(so-called single-destination shortest-paths problem), try
to reverse the direction of each edge and then apply an al-
gorithm for the single-source shortest-paths problem. Of
course, do not forget to revert the direction of edges in the
result as well. Finally, in the all-pairs shortest-paths pro-
blem, we can apply a single-source shortest-paths problem
algorithm for every vertex and join the results, but the chal-

lenge is to do it faster.

4.3. Single-Source Shortest-Paths Problem

The very basic idea of the problem decomposition is based
on Lemma 9 stating that if we find shortest subpath, we can
use it as a part of a shortest path.

4.3.1. Subpaths of Shortest Paths

Lemma 9. Let G = (V, E) be directed graph with weight
Sfunctionw : E — R. Letp = (v, va, . ..,vy) be a shortest
path from vy to vy. Forany 1 < i < j <k, let p;; =
(Vi, Vi1, . .. ,v;) be the subpath of p from v; to v;. Then,
Dij is a shortest path from v; to v;.

P1i DPij Pjk
Proof. Decompose p as v1 ~ v; ~% v; ~~ vy, where

w(p) = w(pii) + w(pij) + w(pjx). Assume that there is
p;; from v; to v; with w(p};) < w(pi;). Then,
P1i T’/u Pjk
V1~ Uy v U v U
where w(p1;) + w(p;j) + w(pjr) < w(p). That is a con-
tradiction. O

Negative-weight cycles. If G contains no negative-weight
cycles reachable from source s, s € V, then for allv € V,
d(s,v) remains well defined (even if negative). If G con-
tains a negative-weight cycle reachable from s, ¢ is not well
defined since the following algorithms endlessly repeat tra-
verse of the negative-weight cycle in order to decrease the
total weight of the path. If there is a negative-weight cycle
on some path from s to v, we define d(s,v) = —o0.

Note that even if we consider a graph with negative-weight
cycle, there is always some shortest simple path that does
not visit any vertex repeatedly. The problem of most algo-
rithms for searching a shortest path is that they do really
just search a path without being simple, so the revisiting of
some vertices is possible and it is not checked to preserve
effectiveness.

4.3.2. Representing Shortest Paths

Let G = (V, E) be a graph and 7 is an array of size of n
cells. Foreach v € V, w[v] is set to a predecessor of v; that
is, a vertex or NIL. If w[v] = w # NIL, then (u,v) € E.
We define predecessor subgraph G, = (V, E.) induced
by 7 as follows.

Ve={veV:nv] #NIL}U{s}

E. = {(z[v],v) € E:v e (Vp —{s})}

After a searching algorithm (see Sections 4.3.4 and 4.3.5) is
finished, G is a shortest-paths tree rooted at s containing
shortest paths from s to all other reachable vertices. Note
that 7 [v] = NIL means there is no predecessor of v such as
v is not reachable from s or v is a root of the predecessor
subgraph.
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PRINT-PATH(G, s,v)
1 ifo=s

2 then prints

3 elseif 7r[v] = NIL

4 then print “No path from ” s “ to ” v “!”
5 else PRINT-PATH(G, s, 7t[v])

6 print v

Figure 10. Recursive procedure to print the shortest path
stored in an array 7.

To print the path from s to v stored in 7, use recursive pro-
cedure PRINT-PATH(G, s, v) (see Figure 10).

Figure 11. Shortest paths of G5 from source vertex s. The
label of each node is in the form v/d(s, v).

Let us note that to save space in the arguments of the pro-
cedures in this paper, some data are passed using global
variables; namely, d and 7 arrays are global array available
in any procedure.

Example 10. In Figure 11, we can see one possibility of
G according to ©[s,t,x,y, z] = [NIL, s, s,t,y] using the
red highlighting of edges.

Let us illustrate how to print a shortest path from s to x
in G5 from m by the execution of PRINT-PATH(G?5, s, x).
Since w[x] = t, we execute PRINT-PATH(GS5, s,t) and, in
analogy, for w[t] = s, we execute PRINT-PATH(G}, s, )
which prints vertex s and finishes the recursive execution
of PRINT-PATH(GS, s, ). Then, t is printed in PRINT-
PATH(GS, s, t), and, finally, PRINT-PATH(GS5, s, x) prints
x, so we get stx describing (s,t,x) as a shortest path
from s to x.

Try to find another m that could represent another shor-
test paths in G5 and step through the execution of PRINT-
PATH(GS, s, x) to see another shortest path from s to .

4.3.3. Basic Algorithm Components

In both algorithms discussed in this paper, we need the
same initialization of 7 and d array (see Figure 12) and
the improvement of d-value for a vertex is done by the re-
laxation procedure (see Figure 13).

As already describe in Section 4.3.2, 7-array represents se-
arched and found shortest paths from source vertex s. In
addition, d-array stores the estimations of the distance of
each vertex from s. In the beginning, we do not know

INITIALIZE-SINGLE-SOURCE(G, s)
1 foreachvertexv € V

2 do d[v] + o0
3 7t[v] < NIL
4 dfs]«+ 0

Figure 12. Common initialization of 7 and d arrays.

RELAX(u, v, w)

1 ifdv] > d[u] + w(u,v)

2 thend[v] < d[u] +w(u,v)
3 nt[v] «+ u

Figure 13. Relaxing the given edge according to w.

which vertices are reachable from s, so we set d[v] to co
and the predecessor 7r[v] to NIL. As s is trivially reachable
from itself, set d[s] to 0. Considering the time complexity
of the initialization, we just do some constant number of
steps for each vertex, so it is n steps in total.

The basic action repeatedly performed in both introduced
algorithms is the relaxation (see Figure 13). This proce-
dure checks the given edge (u,v) and the current distance
estimation in d-array and if the estimation for v can be im-
proved (decreased), both d[v] and 7[v] are updated so that
the new path estimation uses subpath s ~~» u followed by
edge (u,v). All actions in the procedure are primitive, so
they can be made in constant time.

4.3.4. Bellman-Ford Algorithm

The first algorithm is general enough to handle any weigh-
ted graph. For the given graph G = (V, E), weight func-
tion w, and source vertex s € V, the algorithm fills d and
m arrays. If G contains negative-weight cycles reachable
from s, it returns FALSE; otherwise, we get TRUE and 7
contains the shortest paths from s (see Figure 14).

BELLMAN-FORD(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G,s)
2 fori<1ton—1

3 do for each edge (u,v) € E

4 do RELAX(u, v, w)

5 foreach edge (1,v) € E

6 do if d[v] > d[u] +w(u,v)

7 then return FALSE

8 return TRUE

Figure 14. Bellman-Ford Algorithm

To describe the basic principle, we need to realize that a
shortest path p = (vg, v1, va, . .., vg) can be found by pick-
ing the right edge one by one. That is, if we can guess the
right order of edges in p, we can construct it just in k steps
by taking (vg,v1) to RELAX procedure to get (vg,v1) as
a shortest subpath of p. Then, taking (v, v2) to RELAX
procedure to get {vg,v1, v2) as a one-edge longer shortest
subpath of p, and so on. Unfortunately, we are not able to
do such magic guessing in an arbitrary graph', so we ap-

'We are able to do that in an acyclic graph where we establish topological
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ply a brute-force approach in Bellman-Ford algorithm (see
Lines 2-4 in Figure 14).

In more detail, we take any sorting of edges from E such as
e = ((ug,u}), (ug,uhy), ..., (um,ul,)). For instance, we
can take a sorting given by a traversal of all edges, such as
in Lines 2 and 3 in Figure 8. If we are relaxing all edges of
G in sorting e, we do (n — 1) -m calls of RELAX procedure
on edges in the following order (the list has (n — 1) rows
of sorting e)

(ur,uy),  (ug,uh), .o, (Vo,v1)seens  (Um,ul,),
(U1,U/1), (’U,Q,U/Q), ey (1]171)2), ey (umyuf/m,)’
(ulvull)’ (uQvu/Q)’ (umvu;n)

Now, you can see that apart from many potentially useless
relaxations we guarantee that edges of p are relaxed in the
right order. In the first row we relax (vo, v1), in the second
row (v1,vs), and so on. Note that (v, v9) can be in front of
(vo, v1) in e. Then, since every simple path in a graph has
at most n — 1 edges (as a simple path is a special variant of
a tree; see Definition 6), we can assume that every shortest
path in a graph without negative-weight cycle has at most
n — 1 edges, therefore n — 1 iterations over all edges is
enough. Observe that also shortest paths to other vertices
(not just vy, ) are found since the correct order of relaxations
occurs for paths s ~~ v’ as well in the above (n — 1) - m
relaxations.

To be more precise, if there occurs no change of d and 7 in
one entire iteration, then we can skip the rest of iterations.
On the other hand, if a relaxation of some edge is possible
at Lines 5-7, it means we are able to improve some shortest
path which implies that some negative-weight cycle is rea-
chable from s in G. In that case, the algorithm just returns
FALSE without any further problem analysis; otherwise, it
returns TRUE.

Time Complexity. Obviously, the initialization on Line 1
takes n steps. Lines 2-4 are performed (n — 1)-times and
each iteration takes m steps. Lines 5-7 take also m steps.
In total, the algorithm does roughly m - n steps.

Example 11. Given Gg in Figure 15, let us demonstrate in
the following table how Bellman-Ford algorithm computes
the shortest paths from source vertex s. For every vertex
v €V, there is a column with d[v]/m[v]-values in its cells.
The first row describes the situation after the initialization,
(i 4+ 1)-th row describes the situation when ith iteration
over all edges is done. Each iteration relaxes the edges in
the order (t,), (t,y). (t,2), (z,t), (y.2). (y,2). (z,),
(2,5, (5,1), (5,9).

s | ¢ | @ | 3y | = |
init || O/NIL | co/NIL | 0co/NIL | oco/NIL | 0o/NIL
1 0/NIL 6/s 0o /NIL 7/s 00/NIL
2 0/NIL 6/s 4/y 7/s 2/t
3 0/NIL 2/x 4/y 7/s 2/t
4 0/NIL 2/x 4/y 7/s -2/t

sorting in (n + m) steps. Then, we do the relaxation of all nodes in
the topological order, which is, in fact, the right order to get the shortest
paths. See Section 24.2 in (Cormen et. al, 2009).

Figure 15. Weighted directed graph G§ to illustrate proces-
sing by Bellman-Ford Algorithm.

It it easy to see that in the additional iteration no changes
occur, so Bellman-Ford algorithm returns TRUE.

4.3.5. Dijkstra Algorithm

Dijkstra algorithm requires weighted graph without nega-
tive edges on its input. For the given graph G = (V, E)
represented by adjacency list Adj, weight function w such
that for each (u,v) € E, w(u,v) > 0, and source vertex
s € V, the algorithm computes and fills d and 7 arrays
(see Figure 16). The presented variant uses a special ab-
stract data type called min-priority queue to store vertices
waiting for processing. Min-priority queue works like a
classical queue but the vertices with the lowest d-value are
dequeued (pull out) with the priority from the queue using
EXTRACT-MIN operation.

DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G,s)
2 ENQUEUE-ALL(Q,V,s)
3 whileQ #®
do u +EXTRACT-MIN(Q)
for each vertex v € Adj[u]
do RELAX(u,v, w)

N U1 >

Figure 16. Dijkstra Algorithm

Using auxiliary procedure ENQUEUE-ALL, we initialize
min-priority queue () and we enqueue (put) all vertices into
@ one by one starting with s. Then, the algorithm iterates
while we have some vertices in (). We always take a ver-
tex with the lowest d-value from () into variable u and on
Lines 5-6 we try to relax all edges incident from .

Notice several properties of the algorithm: (1) since in the
beginning only s has non-infinite priority, it will be always
the first vertex to be dequeue in the following while-cycle;
(2) after we dequeue vertex wu, it is considered to be finished
so its distance estimation d[u] is, in fact, equal to d(s,u)
(the shortest distance of u from s) hereafter and u is never
enqueued again.

Considering G, after application of Dijkstra algorithm,
we get the shortest paths from s as highlighted in Figure
11. If you study the development of d-array, you will see
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Figure 17. Weighted directed graph G’ to illustrate proces-
sing by Dijkstra Algorithm.

that, for each v € V, after the initialization of d[v] to oo,
there occurs at most one change of d[v] such that dv] =
d(s,v). Therefore, to illustrate the algorithm more didacti-
cally, consider the following example.

Example 12. Consider G in Figure 17 and examine the
computation of Dijkstra algorithm with G as its input to
find the shortest paths from source vertex s. To describe the
processing, we write down d and  arrays in the following
table. The first row describes the state after initialization.
The following rows of the table describes the state after an
iteration with some u taken from min-priority queue as the
vertex with the smallest d-value. The gray cells cannot be
changed anymore, and they denote that the vertex label-
ling the corresponding column is already removed from the
queue.

s t T Y z
init 0/NIL | 0o/NIL | oco/NIL | 0o/NIL | oo/NIL
u<s || O/NIL 10/s | oco/NIL 5/s 00/NIL
u<y || 0/NIL 8/y 14/y 5/s 7/y
u<z || O/NIL 8/y 13/z 5/s 7/y
u<t || 0/NIL 8/y 9/t 5/s 7]y
u< 2z || 0/NIL 8/y 9/t 5/s 7]y

To understand the algorithm in more depth, try to modify
the weights of edges of G such that there will be some
negative-weight edges (but not cycle) such that Dijkstra al-
gorithm produces incorrect results.

Time Complexity. The analysis depends on the way of im-
plementation of min-priority queue used by Dijkstra algo-
rithm. First, consider simple and intuitive implementation
of min-priority queue using unsorted array where the de-
crease of the priority of the given vertex is very simple and
possible in constant number of steps. On the other hand,
finding the min-priority vertex in EXTRACT-MIN operation
takes up to n steps since we need to go through the whole
array and check it vertex by vertex. Then, in Dijkstra algo-
rithm, Line 1 takes n steps and Line 2 as well. We iterate
n-times and in each iteration, we need to do EXTRACT-
MIN and some number of relaxations. Since we do the
relaxation for every edge exactly once, we can aggregate
all the steps in the whole loop as n? + m. For a simple
graph, m < n2, we can disregard m in n? + m and we
can also disregard linear time complexity of Lines 1-2 to
get quadratic time complexity with respect to the number
of vertices; that is n? steps.

Second, if we implement min-priority queue using heaps,
we can get better time complexity but the code complex-
ity increases. For sparse graphs, we get the rough time
complexity m - log n using binary heap or even better n -
log n + m for Fibonacci heap. Let us point out that in heap
implementation, we need to change also Line 2 in RELAX
procedure, because the decrease of a priority stored in d[v]
is non-primitive step since we need to change the storage
of vertices in the heap that models the min-priority queue.
The discussion of this implementation is beyond the focus
of this introductory paper.

As you can see, in comparison to Bellman-Ford algorithm,
we can perform Dijkstra algorithm significantly faster, but,
in general, we cannot work with negative-weight edges.

Example 13 (Measuring-cup Problem). Assume that we
have a 1-litre cup and a 3-litre cup. We can tap/fill a cup
from a wine barrel, we can pour from one cup to another
as much as possible without spilling, and we can empty a
cup completely. How to measure 2 litres?

3

Figure 18. Graph G; representing Measuring-cup problem
for 1-litre and 3-litre cup. The edges that model wine tap-
ping/filling, emptying, and pouring are blue, red, and black,
respectively.

We can represent the problem by a directed graph G; =
(V;, E}) (see Figure 18). Each vertex represents the amou-
nt of wine in each cup and edges represent the changes of
this amount according to the actions described above. If
we assume that all actions take the same amount of effort,
we can consider unit weights, that is, for all u,v € Vj,
w(u,v) = 1, then, we can use Dijkstra algorithm to find
the shortest paths from (0,0) in order to see how to reach
(0,2) as the target state. Then, we find the shortest path

p: (0,0) = (0,3) - (1,2) — (0,2)

People who love wine are unhappy with the result since
we spilled one litre of wine in the last edge of p, so we
can change weights of red edges (ones that empty a cup) to
|E;|. In fact, it is enough to define the weight as in Figure
18, where each edge denotes a time to pour or spill the wine
that depends on its amount. The next search of the shortest
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path finds more suitable solution

P (0,0) = (1,0) = (0,1) = (1,1) == (0,2)

To give more demanding challenge, assume we have 3-litre
cup and 5-litre cup. Is it possible to measure 4 litres?

Of course, do Dijkstra or even Bellman-Ford algorithm for
bigger graphs such as G; would be very lengthy and error-
prone. Therefore, it is very useful to have some software
tool to experiment with the algorithms.

5. DEMONSTRATIONAL TOOL

There is a new graphical software tool called Graph Simu-
lator that allows to play with the discussed algorithms. The
application with graphical user interface (see Figure 19)
was implemented by Jakub Varadinek and Otto Michalicka
in Java programming language. The user interface is in En-
glish or Czech. The application works in two modes: (1)
the graph editing and (2) the algorithm simulation.

During the graph editing, the middle-mouse-button click
can add new vertex and double click on the label of the
vertex allows us to change it. By clicking on a vertex and
then another vertex, we can create a directed edge. By the
double click on the label of an edge, we can edit the weight
of the edge. In the side window, we can see the adjacency-
list representation of the graph. If some algorithms require
to pick up some vertex (for instance, source vertex), we can
select a vertex by clicking on it and use menu Edit and item
Set Selected. Of course, it is possible to save the graph or
load another one from an external file.

In order to start a simulation, select the algorithm in menu
Simulation to set the application into the simulation mode
when new window will pop up. Here, you will see the
graph (uneditable), the algorithm, the simulation buttons,
and the content of used variables. Using simulation but-
tons, you can go one step back in the simulation, stop the
simulation, start/pause the simulation, and step forward in
the simulation. You can also place breakpoints in the al-
gorithms by clicking the line number and then, the simula-
tion pauses when it reaches this line. In addition, you can
choose the speed of the simulation using the slider.

The application supports several graph algorithms working
with the adjacency-list representation:

e Breadth-First Search (BFS)

e Depth-First Search (DFS)

e Topological Sorting

e Finding of strongly-connected components (SCC)
e Bellman-Ford Algorithm

e Dijkstra Algorithm

Download at http://www.fit.vutbr.cz/~krivka/graphsim

6. CONCLUSION

Obviously, this paper only introduces two classical algo-
rithms for finding a shortest path in the given graph. If you
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Figure 19. Graph Simulator - the demonstration tool for
basic graph algorithms

are interested, continue your study in Part IV of (Cormen et
al., 2009) where you can find more detailed discussion of
these algorithms and additional algorithms such as Floyd-
Waschall algorithm for all-pairs shortest-paths problem or
linear time algorithm for single-source shortest-paths pro-
blem in acyclic graphs. If you are more interested in single-
pair shortest-path problem, focus on A* algorithm.
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