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Abstract—Most design automation methods developed for
approximate computing evaluate candidate solutions by applying
a set of input vectors and measuring the error of the output
vectors with respect to an exact solution. This approach is not,
however, applicable when approximating complex combinational
or sequential circuits since the error is not computed precisely
enough. This paper surveys various methods of formal verifi-
cation that could be extended for purposes of determining the
error of approximation more precisely and formulates this task
through a notion of formal relaxed equivalence checking.

I. INTRODUCTION

In recent years, a new research field—approximate com-
puting—was established to investigate how computer systems
can be made better—more energy efficient, faster, and less
complex—by relaxing the requirement that they are exactly
correct. Approximate computing exploits the fact that some
applications are inherently error resilient. Errors are not
recognizable because human perception capabilities are lim-
ited (e.g., in multimedia applications), no golden solution is
available for validation of the results (e.g., in data mining
applications), or users are willing to accept some inaccuracies
(e.g., when the battery of a mobile phone is almost depleted,
but at least some basic functionality is still requested).

Therefore, the error (accuracy of computations) can be used
as a design metric and traded for area on a chip, delay, through-
put, or power consumption. Taking approximate computing
closer to mainstream adoption requires a deeper understanding
of inherent application resilience across a broader range of ap-
plications. After analyzing many applications, Chippa et al. [1]
reported that about 83 % of runtime is spent in computations
that can be approximated.

One way to reduce energy consumption by approximations
is to allow timing errors. For example, turning down circuit
voltage (at the expense of causing arithmetic errors every
once in a while) or reducing the refresh rate of DRAM chips
(at the expense of generating a few unwanted bit flips) are two
possible approximation techniques. Another approximation
technique is functional approximation. The idea of functional
approximation is to implement a slightly different function
to the original one provided that the error is acceptable
and the power consumption or other system parameters are
reduced adequately. The current literature describes various
approximation methodologies. Two scenarios are dominating:

1) Ad hoc methods employed for approximation of a (sin-
gle) particular component. For example, see the ap-
proaches proposed to approximate multipliers [2],
adders [3], and median-outputting circuits [4].

2) Design automation methods developed for approxima-
tion of a class of problems (for example, circuit approx-
imation methods SALSA [5], SASIMI [6], and ABA-
CUS [7], as well as software approximation methods
Chisel [8] and EnerJ [9]).

In the first scenario, a lot of knowledge about a particular
system and its typical utilization can be incorporated into the
approximation method. It is, however, difficult to apply the
method for approximation of other systems.

In the second scenario, the approximations are performed
using the same procedure for all problem instances of a given
class. Approximate implementations showing different com-
promises between considered system parameters are generated
and presented to the user, whose responsibility is to choose
the most suitable approximate solution for a given application.

We will deal with the second scenario in this paper. All de-
sign automation methods based on functional approximations
have to address two crucial issues:

• How to obtain useful approximations of the original
implementation.

• How to assess the quality of the obtained approximations.

A functional approximation is typically obtained by
a heuristic procedure that modifies the original, accurate (hard-
ware or software) implementation. This heuristic procedure is
repeated iteratively in order to improve the current approxi-
mate implementation in the subsequent steps. In each iteration,
it is necessary to evaluate to what extent a given approximation
satisfies functional and non-functional requirements (area,
power consumption, etc.) of the specification. In some cases,
any approximation satisfies functional requirements because
the approximation is intentionally constructed with an error
acceptable by the specification. This is, however, not typical in
practice, where candidate approximations can show arbitrary
errors and hence each approximate solution has to be evaluated
to determine its functionality. The functionality is expressed
using one or several error metrics such as the average error,
error rate, and maximum error. After determining the error,
non-functional properties of candidate approximations are also
evaluated.



As the approximation heuristics typically work in many
iterations, it is essential to quickly evaluate the quality of
obtained approximations. Currently, the evaluation of the can-
didate approximations is usually done by applying a training
data set and measuring the error (e.g., when image processing
components are approximated). This approach is, however,
not applicable in situations in which a complex entity has
to be approximated and only a negligible error is acceptable
(e.g., when a 32-bit adder is requested to correctly perform
addition for 99.9 % of input combinations) because the training
set needs to be too large (e.g., 230 vectors).

Hence, there is currently a clear need to come up with
a new approach to the problem of evaluating the quality of
approximate complex digital systems (showing combinational
as well as sequential behavior). Apart from a need of new
suitable distance metrics, the crucial problem is to quickly
calculate the distance between a candidate approximation and
the exact implementation for complex problem instances. This
problem will be called relaxed equivalence checking in the
following, stressing the fact that the considered systems will
be checked to be equal up to some bound w.r.t. a suitably
chosen distance metric. For implementing relaxed equivalence
checking, we propose building on advanced methods of formal
verification.

The objective of this paper is to identify promising meth-
ods allowing one to implement fast and efficient relaxed
equivalence checking algorithms, building on currently exist-
ing methods developed for (standard) equivalence checking
and available approximation methodologies. Such algorithms
would be very useful in approximation methods based on
search algorithms.

The rest of the paper is organized as follows. Section II
briefly surveys relevant methodologies and applications of
approximate computing. Section III is devoted to relevant
principles of formal verification. In Section IV, possible
approaches to relaxed equivalence checking are discussed.
Examples are introduced in Section V and conclusions are
given in Section VI.

II. APPROXIMATE COMPUTING

In approximate computing, the requirement on functional
equivalence of the specification and implementation can be
relaxed in order to not only reduce the power consumption
but also accelerate computations or minimize the on-chip area.
The concept has been developed in different ways and at
various levels of the computing stack as discussed in the
survey paper [11] and summarized below.
• Ad hoc approximations in hardware. Examples of approx-

imate solutions include arithmetic circuits [2], [3], image
processing components [2], pipeline circuits [12], fault
tolerant circuits [13], or median circuits [4].

• Design automation methods in hardware design. Sev-
eral design automation methods have been proposed
to approximate hardware components. They are based
on a heuristic procedure modifying the original cir-
cuit. Examples include: SALSA [5], MACACO [14],

Fig. 1. The number of results for “approximate computing” by Google Scholar
(November 2015).

ASLAN[15] (for sequential circuits), SASIMI [6], [7],
and genetic programming-based methods [16].

• Software approximation and programming languages
supporting approximate computing. Artificial neural net-
works were proposed in [17] to approximate general-
purpose code written in an imperative language. In the
Chisel project, reliability- and accuracy-aware optimiza-
tions of computational kernels are performed by means
of integer linear programming (ILP) and intended for
approximate hardware platforms [8]. EnerJ [9] is an
extension to Java that adds approximate data types and
operations. Axilog is a set of language annotations that
provide the necessary syntax and semantics for approxi-
mate hardware design and reuse in Verilog [18].

• Specialized processors supporting approximate comput-
ing. An integrated HW/SW approach to approximate
computing has been developed in [19].

The field of approximate computing is at an early stage of
development, but a growing number of papers dealing with this
topic indicates a very active research community (Fig. 1). An
established design methodology is missing. Suitable bench-
marking schemes have not been developed yet, which has,
for example, the consequence that results of one paper are
never compared with competitive approximate design methods
presented in other papers!

III. FORMAL VERIFICATION

The task of comparing various aspects of the behaviour of
different kinds of systems is crucial in the area of formal
verification. The comparison can have the form of a top-
level verification task as in the case of systems equivalence
checking, or it can also be performed as one of many steps
in the process of formal verification. The latter happens, e.g.,
within the so-called fixpoint checks, which are applied when
iteratively computing the set of reachable states represented
in some symbolic way. The fixpoint checks are used to see
whether a newly computed set (represented symbolically) is
bigger—i.e., contains some new reachable configurations—
or equal to the previously computed one. This way, one can
determine whether the state space exploration can be stopped
or whether it has to continue.



In many cases, the objects to be compared in both of the
above scenarios have the form of various kinds of logical
formulae or automata—either given directly or derived from
some source description of the considered systems (often
using various heuristic techniques to cope with the involved
state space explosion problem [20]). In the case of formulae,
the comparison then boils down to checking their logical
equivalence or entailment, while for the case of automata,
it leads to checking their language equivalence or language
inclusion.

A. Checking logical equivalence or entailment

In the area of efficient checking of equivalence or entailment
in various logical fragments, a lot of progress has been
achieved in the past years. This includes, for instance, the use
of binary decision diagrams (BDDs) for compact representa-
tion and manipulation of propositional formulae [21]. Further,
the recently quickly advancing technology of testing satis-
fiability of propositional formulae—the so-called SAT solv-
ing [22]—has been introduced. This technology allows one to
efficiently check implications or equivalences of propositional
formulae in many practical cases. For dealing with decidable
first-order theories, one can then exploit the technology of SMT
solving [23], which has also been advancing rapidly in recent
years. Moreover, various efficient decision (or semi-decision)
procedures or automated theorem provers have been proposed
even for higher-order and/or undecidable logics or logical
theories [24]. Furthermore, apart from SAT/SMT-solvers and
other decision procedures, one can also use various constraint
solvers from the domain of constraint programming [25].

B. Checking language equivalence or inclusion

The problem of checking language equivalence or inclu-
sion is particularly difficult for various non-deterministic au-
tomata, regardless of whether they are used to accept finite
or infinite words or trees (indeed, the inclusion problem is
PSPACE-complete for words and EXPTIME-complete for
trees). The reason is that non-deterministic automata cannot
be easily complemented, which would reduce the inclusion
problem to checking emptiness of the intersection of one of
the original automata with the complement of the other. At the
same time, non-deterministic automata do not only naturally
arise within various iterative formal verification tasks [26], but
they can be advantageous even for direct implementation in
hardware [27] (their approximation is therefore an interesting
topic itself).

A lot of effort has recently been invested into developing
methods for efficient checking of equivalence or inclusion on
non-deterministic automata. As a result, a number of new
techniques based on the so-called antichains [28], [29] or
bisimulations up to congruence [30] have emerged. Another
obstacle when comparing languages of automata is dealing
with automata over infinite alphabets, i.e., automata accepting
words or trees whose symbols can be joined with data from
some unbounded domain (such as the domain of integer or
real numbers). This area, where the development has not been

so extensive so far, has recently been targeted in a method
that combines antichains, state-of-the-art techniques for deal-
ing with data in formal verification, counter-example guided
abstraction refinement, and Craig interpolation [31].

IV. TOWARDS CHECKING RELAXED EQUIVALENCE

Most formal verification approaches that build on testing
exact equivalence, inclusion, or entailment are not directly
extendable for relaxed equivalence checking. We believe,
however, that the ideas behind efficient testing of exact equiv-
alence/inclusion can serve as a basis for developing efficient
methods for checking relaxed equivalence.

Moreover, we believe that these techniques can be extended
to cope with various notions of relaxed equivalence suitable for
search-based approximations, which themselves are still to be
developed. For instance, in the case of combinational circuits,
generic notions such as Hamming distance or various kinds
of numerical distance, as well as application-specific relaxed
equivalences (such as allowing the output bit vectors of two
circuits to differ for the same input vectors only at the positions
where the reference circuit outputs zero, which is useful in
some fault-tolerant applications) have to be considered.

A. Relevant previous approaches

Instead of exact equivalence or inclusion, some works from
the area of formal verification consider various notions of
simulation relations [20]. These notions are, however, not
directly applicable for the use in the context of approximate
computing because they basically check whether one system is
a refinement of another, not that one of the systems implements
the other up to some number of errors. Nevertheless, suitable
simulation relations could be used as an auxiliary tool to make
the needed relaxed comparisons more efficient as in [29], [30].

A kind of relaxed equivalence checking that is closer to
our aims appeared in [32], where a search method based
on genetic programming was applied for evolution of mutual
exclusion protocols. In this work, candidate solutions were
compared through a number of temporal formulae describing
desired properties of the target protocol. For each of these
formulae, model checking was used to distinguish 4 quality
levels ranging from “all executions are bad”, over “a bad
execution can/cannot be extended to a good one” to “all
executions are good”. This approach is, however, quite rough
and rather specialised for the domain of reactive systems with
a specification in the form of temporal formulae.

A form of relaxed equivalence checking appears in the
work [33], which considers the repair problem for finite
automata. The problem asks, given a pair of finite automata,
what is their maximum edit distance, i.e., the number of
edits needed to perform on a word from the language of
one automaton to be in the language of the other automaton.
This problem has also been studied in the context of weighted
automata [34]. These works are, however, mostly complexity-
theoretic ones not aiming at truly efficient algorithms to be
used for the problem (e.g., when computing the distance of
two automata, all possible bounds of some polynomial size are



checked in [33], with each of the tests being PSPACE-hard).
Moreover, the works consider just a single distance metric.
It would be interesting to investigate other possible distance
metrics as well (measuring, e.g., the average number of needed
edits, compare the particular alphabet symbols in a finer way,
not just whether they are the same or not, etc.).

As for checking relaxed equivalence of Boolean functions,
one promising approach seems to be to compute the Ham-
ming distance of the functions, i.e., the number of Boolean
assignments that are models of one of the formulae but not
of the other. This can be reduced to the problem of counting
the models of the Boolean formula obtained from the two
functions using XOR, i.e., to the so-called #SAT problem
(which is a well-known #P-complete problem). This should
enable a use of the so-called #SAT-solvers [35].

An orthogonal direction to checking relaxed equivalence is
approximation of exact equivalence. In the context of search
heuristics, methods that quickly give a good fitness approxima-
tion are often preferred to slower exact ones. For propositional
formulae, there has been proposed an approximation algorithm
for the #SAT problem in [36]. An approximation of testing
equivalence of finite automata appeared in the context of
their learning using the probabilistically approximately cor-
rect (PAC) approach [37]. In this setting, language equiva-
lence is approximated by checking membership of randomly
sampled inputs. Another approach to approximate testing of
automata equivalence emerged in the scope of probabilistic
automata [38]. The approach reduces the equivalence problem
to testing identity of polynomials which can be done with an
arbitrary precision using a randomised algorithm in polyno-
mial time.

B. Practical aspects

Consider an exact solution E0 and its approximation E1

created by means of a search operator. In order to determine
their distance under a given metric, it is often more efficient
to extract parts in which E0 and E1 differ and calculate the
distance using only these different parts rather than using
complete E0 and E1.

There is a possibility that the search operator could be
constructed in such a way that the parts in which E0 and
E1 differ are very small and thus easy for relaxed equivalence
checking. Hence the algorithm developed for relaxed equiv-
alence checking and the search method should be designed
together.

In some cases, the quality of E1 is so poor that its
unsuitability can easily be recognized by applying a relatively
small set of input vectors. If this technique is supported, the
evaluation procedure can be speeded up because a complex
(relaxed) equivalence checking solver is not called.

The error is not the only objective criterion of the approx-
imation procedure. Power consumption, performance (delay),
area on a chip (in the case of circuits), and other parameters
have to be determined for candidate approximations. As some
hard constrains on all these parameters are usually given (for
example, the error must be less than 1 % and the minimum

Fig. 2. Determining the Hamming distance of two combinational circuits using
a BDD.

operation frequency is 100 MHz), the parameters of candidate
solutions should be evaluated according to the time needed
for their obtaining (i.e., the least time requiring parameter
has to be evaluated first). For example, if the maximum
operation frequency of a circuit can be obtained very quickly,
but obtaining the error is very time consuming, then the
maximum frequency has to be determined firstly in order to
skip the (possibly useless) error computation in the case that
the obtained frequency is violating the constraints and hence
the candidate approximation must be rejected anyway. A smart
evaluation procedure can save a lot of valuable time.

V. EXAMPLES

This section presents two available methods for combi-
national circuit approximation in which relaxed equivalence
checking has already been included.

A. BDD-based approach

The error quantification is usually based on an arithmetic
error metric in existing approximation methods. In order to
approximate general logic (such as pattern matching circuits
and complex encoders) in which no additional information is
usually available to establish a suitable error metric, a genetic
programming-based method capable of approximating com-
binational circuits under the Hamming distance as a metric
was developed in [39]. The Hamming distance between the
vectors produced by exact circuit and approximate circuit was
determined using BDDs as follows.

Let us suppose that both circuits have k inputs denoted
x1 . . . xk and m outputs denoted y1 . . . ym and y′1 . . . y

′
m,

respectively. Corresponding primary inputs of both circuits
are aligned and corresponding primary outputs yi and y′i
are connected using the XOR gates. The goal is to obtain
one circuit with k primary inputs x1 . . . xk and m primary
outputs z1 . . . zm, zi = yi XOR y′i. In order to disprove
the equivalence, it is then sufficient to identify at least one
output zi whose Onset(zi) is not empty, i.e., to find an input
assignment x for which the corresponding outputs yi and y′i
provide different values (Fig. 2).

The Hamming distance between the truth tables of these
circuits can be obtained by applying the Sat-Count function
on every output zi and summing the results. In the example
shown in Fig. 2, Sat-Count will return 2 for z1 and 0 for
z2, i.e., the Hamming distance is 0 + 2 = 2. It can easily be



Fig. 3. Auxiliary circuit for SAT-based worst-case error analysis

checked that if x ∈ {0000, 0110}, the circuits provide different
output values.

Various trade-offs between the average Hamming distance,
area, and delay can be obtained using this method for circuits
containing hundreds of gates and tens of inputs and outputs.

B. SAT-based approach

In order to check whether a predefined worst-case error
is violated by the candidate approximate circuit, a pseudo-
Boolean SAT solver combining a SAT solver with an ILP
solver was employed in [14]. The principle of the method
is shown in Fig. 3. Firstly, an auxiliary circuit is constructed.
This circuit instantiates the candidate approximate circuit and
the accurate (reference) circuit and compares their outputs to
quantify the error for any given input. Then, the auxiliary
circuit is converted to a CNF formula and the resulting formula
is used together with an objective function as input of the SAT
solver. The objective function is constructed in such a way that
it maximizes the value at the output E.

However, while violating the worst error can be detected,
no method capable of establishing, for example, the average
error using a SAT solver has been proposed up to now.

VI. CONCLUSIONS

Contrasted to the evaluation of functionality of a candidate
approximate solution using a set of vectors, we surveyed
relevant methods of formal verification that could provide
more exact information about the error. We have developed
a notion of formal relaxed equivalence checking and surveyed
relevant methods developed in the field of formal verification
that could be used as a basis for efficient relaxed equivalence
checking.

It turns out that only a few equivalence checking methods
can be almost directly extended for purposes of relaxed equiv-
alence checking. These methods are, however, not suitable for
determining key distances such as the average error. Another
problem is limited scalability of equivalence checking, which
is currently applicable only to small and middle-sized systems.

Our future research will be devoted to developing a suitable
formal relaxed equivalence checking method together with an
efficient search algorithm in order to quickly compute the error
of candidate approximations under a predefined error metric
and thus accelerate the approximation procedure for complex
problem instances.
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