FPGA-based Robot Controller: An Experimental
Evaluation of Fault Tolerance Properties

Jakub Podivinsky, Jakub Lojda, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations
Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ipodivinsky, ilojda, kotasek} @fit.vutbr.cz

Abstract—Field Programmable Gate Arrays (FPGAs) are
becoming more popular in various areas. Single Event Upsets
(SEUs) are faults caused by a charged particle in the configuration
memory of SRAM-based FPGAs. Such a charged particle can
cause incorrect behavior in the whole system. This problem
becomes greater if such a system operates in an environment
with increased radiation (e.g. space applications). Lots of tech-
niques to harden FPGAs against faults exist and new ones are
under investigation. One such technique is called Triple Modular
Redundancy (TMR). It is important to evaluate these techniques
on a real system with a real FPGA. An evaluation platform based
on an artificial fault injection and a functional verification for
testing fault tolerance methodologies is introduced in this student
paper. Parts of our experimental system are hardened by using
TMR and its experimental evaluation is one of the main parts of
this student paper. We propose experiments with multiple fault
injection strategy and monitor faults impact on both the electronic
and mechanical parts of the experimental system.

[. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are becoming
more popular for a number of reasons. SRAM-based FPGAs
can provide hardware implementation of applications that
are often faster than processor-based implementations and
require lower costs than Application-Specific Integrated Cir-
cuits (ASICs) [1]. Moreover, their reconfigurability provides
almost the same flexibility as processors do and offers us to
change implemented application during the life cycle of such a
system. FPGAs can be used in different areas, e.g. automotive,
aerospace or space. SRAM-based FPGAs are composed of
programmable components (configurable logic blocks, look-
up tables, flip-flops, etc.) and their interconnection. FPGA
configuration is stored as a bitstream in the configuration
SRAM memory. The problem from the reliability point of
view is the sensitivity of FPGAs to faults caused by charged
particles. A hit of these particles can cause the inversion of a
configuration bit which can change the behavior of the whole
circuit. This event is called Single Event Upset (SEU). This
may be a problem, especially when FPGAs are used in areas
with increased radiation, e.g. space applications [2].

Although 80-99% of SEUs hit unused bits of the config-
uration bitstream [1], it is important to harden FPGA-based
systems against faults. Lots of fault tolerance methodologies
inclined to FPGAs exist and new ones are under investigation.
The use of spatial redundancy for hardening user logic against
SEUs is presented in [2]. One of the main approaches of
spatial redundancy is Triple Modular Redundancy (TMR),
which many researchers are trying to improve. For example,

paper [3] proposes a novel technique based on a heuristic
to tolerate faults in SRAM-based FPGAs by using inexact
modules in conjunction with TMR, thus reducing the area
and power overhead of the design. Paper [4] presents an
improved approach to TMR which concerns don’t care bits
of LUT configuration bits and hence classifies the set of
LUTs into SEU-sensitive and SEU-insensitive. Unlike the full
TMR approach, the improved approach only triplicates SEU-
sensitive LUTs and can greatly reduce the area overhead while
maintaining circuit reliability.

It is important to evaluate fault tolerance techniques tar-
geted to FPGAs. Three main approaches are presented in [1]:
1) modeling tools, 2) fault emulation testing and 3) accelerated
radiation testing. The method for the emulation of the effects
of SEUs in the configuration memory of FPGAs is presented
in [5]. This approach combines simulation and topological
analysis of the design mapped on the FPGA. An FPGA-
based fault injection tool, which is presented in [6], supports
several synthesizable fault models of digital systems and is
implemented using VHDL. The fault injection requires an
addition of some extra gates and wires to the original design
and thus modifies the original VHDL. In [7], a platform
called FLIPPER, which is based on the fault injection into
a real FPGA board without changing the original design, was
presented. This technique is based on dynamic reconfiguration
which allows us to read, modify and write back the config-
uration bitstream. This platform is composed of two boards
with FPGAs — the main board and the DUT board. The fault
injection is controlled by the main board, which is driven by
the software application running on a PC. The authors in [8]
focus on the speed of the fault impact evaluation, where the
fault injection is fully controlled by a part of the design on the
FPGA. Communication with a PC is used only for the initial
configuration of the fault injection process.

In our previous work, we developed the evaluation plat-
form for testing fault tolerance properties [9]. The evaluation
platform is based on functional verification and uses our fault
injector [10]. The main advantage of our platform is its ability
to test the impacts of faults not only on electronic controller,
but also on the controlled mechanical part, because lots of
electronic systems control the mechanical part which is an
important component of the whole system. In this paper,
triplication (TMR) is applied on our experimental electro-
mechanical system (robot in a maze) and our platform is used
to analyze the reliability gained. It should be noted that a
great number of fault tolerant systems are electromechanical

applications. As an example, the FT systems in planes can be
used. That is why we concentrated on a robot with its controller
as the experimental system.

In our research group, we also investigate new methods
in the field of fault-tolerant systems design automation. Our
aim is to create a fully automated environment to fault-tolerant
systems design and its evaluation. The experiments presented
in this paper are a step towards this new methodology, as it is
important to understand the behavior of various components of
the system utilizing different proportions of FPGA primitive
types during the presence of faults in these components.

This paper is organized as follows. Section II introduces
our functional verification-based evaluation platform and ex-
perimental electro-mechanical system. Experiments and results
with multiple fault injection are summarized in Section III.
Section IV contains the conclusion of the paper and presents
our plans for future research.

II. EVALUATION PLATFORM AND EXPERIMENTAL
SYSTEM

This section briefly describes our evaluation platform for
testing fault tolerance methodologies which was presented
in journal publication [9]. Our platform is based on func-
tional verification [11] and standardized Universal Verifica-
tion Methodology (UVM) [12]. Functional verification checks
whether a hardware system satisfies a given specification. In
our case, functional verification is used as a tool for checking
if injected faults caused some discrepancy on the output of
the tested system. The platform which is shown in Figure 1,
is composed of several components running on a computer
and on an FPGA development board. The main part of the
platform is the software part of the verification environment
which is running on a computer. The verification environment
observes communication between both parts of the experi-
mental electro-mechanical system (mechanical part and its
electronic controller). The electronic controller is run on an
FPGA which is connected to the simulation of the mechanical
part (running on a computer) through the Ethernet interface.
Artificial faults are injected through JTAG interface which is
used by the fault injector [10]. The fault injector is based
on partial reconfiguration, it reads part of the configuration
memory, inverts the specified bit and writes it back to the
configuration memory.

Fault
Injector

FPGA with Hardware
Part of Verification
Environment
Software Part of
Verification
Environment

ML506 Virtex 5 FPGA Board

Computer

Fig. 1. The evaluation platform architecture.

Together with the platform, we need to introduce a process
for verifying fault tolerance properties which is divided into
three phases. The first phase is simulation based verification.
Verification is completely done in an RTL simulator (Mod-
elSim) in this phase. The task of this phase is to test on
whether the electronic controller works correctly according to

the specification. The second phase consists of the verification
of the electronic controller implemented into an FPGA with the
scenarios obtained during the previous phase, but in addition,
artificial faults are injected into FPGAs using an implemented
fault injector. The impact of faults on the electronic part is
monitored in this phase. The analysis of the faults which
corrupted the mechanical part is the goal of the third phase.
The second and third phases use the FPGA-based verification
environment, where a device under test is run on the FPGA.
The second phase monitors the impact of faults on commu-
nication between the mechanical part and its controller. The
third phase checks the values of sensors on the mechanical
part and monitors its behavior.

Our goal is to demonstrate the proposed platform and
evaluation process on a complex system. Our experimental
electro-mechanical system consists of a robot for searching
a path through a maze and its electronic controller imple-
mented in FPGA was developed for these purposes. The robot
controller is not a very complex system, but it is split into
various components (bus, finite state machines, memories, etc.)
which allow us to evaluate a wide scale of fault tolerance
methodologies. Unfortunately, we do not have a real robot
device, so we use the simulation tool Player/Stage [13], which
allows us to simulate the robot and its environment (in our case
the robot in a maze). The robot simulation is executed on a
computer which is connected with the FPGA board through the
Ethernet transmitting data between the robot and its controller.

The robot controller [14] is composed of various functional
units, which are interconnected through the central bus. There
is in total 16 functional units, the main ones are the Position
Evaluation Unit (PEU) and the Barrier Detection Unit (BDU)
which calculates the actual position of the robot in a maze
and detects barriers in the robot 4-neighborhood. The Map
Unit (MU) stores calculated information into the Map Memory
Unit (MMU) on which path searching implemented by the Path
Finding Unit (PFU) is based. The mechanical parts of the robot
are controlled by the Engine Control Unit (ECU). Almost all
of these functional units are equipped with a control finite state
machine (FSM) and a bus wrapper.

Figure 2 shows a combined FPGA-based verification envi-
ronment for the second and the third phases of the proposed
evaluation process. The verification environment is composed
of two parts: 1) the software part of UVM-based verification
environment and 2) the experimental electromechanical system
(robot in a maze). The verification environment just observes
communication between the robot in a maze and the FPGA
without direct intervention. The golden model is used for
the comparison of expected data and really transfered data.
Some discrepancy is indicated as an error on the output of the
electronic controller. On the other hand, as the third phase,
data from sensors and the correct behavior of the mechanical
robot are monitored.

III. EXPERIMENTS AND RESULTS

In our experiments, we decided to examine the impact of
faults on particular components of the robot controller unit.
The experiments comprise the comparison of results obtained
from selected unhardened components of the controller unit
with their hardened versions. As a method of redundancy

10

robot

FPGA

(Robot Controller)

wm uvm_environment
sequence
item
uvm_agent
3
uvm uym uvm g a
sequencer driver monitor 58
T 3
| Data From Sensors @
2
Golden T
Maodel

Fig. 2. The architecture of the FPGA-based verification environment for the
robot controller.

insertion, the TMR was selected. Three components of the
robot controller unit, the PEU, the BDU and the ECU, were
selected for comparison. The reason for this choice was that the
PEU and the BDU components compute the input values for
the path-searching algorithm. From this point of view, these
components are very important and the complete controller
unit is function-dependent on them. The ECU component
directly affects the movement of the robot, thus failure of this
component would cause the complete controller unit to fail.

The experiments were performed with the usage of one
fault injection strategy. The strategy was to inject multiple
faults per verification run into an individual component and
observe its ability to reach the target position. A number of
faults were injected until the first failure propagated to the
controller outputs was observed.

A. Multiple Faults Injection

In the multiple faults injection experiment, permanent bit-
flips were injected into utilized Look-up Tables (LUTs) con-
tents with a constant period of 5s. This period was experimen-
tally chosen based on the system failure manifestation time.
This means that each 5s only one SEU was injected into the
particular component of the robot controller unit LUT contents
(only utilized LUT bits are considered) until the robot failed
or reached the target position.

At first, the multiple faults were injected into the unhard-
ened version of the robot controller. The reason for this was
to find out the behavior of the whole system without any
fault tolerance method involved. In this stage, one set of 1000
verification runs was done for each of the selected components
in which faults were only injected into the particular controller
unit LUTSs contents. The statistical results are shown by the
PEU_noft, the BDU_noft and the ECU_noft bars of the box
plot in Figure 3. It is a quartile chart that for each compo-
nent shows the minimum, the first quartile (25%), median,
the second quartile (75%) and maximum of the numbers of
injected faults that for each particular run were enough to

manifest a failure on the controller outputs. As can be seen,
each component has its own level of susceptibility to SEUs.

70

_ 60
Z 50 8
2
5 40 - T 1’ T
8
S | | F
:“E_'. 30 ‘ X 5] 1J7J
3 . | ‘ ‘
= &
10 ‘ | §
3 — |
peu_noft peu_tmr bdu_noft bdu_tmr ecu_noft ecu_tmr
Fig. 3. Box plot shows statistical evaluation of number of injected faults

which led to the electronic failure.

Then, three other robot controller unit designs with the
TMR applied selectively to the PEU, the BDU and the
ECU components were created. Equivalent experiments were
repeated with the three new designs in which only the faults
were injected into the particular hardened component. The bars
PEU_tmr, BDU_tmr and ECU_tmr in the box plot in Figure 3
show the susceptibility to faults with the TMR applied. As can
be seen, each of the bars representing the hardened version
is above the unhardened one, therefore, more fault injections
were required to cause a malfunction of the complete controller
unit.

It is important to note that while multiple faults were
injected, the hardened version failed in a smaller number of
cases than the unhardened version. The numbers of cases in
which the complete controller unit failed while faults were
injected into the selected components are shown in Table I.
As can be seen, the application of the TMR led up to 93.3%
decrease of failure manifestations. We can conclude that the
TMR led to a lower number of electronic failures and also
led to the increased number of injected faults which caused a
failure.

TABLE 1. THE IMPACT OF MULTIPLE FAULTS INJECTED INTO THE

UNHARDENED AND HARDENED VERSIONS OF ROBOT CONTROLLER BOTH
ON THE ELECTRONIC CONTROLLER AND MECHANICAL PART.

Monitored impact PEU BLU ECU
P noft tmr noft tmr noft tmr
[Electronic OK [—] [656 | 977 [361 | 917 | 226 | 622 |
| Electronic failed [—] [344 23 | 639 83 | 774 | 378 |
Goal not reached [—] 344 23 [639 83 [774 378
Collision with wall [—] 0 0 0 0 15 3
Robot stop on place [—] 344 23 | 639 83 | 759 | 375
[Reliability improvement [%] | 93.3% | 87.0% | 51.2% |

Besides the influence of faults on the electronic part of the
system, we also observed its influence on the mechanical part.
The electronic failure usually stopped the robot on its position
and in some cases the failure led to a collision with a wall. It
can be noted that the stopping of the robot on its position is a
less serious failure consequence than the collision. Table I also
shows the numbers of cases in which the robot crashed into
the wall and the numbers of cases in which the robot stopped
at a place.

IV. CONCLUSIONS AND FUTURE RESEARCH

The use of functional verification as a tool for evaluation
of impact of faults injected into the configuration memory of

11

SRAM-based FPGAs was presented in this paper. Our platform
was demonstrated on the evaluation of the impact of faults on
the robot controller which navigates the robot in a maze. The
paper shows experimental results with the hardened (tripli-
cation) along with the unhardened robot controller version.
Multiple faults injection strategy was used. Our experiments
show the benefit of triplication. In the case of the multiple
faults injection, it is clearly visible that the triplication led to
a lower number of electronic failures, but experiments have
also shown that the number of injected faults which led to
a failure is higher than in the case of the unhardened robot
controller.

As for future research, our goal is to use the reconfiguration
as a tool for faulty module recovery. We plan to use other fault
injection strategy and examine its impact on unhardened and
hardened design. We expect that the benefit of recovery will
be most obvious in the case of multiple faults injection. This
expectation will be confirmed or refuted by repeating similar
experiments as shown in this paper.

ACKNOWLEDGEMENTS

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602 and BUT project FIT-S-17-39947.

REFERENCES

[1]1 P. Gaillardon, Reconfigurable Logic: Architecture, Tools, and Applica-
rions, ser. Devices, Circuits, and Systems. CRC Press, 2015.

[2]1 F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
Radiation Effects in SRAM-Based FPGAs for Space Applications,”
ACM Comput. Surv., vol. 47, no. 2, pp. 37:1-37:34, Jan. 2015.

[3] S. Venkataraman, R. Santos, and A. Kumar, “A Flexible Inexact tmr
Technique for SRAM-based FPGASs.” in Proceedings of the 2016 Con-
ference on Design, Automation & Test in Europe. EDA Consortium,
2016, pp. 810-813.

[4] M. S. Zheng, Z. L. Wang, J. Tu, J. Y. Wang, and L. J. Li, “Reliabil-
ity Oriented Selective Triple Modular Redundancy for SRAM-Based
FPGAs,” in Applied Mechanics and Materials, vol. 713. Trans Tech
Publ, 2015, pp. 1127-1131.

[5S] C. Bernardeschi, L. Cassano. A. Domenici, and L. Sterpone, “Accurate
Simulation of SEUs in the Configuration Memory of SRAM-based
FPGAs,” in Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2012 IEEE International Symposium on. 1EEE, 2012,
pp. 115-120.

[6] S. Rudrakshi, V. Midasala, and S. Bhavanam, “Implementation of fpga
based fault injection tool (fito) for testing fault tolerant designs,” IACSIT
International Journal of Engineering and Technology, vol. 4, no. 5, pp.
522-526, 2012.

[71 M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, and
G. R. Sechi, “Evaluation of Single Event Upset Mitigation Schemes for
SRAM-based FPGAs Using the FLIPPER Fault Injection Platform,” in
Defect and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE
International Symposium on. 1EEE, 2007, pp. 105-113.

[8] C.Lo6pez-Ongil. M. Garcia-Valderas, M. Portela-Garcia. and L. Entrena,
“Autonomous fault emulation: a new fpga-based acceleration system for
hardness evaluation,” Nuclear Science, IEEE Transactions on, vol. 54,
no. 1, pp. 252-261, 2007.

[9] J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova, M. Krcma, and
Z. Kotasek, “Functional Verification based Platform for Evaluating Fault
Tolerance Properties,” Microprocessors and Microsystems. vol. 52, pp.
145-159, 2017.

[10] M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. 1EEE
Computer Society, 2011, pp. 223-230.

[11]

[12]

[13]

[14]

A. Meyer, Principles of Functional
tion. Elsevier Science, 2003. [Online].
http://books.google.cz/books?id=qaliX3hY WL4C

V. R. Cooper, Getting Started with UVM: A Beginner’s Guide. Austin,
TX : Verilab, 2013.

B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage Project:
Tools for Multi-robot and Distributed Sensor Systems,” in Proceedings
of the 11th international conference on advanced robotics, vol. 1, 2003,
pp. 317-323.

J. Podivinsky, M. Simkova, and Z. Kotasek, “Complex Control System
for Testing Fault-Tolerance Methodologies,” in Proceedings of The
Third Workshop MEDIAN 2014. COST, 2014, pp. 24-27.

Verifica-
Available:

12

