

Dynamic	Permission	Mechanism	on	Android	

	
Lukas	Aron,	Petr	Hanacek	
{iaron,	hanacek}@fit.vutbr.cz	
	
Faculty	of	Information	Technology,	Brno	University	of	Technology	
Bozetechova	2,	Brno,	Czech	Republic

Abstract:	 This	 paper	 discusses	 the	 implementation	 of	 protecting	 user's	 data	 on	 mobile	 device	 with	 an	
Android	platform.	The	mobile	platform	surpasses	computers	in	its	popularity	in	many	aspects	of	one	daily	
routine.	 The	 dynamic	 permission	 mechanism	 tracks	 the	 data	 flow	 of	 the	 application	 and	 restricts	 the	
application	permission	rules	related	to	a	input	of	the	application.	The	implementation	shows	the	example	of	
protection	against	data	leakage	from	mobile	device.	This	protection	can	be	applied	on	every	mobile	device	
with	an	Android	operating	system	and	does	not	need	the	root	access.	

Key	words:	Android,	Dynamic	Permission	Mechanism,	Permissions,	Protection,	Security	

	
	

1. Introduction	
We	are	the	witnesses	of	the	digital	era	when	almost	everyone	has	at	least	a	one	mobile	device	which	uses	

everyday.	 These	 devices	 are	 used	 for	 different	 purposes.	We	 can	 dive	 these	 purposes	 to	 the	 three	 basic	
categories:	Business,	Fun	&	Pleasure	and	Routine	activities.	Each	of	this	category	has	its	candidate	in	a	real	
life.	For	someone	this	division	can	be	strict,	but	for	another	one	it	can	be	the	one	group	of	activities	on	the	
one	device.	Let’s	have	an	example	of	the	person	who	uses	its	mobile	device	at	work,	at	home	and	sometimes	
plays	 game	 on	 this	 device.	 This	 person	 usually	 needs	 to	 split	 the	 device	 data	 into	 his	 personal	 data	 and	
corporate	 private	 data.	 There	 is	 possible	 of	 confidential	 information	 leakage	 during	 his	 home/pleasure	
activities	through	application	which	could	send	the	information	outside	the	device.	And	exactly	for	this	kind	
of	 people	we	 have	 implemented	 a	 solution	which	 can	 control	 the	 data	 flow	 of	 each	 application	 and	 can	
dynamically	change	the	permission	[4]	of	the	application.	If	the	user	works	with	public	or	personal	data	which	
has	no	restriction	then	the	application	has	its	behavior	unchanged,	however	on	the	other	hand	when	the	user	
works	with	a	confidential	or	private	data	the	application	dynamically	changes	its	permission	model	and	the	
user	cannot	have	the	leakage	of	the	information	from	the	device.	This	implementation	is	the	main	content	of	
this	paper.	At	first	we	are	going	to	introduce	the	permission	mechanism	and	how	it	works	on	the	last	version	
of	 Android	 platform.	 Then	 we	 compare	 a	 few	 related	 work	 and	 afterwards	 we	 will	 introduce	 the	
implementation	of	dynamic	permission	mechanism	on	Android.	This	implementation	has	been	tested	on	a	
lot	of	different	applications	and	the	main	results	are	described	below.	

2. Permission	Mechanism	Overview	
Applications	use	a	lot	of	permissions	including	those	needed	to	access	the	SD	card	[13],	use	the	Internet	

and	so	on.	Google	does	a	great	job	of	displaying	what	permissions	an	application	uses	before	installing,	but	
does	not	go	into	full	detail	about	what	exactly	those	permissions	do.	 	
The	sky	is	the	limit	when	comes	to	ideas	and	what	is	possible	with	the	Android	application.	Knowing	this	

Google	added	permissions	that	need	to	be	defined	before	the	app	is	allowed	to	do	certain	things	like	access	

the	Internet	for	example.	This	stops	apps	from	doing	whatever	they	want	without	the	user’s	knowledge.	When	
installing	an	app	from	the	Google	Play	Store,	a	dialog	box	pops	up	and	the	user	has	to	agree	that	the	app	can	
do	certain	things.	Permissions	[4]	are	handled	by	the	Android	API	framework	in	the	system	process.	This	calls	
the	permission	validation	mechanism	to	check	that	the	application	has	the	permission	to	do	what	it	is	trying	
to	do.	Some	permissions,	like	Bluetooth	[11]	are	handled	by	the	Linux	kernel	[1].	All	of	the	API	[10]	calling	
happens	 automatically	 so	 the	 developer	 does	 not	 have	 to	worry	 about	making	 sure	 the	 permissions	 are	
handled	correctly.	The	permissions	are	usually	selected	 into	 few	groups,	but	we	can	categorize	 them	 into	
three	main	groups	(See	Fig.	1).	These	categories	are	related	to	the	information	that	the	application	works	
with.	
	

	
Fig	1.	Android	Permission	Check	

	

2.1. Permission	groups	
Google	provides	17	different	permissions	developers	can	use	in	their	apps.	Everyone	of	the	list	bellow	

can	be	part	of	the	main	three	groups	defined	earlier.	In	this	article	only	chosen	ones	which	are	related	to	
the	topic	of	the	paper	are	described.	 	
• Device	 and	 app	 history	 –	 An	 application	may	 be	 able	 to	 do	 read	 sensitive	 log	 data,	 read	 web	

bookmarks	 and	 history,	 retrieve	 applications	 and	 retrieve	 system	 internal	 state.	 All	 of	 these	
permissions	deal	with	device	and	app	history.	

• Cellular	 data	 settings	 –	 The	 application	 can	 control	 the	 device’s	 mobile	 network	 settings	 and	
possibly	intercept	the	data	received.	 	

• Identity	–	With	this	permission	the	application	can	find	accounts	on	the	device,	see	and	modify	the	
owner’s	contact	card	and	add	or	remove	contacts	from	the	device.	

• Contacts	–	This	permission	is	similar	to	last	one,	however,	this	one	can	only	access	contacts	on	the	
device,	however,	it	still	has	the	ability	to	read	and	modify	them.	

• Calendar	–	This	permission	allows	the	application	to	access	the	user’s	calendar	and	events,	even	if	
they	include	confidential	information.	This	also	includes	the	application	being	able	to	make	events	
and	send	emails	to	guests	without	the	user’s	knowledge.	

• SMS	–	The	 application	 can	use	 the	device’s	 SMS	and	MMS	 services.	This	 includes	 the	 ability	 to	
receive	text	messages	(SMS,	WAP),	read	SMS	and	MMS,	edit	SMS	and	MMS,	and	send	SMS	and	MMS.	
This	can	cost	money.	

• Phone	 –	 The	 application	 can	 directly	 call	 phone	 numbers.	 Read	 and	write	 the	 call	 log,	 reroute	
outgoing	 calls,	 modify	 phone	 state	 and	 make	 calls	 without	 the	 user	 knowing.	 Like	 the	 SMS	
permission,	 this	can	cost	money.	This	permission	group	handles	everything	 that	has	 to	do	with	
telephony	features.	

• Photos/Media/Files	 –	 The	 application	 has	 the	 ability	 to	 use	 the	 file	 on	 the	 device	 with	 the	
application	 installed.	 This	 includes	 reading	 and	 writing	 to	 the	 SD	 card	 and	 USB	 storage.	 The	
application	can	also	mount	and	un-mount	external	storage	as	well	as	format	external	storage.	This	
permission	deals	with	reading	external	storage	on	newer	devices.	

• Camera	–	The	application	has	the	ability	to	take	pictures	and	video.	This	may	occur	with	or	without	
the	user’s	permission	or	knowledge.	

• Microphone	–	The	application	can	use	the	device’s	microphone,	this	may	include	recording	audio.	
This	may	happen	with	or	without	the	user’s	permission.	

• Wi-Fi	 connection	 information	 –	 The	 application	 can	 access	 the	 device’s	 Wi-Fi	 connection	
information	including	whether	or	not	Wi-Fi	is	turned	off	as	well	as	connected	devices.	

• Bluetooth	connection	information	–	The	application	can	control	Bluetooth	which	includes	sending	
and	receiving	data	from	nearby	devices.	

• Device	ID	&	call	information	–	An	application	can	access	the	device	ID,	phone	number,	whether	the	
device	is	making	a	call,	and	the	number	connected	on	the	other	end	of	the	call.	

	
	 	 Every	group	of	the	permission	can	be	split	into	sink	or	source	permission	[5].	This	means	that	the	
permission	is	the	source	of	data	or	the	sink.	The	sink	in	this	content	means	that	the	data	is	sent	there	
or	saved	to	specific	place	such	as	 internet,	SD	card	or	send	to	another	device	through	any	available	
connection.	For	the	implementation	of	the	dynamic	permission	mechanism	is	very	important	to	follow	
all	sink	permissions,	because	this	can	lead	to	data	leakage.	 	

2.2. Permission	Enforcement	
	 	 Classical	permission	mechanism	works	 in	 three	phases	(See	Fig.	2).	The	 first	phase	 is	during	 the	
installation	of	the	application.	The	user	has	to	agree	with	all	permissions	that	the	application	requires,	
otherwise	the	installation	failed.	

	
Fig	2.	Android	Permission	Enforcement	

	
	 	 During	 the	 installation	 there	 is	 checking	mechanism	 that	 provide	mapping	 permission	 rules	 from	
AndroidManifest.xml	[10]	(file	which	is	part	of	the	application	and	define	requested	permissions)	to	the	
system	permissions.	This	step	is	 identified	as	number	1	 in	the	Fig.	2.	The	second	phase	 is	during	the	
opening	 the	 application.	When	 a	 user	 run	 the	 application	 the	 application	 is	 starting	 to	 the	 running	
process	(See	Fig.	2	number	2).	In	that	moment	the	permissions	are	mapped	to	the	Linux	groups.	The	last	
phase	of	permission	enforcement	is	during	the	request	of	the	application	to	provide	any	activity	which	
needs	the	specific	permission.	During	this	activity	the	permission	marked	as	Linux	group	now	is	checked	
and	executed	by	the	Linux	kernel	[1].	This	last	phase	is	identified	as	number	3	in	Fig.	2.	

2.3. Permission	mechanism	on	Android	Marshmallow	
	 	 Android	6.0	Marshmallow	[2]	is	the	current	last	version	of	Android	platform.	Marshmallow	brought	
large	changes	to	the	permissions	model.	It	 introduced	the	concept	of	runtime	permissions.	These	are	
permissions	that	are	requested	while	the	app	is	running	(instead	of	before	the	app	is	installed).	These	
permissions	can	then	be	allowed	or	denied	by	the	user.	For	approved	permissions,	 these	can	also	be	
revoked	at	a	later	time.	

	
	 	 This	 means	 there	 are	 a	 couple	 more	 things	 to	 consider	 when	 working	 with	 permissions	 for	 a	
Marshmallow	application.	When	the	user	does	not	permit	the	specific	permission	and	the	application	
tries	to	use	it	the	pop-up	screen	appears	and	ask	the	user	for	allowing	the	current	permission.	As	was	
said	this	behavior	is	available	in	applications	which	where	developed	for	at	least	SDK	[10]	version	23.	
For	older	applications	there	is	backwards	compatibility	mode	and	this	mode	has	two	scenarios:	

	
1. The	application	is	targeting	an	API	less	than	Android	6.0	Marshmallow	(TargetSdkVersion	[10]	

<	23),	but	the	emulator/device	is	Android	6.0	Marshmallow:	
• The	application	will	continue	to	use	the	old	permission	model.	
• All	permissions	listed	in	the	AndroidManifest.xml	will	be	asked	for	at	install	time.	
• Users	will	be	able	to	revoke	permissions	after	the	app	is	installed.	It	is	important	to	test	

this	scenario	since	the	results	of	certain	actions	without	the	appropriate	permission	can	
be	unexpected.	

2. The	emulator/device	is	running	something	older	than	Marshmallow,	but	the	application	targets	
Marshmallow	(TargetSdkVersion	>=	23):	

• The	application	will	continue	to	use	the	old	permissions	model.	
• All	permissions	listed	in	the	AndroidManifest.xml	will	be	asked	for	at	install	time.	 	

3. Related	Work	
During	the	evolution	of	the	Android	operating	system	a	lot	of	additional	features	were	defined.	There	is	an	

enormous	list	of	updates,	recommendations	by	community	or	novel	application	approaches	to	upgrade	this	
system.	In	this	section	is	a	small	group	of	the	extension	to	the	Android	which	is	related	to	the	topic	of	security.	
Diverse	threats	are	identified	from	mobile	services,	including	permission	bypass	[9],	[10].	The	following	work	
is	 more	 related	 to	 implementing	 improvements	 of	 Android	 operating	 system	 to	 cover	 more	 security	
principles	than	its	basic	version.	
First	of	all	there	is	the	project	Aurasium	[3]	which	is	the	cornerstone	of	this	proposal.	Aurasium	introduces	

the	solution	that	bypasses	the	need	to	root	the	device	when	modification	of	the	Android	OS	is	required.	The	
behavior	 of	 the	 application	 can	 be	modified	 or	 the	 flow	of	 the	 information	 can	 be	 followed.	 This	 project	
automatically	repackages	arbitrary	applications	to	keep	the	sandboxing	mechanism	and	policy	enforcement	
code,	which	closely	watches	the	behavior	of	security	and	privacy	intrusions	such	as	attempts	to	retrieve	a	
users	sensitive	information,	etc.	Aurasium	has	the	ability	to	detect	and	prevent	cases	of	privilege	escalation	
attacks.	 Experiments	 show	 that	 these	 principles	 can	 apply	 this	 solution	 to	 a	 larger	 scale	 of	 malicious	
applications	with	a	near	100	percent	success	rate,	without	significant	performance	and	space	overhead.	
Dr.	Android	and	Mr.	Hide	[8]	Fine-grained	security	policies	on	unmodified	Android	is	another	approach	for	

checking	 an	 Internet	 connection.	 They	 presented	 a	 concept	 for	 replacing	 coarse	 Android	 platform	
permissions	 with	 finer-grained	 permissions	 that	 lower	 needed	 privilege	 levels,	 decreasing	 the	 potential	
threat	from	malicious	apps.	The	system	contains	two	novel	parts:	Mr.	Hide	and	Dr.	Android.	Mr.	Hide	is	an	
Android	service	that	

4. Dynamic	Permission	Mechanism	
Dynamic	permission	mechanism	deals	with	files	which	are	located	on	the	mobile	device.	These	files	can	be	

split	 into	 two	domains:	Public	and	Private.	Public	domain	represents	classical	user’s	 files	 such	as	photos,	
documents,	music	 or	movies.	 Private	domain	 is	 the	 same	data	 as	public	with	 additional	 rule,	 this	data	 is	
usually	classified	or	private	for	reason.	This	data	should	be	hidden	for	the	others	than	the	user	of	the	device.	
There	exists	a	lot	of	solution	of	protection	data	from	the	operating	system	and	also	another	modification	of	
Android	platform.	We	have	different	approach	of	protecting	data.	We	do	not	modify	the	operating	system	we	
do	not	even	need	root	access	to	the	system	to	preserve	the	original	protection	of	the	operating	system.	We	

provide	additional	layer	of	protection	for	existing	application	without	modification	of	the	source	code.	

4.1. Concept	
We	have	defined	the	concept	of	dynamic	permission	mechanism	[7]	and	the	implementation	is	the	proof	of	

concept	which	is	the	main	part	of	this	paper.	On	the	device	are	only	finite	subset	of	possible	leakage	of	the	
data.	 The	 leakage	 is	 usually	 done	 through	one	of	 the	 sink	 permission	 rule	 [5].	 The	 application	 should	be	
restricted	according	to	its	input.	This	means	that	the	application	should	dynamically	remove	all	these	sink	
permissions	when	the	application	works	with	a	private	file.	This	behavior	can	be	seen	on	the	Fig	3.	
	

	
Fig	3	Dynamic	Permission	Mechanism	Concept	

	
The	 application	 can	 open	 public	 file	 through	 system	 call	 fopen	 [1]	 and	 can	work	 as	was	 designed,	 for	

example	send	this	file	to	someone	else	(share	it	with	someone	through	internet).	This	activity	is	identified	as	
green	line	of	data	flow	on	the	Fig	3.	There	is	the	same	flow	with	a	private	file,	but	there	should	be	dynamically	
removed	the	ability	to	use	an	internet	or	other	type	of	the	sink	permission.	This	behavior	is	identified	as	red	
line	on	the	Fig.	3.	This	is	the	basic	principle	of	the	protection.	During	the	opening	of	the	file	we	have	to	identify	
if	the	file	is	public	or	private.	This	lead	to	the	classifier	which	we	do	not	implement	but	we	have	two	folders	
on	the	SD	card	with	public	and	private	folders.	We	then	follow	the	file	path	if	it	is	public	or	private	and	then	
we	can	control	the	permission	mechanism.	
The	mechanism	of	checking	if	the	file	is	public	or	private	is	done	through	checking	few	low-level	system	

calls	such	as	fopen	and	others.	The	ability	to	track	these	low	level	system	calls	has	been	done	with	Aurasium	
project	[3].	Aurasium	project	has	two	main	cores.	The	first	core	un-pack	the	APK	(installation	package)[6]	of	
the	application	and	add	a	hooks	 for	 the	 system	calls.	This	hooks	 can	be	 tracked	and	modified	during	 the	
application	 running	 status.	 The	 second	 core	 define	 the	 flow	 system	of	 the	 hooks	 and	 also	 packaging	 the	
application	into	APK	with	signing	process.	
The	permission	mechanism	can	restrict	the	rules	for	leakage	data	through	calling	the	Linux	ioctl	function.	

The	ioctl	[1]	function	is	on	the	Android	system	responsible	for	permission	requested	by	the	application.	 	
	

4.2. Implementation	
The	implementation	has	been	split	into	two	main	parts.	First	part	is	modification	of	the	APK	package	which	

can	provide	the	ability	to	add	specific	hooks	for	Linux	kernel	system	calls.	This	modification	brings	the	ability	
tracking	all	these	calls	and	also	modify	the	responses.	This	part	is	the	negligible	modification	of	the	Aurasium	
project	and	is	not	described	in	this	paper.	
The	 second	part	 is	 the	Android	 service	 (or	 daemon	 thread)	 [11]	which	 is	 tracking	 all	 calling	 from	 the	

previously	added	hooks	into	applications.	We	can	call	this	part	as	the	arbiter	of	the	calling	the	Linux	kernel	
from	the	modified	application.	Arbiter	decides	if	the	application	has	the	original	behavior	(classical	mode)	or	
restricted	mode	when	the	private	file	is	opened.	This	status	the	arbiter	has	during	the	whole	lifecycle	of	the	
application	and	can	persists	even	when	the	application	is	terminated.	 	

The	 implementation	 of	 this	 dynamic	 permission	 mechanism	 (see	 Fig.	 4)	 is	 inside	 process	 boundary	
(running	application)	and	communicate	with	the	Native	framework	API	[14]	based	on	C/C++	language.	We	
communicate	with	specific	libraries	in	this	process	boundary:	libdvm.so,	libandroid.runtime.so,	libbinder.so.	
On	the	lower	level	we	communicate	with	libraries	which	are	responsible	to	direct	calling	the	Linux	kernel	of	
the	Android	platform	(see	Fig.	4).	These	low	level	libraries	are	libso.so,	libstdc++.so,	libs.so.	All	libraries	are	
described	in	more	detail	in	[1].	
	

	
Fig	4	Dynamic	Permission	Mechanism	Stack	

5. Experiments	
The	implementation	of	the	proposal	has	been	done	and	tested	on	Android	6	Marshmallow.	We	have	chosen	

this	version	because	it	has	the	ability	to	change	permission	rules	separately	as	was	discussed	earlier.	We	had	
randomly	downloaded	applications	 from	Google	Play	market	which	worked	with	user	data.	Usually	 these	
applications	were	document	editors,	image	viewers,	music	players	or	video	players.	We	have	prepared	data	
on	the	SD	card	of	the	formats:	txt,	doc,	xls,	png,	jpg,	avi	and	mp3.	These	testing	files	have	been	separated	into	
two	folders:	public	and	private.	 	
All	applications	which	were	developed	for	Android	version	6	have	worked	properly	and	the	mechanism	

permissions	were	successfully	dynamically	changed.	Older	applications	have	issues	with	dynamic	permission	
mechanism	related	to	its	restrictions.	When	the	application	opened	the	private	file	and	dynamic	permissions	
has	been	set	everything	worked.	But	when	the	application	developed	for	older	targetSdkVersion	tried	to	use	
the	permission	which	was	previously	restricted	Exception	was	shown	and	the	application	was	terminated.	

6. Conclusion	and	Future	Work	
The	security	issues	in	the	mobile	world	has	become	more	and	more	sophisticated	and	their	detection	is	

more	complicated.	The	Main	responsibility	is	on	the	user,	even	if	he	uses	the	confidential	data.	The	user	is	the	
weakest	point	in	the	whole	string	of	the	security	chain.	The	proposal	of	protecting	application	in	order	to	
change	its	permission	ability	move	the	responsibility	from	user	to	the	system.	This	approach	could	save	the	
user	(or	corporation)	data	and	should	deny	the	leakage	of	confidential	passwords	and	other	type	of	sensitive	
information	from	the	device.	According	to	experiments	the	dynamic	permission	mechanism	works,	but	there	
are	still	limitations	to	the	last	version	of	Android	operating	system.	The	future	work	should	implement	the	
save	removal	of	permission	rules	such	as	return	fake	or	empty	data.	The	permission	mechanism	currently	
works	properly	when	the	data	is	separated	into	two	folders.	This	restriction	should	be	replaced	by	automatic	
file	classifier	which	can	decide	if	the	file	belongs	to	the	public	or	private	folder.	

	
	

7. Acknowledgements	
This	work	has	been	supported	by	the	European	Regional	Development	Fund	in	the	IT4Innovations	Centre	

of	 Excellence	 project	 (CZ.1.05/1.1.00/02.0070),	 by	 the	 project	 CEZ	 MSM0021630528	 Security-Oriented	
Research	in	Information	Technology	and	by	project	FIT-	S-11-1	Advanced	Secured,	Reliable	and	Adaptive	IT.	

References	
	
[1] Love,	R.,	Are,	S.	H.	W.,	Linus,	A.	C.,	Kernels,	L.	V.	C.	U.,	&	Begin,	B.	W.	(2005).	Linux	kernel	development	

second	edition	(pp.	124-130).	Pearson	Education,	USA.	
[2] Allen,	G.	(2015).	Android	Security	and	Permissions.	In	Beginning	Android	(pp.	343-354).	Apress.	
[3] Xu,	R.,	Saidi,	H.,	&	Anderson,	R.	(2012).	Aurasium:	Practical	policy	enforcement	for	android	applications.	

In	Presented	as	part	of	the	21st	USENIX	Security	Symposium	(USENIX	Security	12)	(pp.	539-552).	
[4] Felt,	A.	P.,	Chin,	E.,	Hanna,	S.,	Song,	D.,	&	Wagner,	D.	(2011,	October).	Android	permissions	demystified.	In	

Proceedings	of	the	18th	ACM	conference	on	Computer	and	communications	security	(pp.	627-638).	ACM.	
[5] Gibler,	C.,	Crussell,	 J.,	Erickson,	 J.,	&	Chen,	H.	 (2012).	AndroidLeaks:	automatically	detecting	potential	

privacy	leaks	in	android	applications	on	a	large	scale	(pp.	291-307).	Springer	Berlin	Heidelberg.	
[6] Shabtai,	 A.,	 Fledel,	 Y.,	 Kanonov,	 U.,	 Elovici,	 Y.,	 Dolev,	 S.,	 &	 Glezer,	 C.	 (2010).	 Google	 android:	 A	

comprehensive	security	assessment.	IEEE	Security	&	Privacy,	(2),	35-44.
[7] Aron,	 L.,	 &	 Hanacek,	 P.	 (2016,	 February).	 A	 concept	 of	 dynamic	 permission	mechanism	 on	 android.	

In	Progress	in	Applied	Mathematics	in	Science	and	Engineering	Proceedings	(Vol.	1705,	p.	020022).	AIP	
Publishing.

[8] Jeon,	J.,	Micinski,	K.	K.,	Vaughan,	J.	A.,	Fogel,	A.,	Reddy,	N.,	Foster,	J.	S.,	&	Millstein,	T.	(2012,	October).	Dr.	
Android	and	Mr.	Hide:	 fine-grained	permissions	 in	android	applications.	 In Proceedings	of	 the	 second	
ACM	workshop	on	Security	and	privacy	in	smartphones	and	mobile	devices (pp.	3-14).	ACM.	

[9] Ongtang,	 M.,	 McLaughlin,	 S.,	 Enck,	 W.,	 &	 McDaniel,	 P.	 (2012).	 Semantically	 rich	 application-centric	
security	in	Android. Security	and	Communication	Networks, 5(6),	658-673.

[10] Wu,	L.,	Du,	X.,	&	Zhang,	H.	(2015,	February).	An	effective	access	control	scheme	for	preventing	permission	
leak	in	Android.	In Computing,	Networking	and	Communications	(ICNC),	2015	International	Conference	
on (pp.	57-61).	IEEE

[11] Meier,	R.	(2012). Professional	Android	4	application	development.	John	Wiley	&	Sons.
[12] Specification,	B.	(2001).	Version	1.1.	Includes:	IMS	Learning	Resource	Meta-data	Information	Model	IMS	

Learning	Resource	Meta-data	XML	Binding	Specification	IMS	Learning	Resource	Meta-data	Best	Practice	
and	Implementation	Guide	Available	at:	www.	imsproject.	org.	

[13] Park,	Y.,	Park,	J.,	Kim,	Y.,	&	Jun,	S.	(2005).	U.S.	Patent	Application	No.	11/098,462.	
[14] Kim,	Y.	J.,	Cho,	S.	J.,	Kim,	K.	J.,	Hwang,	E.	H.,	Yoon,	S.	H.,	&	Jeon,	J.	W.	(2012,	October).	Benchmarking	Java	

application	using	JNI	and	native	C	application	on	Android.	In Control,	Automation	and	Systems	(ICCAS),	
2012	12th	International	Conference	on (pp.	284-288).	IEEE.
	

