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Pseudospectral time domain (PSTD) methods are widely used in many branches of acoustics for
the numerical solution of the wave equation, including biomedical ultrasound and seismology. The
use of the Fourier collocation spectral method in particular has many computational advantages.
However, the use of a discrete Fourier basis is also inherently restricted to solving problems with
periodic boundary conditions. Here, a family of spectral collocation methods based on the use of
a sine or cosine basis is described. These retain the computational advantages of the Fourier collo-
cation method but instead allow homogeneous Dirichlet (sound-soft) and Neumann (sound-hard)
boundary conditions to be imposed. The basis function weights are computed numerically using
the discrete sine and cosine transforms, which can be implemented using O(N log N) operations
analogous to the fast Fourier transform. Practical details of how to implement spectral methods
using discrete sine and cosine transforms are provided. The technique is then illustrated through the
solution of the wave equation in a rectangular domain subject to different combinations of bound-
ary conditions. The extension to boundaries with arbitrary real reflection coefficients or boundaries
that are nonreflecting is also demonstrated using the weighted summation of the solutions with
Dirichlet and Neumann boundary conditions.
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1. Introduction

Simulating the propagation of acoustic waves requires the spatial and temporal deriva-
tive operators in the wave equation to be replaced with discrete formulas that can be
implemented using a computer. A widely-used approach is the pseudospectral time domain
(PSTD) method.1,2 This uses the Fourier collocation spectral method to calculate spatial
gradients, and a finite-difference method to integrate forwards in time.3 For smooth wave
fields, the error in the Fourier collocation spectral method decays exponentially with the
number of grid nodes.4,5 This means only a small number of grid points per wavelength
are required to reduce the effects of numerical dispersion, often close to the Nyquist limit
of two points per wavelength (PPW).6,7 In comparison, the finite-difference time-domain
(FDTD) method typically requires 10 to 20 PPW to minimize dispersion, and this number
increases with the domain size due to the accumulation of numerical errors.8 The differ-
ence in the number of PPW is critical for the tractability of many large-scale problems in
which waves propagate across domains that are hundreds of wavelengths in each spatial
dimension.9,10

While the PSTD method has many advantages, the use of a discrete Fourier basis to
compute spatial gradients is also inherently restricted to solving problems with periodic
boundary conditions. This is because the discrete Fourier transform of a finite sequence
assumes this sequence is periodically repeated outside its finite support. Practically, this
means when the PSTD method is used to solve the wave equation, waves exiting the com-
putational domain on one side will reappear on the other side. This can be understood in
terms of image sources, where the pressure field is periodically (and infinitely) repeated as
shown in Fig. 1. In this example, as the wave within the computational domain exits to the
right, the wavefield from the periodic image source appears within the domain on the left.
In one-dimension (1D) where there is no decay of the wavefield with distance, this wave
wrapping will continue ad infinitum.

Fig. 1. Wave wrapping due to the periodicity assumed by the discrete Fourier transform. Three snapshots
in time are shown. As the wave exits the computational domain on the right, the wave from the periodically
repeated image source appears on the left.
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In most circumstances in acoustics, a periodic boundary condition is neither physical
nor desirable. To model nonreflecting boundaries (where the outgoing waves propagate as
though in free-space), the periodicity is generally counteracted through the application of a
perfectly matched layer (PML).3,11 This is designed to absorb outgoing waves at the edge
of the computational domain. A large body of literature now exists on the optimization and
implementation of PMLs and they can be highly effective.12 However, in some cases, other
boundary conditions are required, and these are not straightforward to directly implement
when using PSTD methods.13,14

To model reflecting boundaries, image sources can be used (assuming the wave propa-
gation is linear). In this case, the true source and an image source are placed on opposites
sides of the intended boundary (this idea was introduced by Lord Kelvin in the study
of electrostatics15). In the simplest case, the image source is placed equidistant from the
intended boundary and is either positive (in-phase) or negative (out-of-phase) relative to
the true source, but otherwise identical. As the waves propagate, they pass each other at
the (virtual) boundary and the summation of the two wave fields gives rise to the correct
boundary and scattering behavior.

An illustrative example of using image sources to impose boundary conditions in 1D is
given in Fig. 2. A positive image source corresponds to a sound-hard or Neumann bound-
ary condition, where the gradient of the pressure field is always zero on the boundary,
and the reflected wave is in phase with the incident wave. Considering the propagation
of a wave between two acoustic half-spaces, this is equivalent to a boundary where the
second medium has a much higher acoustic impedance. Similarly, a negative image source
corresponds to a sound-soft or Dirichlet boundary condition, where the pressure is always
zero on the boundary (this is sometimes called a pressure-release boundary16), and the
reflected wave is out-of-phase with the incident wave. Considering two acoustic half-spaces,
this is equivalent to a boundary where the second medium has a much lower acoustic
impedance.

Using the idea of image sources, boundary conditions can be imposed within a PSTD
wave model by increasing the size of the computational domain and directly including the
image source terms. For example, this approach has been used to model wave propagation
within reverberant cavities with reflecting walls.17 However, the significant drawback is
that the domain size must be increased in each Cartesian direction to allow the image
sources to be defined. This can increase the computational load considerably, particularly
in 3D. An alternative approach is to use another basis to compute the spatial gradients
that already imposes the required boundary conditions. In this paper, the Fourier basis
normally used in the PSTD method is replaced with a sine or cosine basis. These implicitly
enforce homogeneous Dirichlet or Neumann boundary conditions while still retaining the
same computational benefits as a Fourier collocation method.18

Using sine and cosine transforms to compute spectral gradients as part of the PSTD
method has previously been discussed by several authors. In acoustics, Kosloff and Kosloff
used a cosine basis to solve a 1D wave equation with a Neumann (or sound-hard) boundary
condition at each end of the domain.19 Sine and cosine transforms have also been used
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Fig. 2. Neumann (sound-hard) and Dirichlet (sound-soft) boundary conditions realized using image sources.
The Neumann case uses a positive (or in-phase) image source, which results in a pressure doubling and zero
pressure gradient on the boundary. The Dirichlet case uses a negative (or out-of-phase) image source, which
results in the pressure on the boundary always equal to zero. Acoustically, the Neumann case corresponds
to the propagation of a wave from a low to high impedance medium (i.e. z1 � z2), where the reflected wave
is in phase with the incident wave. The Dirichlet case corresponds to the propagation of a wave from a high
to a low impedance medium (i.e. z1 � z2), where the reflected wave is out of phase with the incident wave.
The numbers (1) to (4) correspond to four snapshots in time showing the interaction of the incident wave
with the boundary.

in elastodynamics for modeling applied forces that are symmetric or antisymmetric in the
plane,20 and in electromagnetics to ensure field components vanish at the boundary, e.g.
when modeling wave guides.21,22 Outside of wave problems, sine and cosine transforms have
also been used to impose Dirichlet and Neumann boundary conditions for reaction–diffusion
problems,23 to impose slip boundary conditions within fluid simulations,24 to impose sym-
metric boundary conditions when solving the Elder problem in hydrology,25 to impose
Dirichlet boundary conditions when solving the Klein–Gordon–Zakharov (KGZ) system,26

and to calculate spectral gradients through symmetric extensions.27

In the continuous case, the use of a cosine or sine basis to enforce Dirichlet or Neumann
boundary conditions is straightforward to conceptualize—a sine wave is zero at the origin
and thus satisfies a Dirichlet condition, while the gradient of a cosine wave is zero at the
origin and thus satisfies a Neumann condition.18 However, in the discrete case, the different
combinations of discrete symmetry leads to some complexity, with 16 different discrete
trigonometric transforms (DTTs)28,29 that each correspond to different boundary conditions
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and spatial grid definitions. To form a spectral collocation method, it is also important to
understand how the discrete symmetry changes under differentiation and with the use of
staggered computational grids.

In this paper, we review how the 16 discrete trigonometric transforms fall into four
distinct transform classes (see e.g. Ref. 29), and then discuss how each of these can be used
to spectrally compute derivatives assuming different combinations of discrete symmetry.
In Sec. 2, the conventional Fourier PSTD method is reviewed for the wave equation. In
Sec. 3, the discrete cosine and sine transforms are reviewed, and the differentiation and
interpolation properties of these transforms are discussed. An example of a DTT-based
PSTD method is then given in Sec. 4. In Sec. 5, an extension to nonreflecting boundaries
and arbitrary reflection coefficients is given. Discussion and summary are provided in Sec. 6.

2. The Fourier PSTD Method for the Wave Equation

Before discussing the machinery of using sine and cosine transforms to impose Dirichlet and
Neumann boundary conditions, it is constructive to revisit the conventional Fourier PSTD
method applied to the solution of the wave equation. The background to much of what
follows can be found in several numerical methods texts, e.g. Refs. 30, 2, 4 and 5. Consider
the following coupled system of equations which describes linear acoustic wave propagation
in a homogeneous medium in one-dimension

∂u

∂t
= − 1

ρ0

∂p

∂x
,

∂p

∂t
= −ρ0c

2
0

∂u

∂x
.

(1)

Here u is the acoustic particle velocity, p is the acoustic pressure, ρ0 is the mass density,
c0 is the sound speed, and x and t represent the space and time variables, respectively.
This system of coupled first-order equations is commonly used in computational acoustics
instead of the second-order wave equation as it allows velocity inputs and outputs to be
used, and a split-field perfectly matched layer to be applied.31

Now consider the numerical solution of Eq. (1) using the Fourier PSTD method where u

is calculated on a temporally and spatially staggered grid relative to p, where the staggered
grid is shifted by half the temporal and spatial grid spacing (the use of a staggered grid
improves the accuracy and stability of PSTD methods32,33). Three ingredients are required:
(1) discretization of the spatial gradients using the Fourier collocation spectral method,
(2) transformation of the gradient values to and from the spatially staggered grid, and (3)
discretization of the temporal gradients using a finite difference scheme.

Starting with the spatial gradient calculation, in the Fourier collocation spectral method,
the pressure and velocity fields are decomposed into a sum of complex exponential basis
functions using a Fourier transform. In the continuous case, the forward and inverse Fourier
transforms over one spatial dimension can be written as (other conventions can equally be
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used)

F{f(x)} ≡ g(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx,

F−1{g(k)} ≡ f(x) =
1√
2π

∫ ∞

−∞
g(k)eikxdk,

(2)

where i =
√
−1, k is the spatial frequency or wavenumber, and g(k) represents the complex

basis function weights, i.e. the amplitude and phase of each frequency component needed
to make up the original function f(x). Using these transformations, it is straightforward to
write an expression for the Fourier derivative of a bounded function, where2

d

dx
f(x) =

d

dx

1√
2π

∫ ∞

−∞
g(k)eikx dk

=
1√
2π

∫ ∞

−∞
(ik)g(k)eikx dk

= F−1 {ikF {f(x)}} . (3)

In the discrete case, f(x) is given by a finite periodic sequence, and the Fourier trans-
forms are calculated using the discrete Fourier transform, generally using the fast Fourier
transform (FFT). The discrete wavenumber vector k is given by

kn =
2π

NΔx
n where n =

⎧⎪⎪⎨
⎪⎪⎩
−N − 1

2
,−N − 1

2
+ 1, . . . ,

N − 1
2

if N is odd

−N

2
,−N

2
+ 1, . . . ,

N

2
− 1 if N is even.

(4)

Here N is the length of f(x) (i.e. the number of samples in the sequence), and Δx is the
spacing between the grid points assuming the spatial samples are uniformly spaced.

Next, to transform the calculated gradient values to and from the staggered grid, the
shift property of the Fourier transform is used, where

F {f(x + a)} = eikaF {f(x)} . (5)

This follows from Eq. (2). Here a is a scalar shift variable which for a staggered grid is set
to half the grid spacing, i.e. Δx/2.

Finally, to integrate forwards in time, an explicit first-order-accurate forward difference
is used,34 where

∂f

∂t
≈ fn+1 − fn

Δt
. (6)

Here fn represents the discrete function values at the nth time point, where t = nΔt and
n = 0, 1, 2, . . .. Note, higher-order time integration schemes are also possible (e.g. Refs. 35,
31, 36, 37 and 38). However, these are not discussed here as they do not influence the
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implementation of Neumann and Dirichlet boundary conditions using DTTs, which is the
focus of this paper.

Combining the three ingredients then gives an explicit time-stepping solution to Eq. (1)
using the Fourier PSTD method on a staggered grid (solutions in higher dimensions follow
analogously)

un+ 1
2 = un− 1

2 − Δt

ρ0
F−1{ikeikΔx/2F{pn}},

pn+1 = pn − Δtρ0c
2
0F−1{ike−ikΔx/2F{un+ 1

2}}.
(7)

To run the model, initial values for p and u are required. Time-dependent source terms can
also be added,39 but they are not discussed here. Note, the temporal staggering between the
pressure and particle velocity arises because the update steps are interleaved with the spatial
gradient calculations. As mentioned in Sec. 1, the use of the discrete Fourier transform
inherently assumes the wave field is periodically repeated, which leads to wave wrapping
when the waves reach the edge of the computational domain (see Fig. 1). In Sec. 3, the
Fourier transforms are replaced with sine and cosine transforms, and in Sec. 4 these are
applied to allow Dirichlet and Neumann boundary conditions to be imposed in the solution
of the wave equation.

3. Gradient Calculations Using Discrete Trigonometric Transforms

3.1. The Fourier sine and cosine transforms

Putting the numerical solution of the wave equation and the imposition of different boundary
conditions to one side for a moment, consider now the Fourier sine and cosine transforms and
their application to the calculation of spectral gradients. These transforms arise naturally
as an extension of the Fourier transform (see e.g. Ref. 40). This can be seen by rewriting
the complex exponential basis functions of Eq. (2) in terms of sines and cosines

F{f(x)} =
1√
2π

∫ ∞

−∞
f(x)(cos(kx) − i sin(kx))dx. (8)

If the function fo(x) is odd such that fo(−x) = −fo(x), the cosine terms in Eq. (8) will
integrate to zero, which leads to the definition of the forward and inverse Fourier sine
transforms

S{fo(x)} ≡ go(k) =

√
2
π

∫ ∞

0
fo(x) sin(kx)dx,

S−1{go(k)} ≡ fo(x) =

√
2
π

∫ ∞

0
go(k) sin(kx)dk, x ≥ 0.

(9)

If the input function fe(x) is instead even such that fe(−x) = fe(x), the sine terms in Eq. (8)
will integrate to zero, which leads to the definition of the forward and inverse Fourier cosine
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transforms

C{fe(x)} ≡ ge(k) =

√
2
π

∫ ∞

0
fe(x) cos(kx)dx,

C−1{ge(k)} ≡ fe(x) =

√
2
π

∫ ∞

0
ge(k) cos(kx)dk, x ≥ 0.

(10)

Using these definitions, it is possible to show the derivative properties for the sine and cosine
transforms. For an odd function, this is

d

dx
fo(x) =

d

dx

(√
2
π

∫ ∞

0
go(k) sin(kx)dk

)
,

=

√
2
π

∫ ∞

0
kgo(k) cos(kx)dk,

= C−1{kS{fo(x)}}.

(11)

Similarly for an even function

d

dx
f(x) = S−1{−kC{fe(x)}}. (12)

Comparing Eqs. (11) and (12) with Eq. (3), it can be seen that the differentiation prop-
erties for the cosine and sine transforms are very similar to those of the Fourier transform.
The primary difference is that the function is multiplied by either k or −k after transfor-
mation to k-space rather than by −ik, and the inverse transform differs from the forward
transform. The latter reflects the fact that after differentiation, an odd function becomes
even and vice versa. The cosine and sine transforms also produce real-valued outputs if
the input function is real-valued, unlike the Fourier transform which produces a complex
output.

3.2. The discrete trigonometric transforms

In the continuous case, there are two possible symmetries a function may exhibit about
x = 0, even and odd. This leads to the definition of the two trigonometric transforms
described in the previous section. However, in the discrete case, the number of possible
symmetries increases to four.28,29 These symmetries are shown in Fig. 3(a), and correspond
to

• whole-sample symmetry (WS),
• whole-sample antisymmetry (WA),
• half-sample symmetry (HS), and
• half-sample antisymmetry (HA).

The terms whole-sample (W) and half-sample (H) describe whether the point of symmetry
lies on a grid point, or halfway between two grid points, respectively. The terms symmetric
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(a)

(b)

Fig. 3. Discrete trigonometric transforms (DTTs) and symmetry [29]. (a) The four types of discrete symmetry.
The point of symmetry is indicated by the dashed line. (b) Examples of the 16 types of symmetric periodic
sequence (SPS), and their corresponding DTTs. The white diamonds indicate the representative samples, and
the black circles give the implied symmetric-periodic extension. Each SPS is either periodic or antiperiodic
with period M . For the example shown, M = 8 for groups I and II, and M = 7 for groups III and IV.

(S) and antisymmetric (A) are analogous to even and odd in the continuous case. Together,
the four types of symmetry may be used to define 16 types of symmetric periodic sequence
(SPS) by periodically extending each end of a discrete signal of finite length (called the
representative sample) using one of the four symmetry types.29 The 16 possible SPSs are
shown in Fig. 3(b). The naming convention is based on the symmetric extension used at
each end. For instance, a WSHA-type sequence has a WS extension on its left end and a
HA extension on its right. The extension is repeated indefinitely, such that the symmetry
of a WSHA-type sequence is . . .-WS-HA-WS-HA-. . . and so on.
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Each of the 16 possible SPSs correspond to a unique discrete trigonometric transform
(DTT) as given in Fig. 3(b), where DST-I is denoted as S1 and DCT-I as C1, etc. The eight
SPSs that have symmetric extensions on the left correspond to the eight types of discrete
cosine transform (DCT), while the eight SPSs with antisymmetric extensions on the left
correspond to the eight types of discrete sine transform (DST). The discrete equations for
each of these transforms are defined in several places, including Refs. 29, 40, 41, and are
not repeated here.

The set of 16 DTTs (eight DCTs and eight DSTs) can be divided into four groups
based on whether the corresponding SPS becomes periodic or antiperiodic after it has
been symmetrically extended at one end, and whether this period M is an even or odd
number. Note here that a sequence is antiperiodic with period M if f(x) = −f(x + nM)
for n = 1, 3, 5, . . .. Considering the first factor, groups I and III correspond to the SPSs
that are periodic with period M , while groups II and IV are antiperiodic with period M .
Considering the second factor, the implied period is always an even number for groups I and
II, while the implied period is always an odd number for groups III and IV. The properties
of these four groups are summarized in Table 1 and Fig. 3(b).

When using DTTs to transform to and from k-space, attention must be given to the
discrete wavenumber vector k, as this varies depending on the DTT used as shown in
Table 1. The different wavenumber ranges can be understood by considering the assumed
symmetry of each sequence. For example, a sequence of WAWA-type is implicitly assumed
to have a zero at either end of the representative sample (see Fig. 3). Because of this, both
the DC and Nyquist components of the signal must be zero. This is reflected in the range

Table 1. The 16 DTTs and their corresponding symmetries grouped by wavenumber. The four
groups of transforms correspond to those shown in Fig. 3. Here N is the length of the representative
sample, M is the corresponding implied period of the symmetric periodic sequence, Δx is the grid
spacing, and kn is the discrete wavenumber.

Periodic Antiperiodic

kn = 2π
MΔxn kn = 2π

MΔx

`
n + 1

2

´

Symmetry DTT n = . . . M = . . . Symmetry DTT n = . . . M = . . .

WSWS C1 0, 1, . . . , M
2 2(N − 1) WSWA C3 0, 1, . . . , M

2 − 1 2N

HSHS C2 0, 1, . . . , M
2 − 1 2N HSHA C4 0, 1, . . . , M

2 − 1 2N

WAWA S1 1, 2, . . . , M
2 − 1 2(N + 1) WAWS S3 0, 1, . . . , M

2 − 1 2N

HAHA S2 1, 2, . . . , M
2 2N HAHS S4 0, 1, . . . , M

2 − 1 2N

WSHS C5 0, 1, . . . , M−1
2 2N − 1 WSHA C7 0, 1, . . . , M−1

2 2N − 1

HSWS C6 0, 1, . . . , M−1
2 2N − 1 HSWA C8 0, 1, . . . , M−1

2 2N + 1

WAHA S5 1, 2, . . . , M+1
2 2N + 1 WAHS S7 0, 1, . . . , M−1

2 2N + 1

HAWA S6 1, 2, . . . , M+1
2 2N + 1 HAWS S8 0, 1, . . . , M−1

2 2N − 1
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of wavenumbers for which the discrete trigonometric transform is defined, and thus the
appropriate frequency components must be appended or removed when using combinations
of transforms for which the wavenumber range varies. The different assumed symmetries
between transforms also means the length of the sequence before and after differentiation
may change, as the representative samples may be defined at different points in space.

Each of the DTTs is unitary (the basis vectors are orthogonal) and thus the inverse
transformations can be defined in terms of the forward transforms as described in Refs. 28,
40. Letting Tj represent either Cj or Sj, where j = 1, 2, . . . , 8 is the DCT or DST type, the
inverse transform T −1

j is given by

T −1
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
M

Tj−1 if j = 3, 7

1
M

Tj if j = 1, 4, 5, 8

1
M

Tj+1 if j = 2, 6.

(13)

The 1/M scaling factor comes from the discrete transform definitions used in the widely used
FFTW library in which the forward transforms are not normalized.41 These relationships
are practically useful when implementing DTT-based collocation methods. Note, however,
it is the properties of the inverse transform (and not its related forward transform) that
must be used when considering the range of wavenumbers and symmetry for which the
transform is defined.

3.3. Spectral gradient calculations

Given a discrete input sequence (for example, the acoustic pressure or particle velocity
defined on a regularly sampled Cartesian grid), spectral gradient calculation using a dis-
crete trigonometric basis proceeds according to Eqs. (11) and (12), where the continuous
cosine and sine transforms are replaced by their discrete counterparts from Table 1. The
forward transform is chosen based on the symmetry of the input sequence (which is linked
to the desired boundary conditions as discussed in Secs. 1 and 4.1). This then defines the
appropriate inverse transform to use, as the symmetry of the function changes from sym-
metric to antisymmetric and vice versa after differentiation.42

Consider an input sequence f which has N representative samples and WSWA sym-
metry. From Table 1, the appropriate forward transform to use is C3. After differentiation,
the symmetry of the output sequence will be WAWS, thus the corresponding inverse trans-
form must be S−1

3 , which from Eq. (13) can be computed using 1
MS2. Using Eq. (12), the

derivative can thus be computed via

d

dx
f = S−1

3 {−kC3{f}} =
1
M

S2{−kC3{f}}, (14)

where M = 2N .

2050021-11
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Despite the apparent simplicity of DTT-based gradient calculation, there is one com-
plicating factor related to its numerical implementation. As mentioned in Sec. 3.2, within
each of the transform groups, the DTTs may be defined for different ranges of the same set
of wavenumbers (see Table 1). For instance, the C1 transform is defined for n = 0, 1, . . . , M

2

where kn = 2π
M n, while the S1 transform is defined for n = 1, . . . , M

2 −1. Thus, to differentiate
a sequence of WSWS-type in an analogous manner to Eq. (14), the first and last frequency
components (corresponding to n = 0, M

2 ) must be dropped from the discrete array before
taking the inverse transform to obtain the differentiated result. For some combinations of
DTTs, the reverse is true, and zeros must be appended and prepended to the discrete array
before taking the inverse. The required sequence of operations for calculating the gradient
of a function using DTTs is summarized in Table A.1 for periodic transforms (groups I and
III) and in Table A.4 for antiperiodic transforms (groups II and IV).

3.4. Interpolation on staggered grids

DTTs can also be used for interpolation analogous to the shift property of the Fourier
transform given in Eq. (5). The general relations are discussed by Britanak,40 although in
some circumstances the expressions are rather complex. The simplest case is resampling a
function from whole-sample symmetry to half-sample symmetry and vice versa (this corre-
sponds to shifting by half a grid point as required for staggered grid calculations). This can
be achieved by converting to and from k-space using the appropriate DTTs. For example,
to interpolate a sequence of WSWA-type to a sequence of HSHA-type, the function is trans-
formed into k-space using C3, and back using C−1

4 , which from Eq. (13) can be computed
using 1

M C4.

g = C−1
4 {C3{f}} =

1
M

C4{C3{f}}. (15)

Again, attention must be paid to the range of wavenumbers for which the forward and
inverse transforms are defined. The required sequence of operations for interpolating a
function using DTTs is summarized in Table A.2 for periodic transforms (groups I and III)
and in Table A.5 for antiperiodic transforms (groups II and IV).

Of particular interest in the context of PSTD methods is the combination of differenti-
ation and interpolation, where the gradient values are resampled at points shifted forwards
or backwards by half the grid point spacing.32 The combination of these operations follows
analogously to the discussion of the individual differentiation and interpolation operations.
The required sequence of operations for both differentiating and interpolating a function
using DTTs is summarized in Table A.3 for periodic transforms (groups I and III) and in
Table A.6 for antiperiodic transforms (groups II and IV). An illustration of a symmetric
periodic sequence of WSWS-type after differentiation, interpolation, and differentiation and
interpolation is shown in Fig. 4.

Note, each of the four transform groups in Table 1 is closed under differentiation and
staggered-grid interpolation. Because of the direct relationship between DTTs and SPSs,
this is equivalent to saying that differentiating or interpolating a SPS will always produce
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Fig. 4. Illustrative example showing the transformation of a symmetric periodic sequence by differentiation,
differentiation + interpolation onto a staggered grid, and interpolation onto a staggered grid. In each case, a
different set of group I transformations is used which yields a different symmetry and representative sample
size (illustrated with the white diamonds).

another SPS in the same group. The closed nature of these groups is clear when considering
that under differentiation the symmetry of a function changes (symmetric ↔ antisymmetric)
and that under interpolation the point of symmetry changes (whole-sample ↔ half-sample).

4. The PSTD Method with Discrete Trigonometric Transforms

4.1. Formulation

Now that the required ingredients to form a PSTD method using DTTs have been intro-
duced, we can return to the solution of the wave equation given in Eq. (1) subject to different
boundary conditions at each end of the domain. In 1D, there are four possible combinations
of the left-right boundary condition: Neumann–Neumann, Neumann–Dirichlet, Dirichlet–
Neumann, and Dirichlet–Dirichlet. Assuming the acoustic pressure p is calculated on the
regular grid and the particle velocity u on the staggered grid (analogous to the Fourier
PSTD solution given in Eq. (7)), these correspond to symmetries for the acoustic pres-
sure field of WSWS, WSWA, WAWS, and WAWA, respectively. The particle velocity will
instead have half-sample symmetries (i.e. W→H) with the symmetries reversed (i.e. S→A
and A→S). These symmetries are summarized in Table 2.

Given the chosen boundary conditions at each end of the domain (and thus the appro-
priate symmetries and DTTs to use), the spatial gradients shifted to and from the staggered
grid can be calculated as discussed in Sec. 3.4. Using the first-order accurate forward dif-
ference from Eq. (6) to integrate in time, a DTT-based PSTD solution for Eq. (1) can be
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Table 2. Transforms and k-space coefficients used for the DTT-based PSTD solu-
tion of the wave equation given in Eq. (16). The k-space coefficients in the periodic
case also include shift terms to move to and from the staggered grid points. These
shifts are implicit in the DTT pairs specified.

Boundary condition Sequence type Transforms k-space coefficient

left right p u T1 T2 a1 a2

Neumann Neumann WSWS HAHA C1 S2 −k k
Neumann Dirichlet WSWA HAHS C3 S4 −k k
Dirichlet Neumann WAWS HSHA S3 C4 k −k
Dirichlet Dirichlet WAWA HSHS S1 C2 k −k

Periodic F F ikeik Δx
2 ike−ik Δx

2

written as

un+ 1
2 = un− 1

2 − Δt

ρ0
T −1

2 {a1T1{pn}}, (16a)

pn+1 = pn − Δtρ0c
2
0T −1

1 {a2T2{un+ 1
2}}. (16b)

The transforms T1 and T2 and k-space coefficients a1 and a2 for the different bound-
ary conditions are given in Table 2. As u has the same symmetry as ∂p/∂x, the for-
ward transform in Eq. (16b) matches the inverse transform used in Eq. (16a) and vice
versa.

4.2. Numerical results

The discrete equations given in Eq. (16) were implemented in MATLAB (R2019b), with
the DTTs computed using a MEX interface to the C++ FFTW library.43 FFTW provides
an efficient implementation of both the FFT and the group I and II DTTs.41 MATLAB
uses FFTW to compute FFTs as part of its inbuilt functions, however, it does not currently
provide functions that link to the DTT implementations in FFTW. The MEX interface and
example scripts used in this paper are available open-source from GitHub.44

To demonstrate the effect of the different boundary conditions on the propagation of an
acoustic wave, five simulations were performed using each of the transform combinations
outlined in Table 2. The grid size was set to N = 256, with a grid spacing of Δx = 1/N .
The sound speed and density were set to the properties of water, with c0 = 1500 m.s−1

and ρ0 = 1000 kg.m−3, and the time step was given by a Courant–Friedrichs–Lewy (CFL)
number of 0.2, where Δt = CFLΔx/c0. The initial pressure distribution p0 was defined as
a Gaussian, and the initial particle velocity u0 was defined as u0 = −p0/(ρ0c0). This gives
a traveling wave propagating in the negative x-direction.

The simulation results for each of the boundary conditions given in Table 2 are shown
in Fig. 5. When a Fourier basis is used, the wave wraps from one side of the domain to
the other when it reaches the boundary, a behavior that is normally counteracted through
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Fig. 5. Propagation of a 1D acoustic wave subject to different boundary conditions. The solution is calculated
using a pseudospectral time domain method using either a Fourier basis or a sine or cosine basis for the
spatial gradient calculation (see Table 2).
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the application of a perfectly matched layer. If a cosine or sine basis is used, the waves are
instead reflected from the boundaries. When a symmetric or Neumann boundary condition
is used, the reflected wave has the same phase as the incident wave. When an antisym-
metric or Dirichlet boundary condition is used, the reflected wave is 180 degrees out-of-
phase.

To demonstrate the accuracy of the implemented boundary conditions, additional sim-
ulations were performed using a Neumman boundary condition at each end of the domain.
In this case, the initial pressure distribution was set to a Gaussian in the center of the
grid and the initial particle velocity was set to zero (accounting for the staggered grid).
The simulations were repeated for CFL numbers decreasing from 5× 10−1 to 5× 10−4 (the
stability limit is 2/π). For each simulation, the number of time steps was adjusted such that
the outgoing waves propagated exactly to the boundaries and back to the center of the grid
where the reflected waves recombine to form the initial condition. The L∞ error was then
calculated by comparing the calculated pressure field at the last time step with the initial
condition.

The error convergence against CFL number is shown in Fig. 6. In this case, the errors
arise due to numerical dispersion introduced by the time stepping scheme, not due to the
accuracy of the boundary condition. As expected, the error reduces algebraically with the
CFL number until machine precision is reached. The rate of convergence is governed by the
order of the time stepping scheme used, as with conventional Fourier-based PSTD schemes.4

For the chosen numerical scheme, engineering levels of accuracy, e.g. 0.1%, can be reached
with relatively modest CFL numbers.

Fig. 6. L∞ error in the pressure field after propagating a Gaussian initial pressure distribution from the
center of the computational domain to the boundaries and back using a DTT-based PSTD method with a
Neumann boundary condition at each end of the domain.

2050021-16



2nd Reading

October 12, 2020 17:36 WSPC/S2591-7285 130-JTCA 2050021

Boundary Conditions with Discrete Sine and Cosine Transforms

4.3. Higher dimensions

Much of the previous discussion focuses on the solution of the 1D wave equation using a
DTT-based PSTD method. However, it is straightforward to extend this to higher dimen-
sions. For example, in 2D, Eq. (16) becomes

u
n+ 1

2
x = u

n− 1
2

x − Δt

ρ0
T −1

x,2 {ax,1Tx,1{pn}},

u
n+ 1

2
y = u

n− 1
2

y − Δt

ρ0
T −1

y,2 {ay,1Ty,1{pn}},

pn+1 = pn − Δtρ0c
2
0(T −1

x,1 {ax,2Tx,2{u
n+ 1

2
x }} + T −1

y,1 {ay,2Ty,2{u
n+ 1

2
y }}),

(17)

where ux and uy are the components of the particle velocity in the x and y directions.
Again, the transforms T1 and T2 and k-space coefficients a1 and a2 for the different boundary
conditions are given in Table 2. However, in this case, different boundary conditions can
be chosen for the x and y directions (denoted by the subscript x and y). This gives rise
to 16 possible combinations of Neumann or Dirichlet boundary conditions on each of the
four edges of the domain. Two examples are given in Fig. 7 which shows the propagation
of a Gaussian initial pressure distribution in a rectangular cavity using either Neumann or
Dirichlet boundary conditions on all four boundaries. The application of DTT-based PSTD
methods to the solution of other partial differential equations (for example, the diffusion
equation) is also straightforward.

Fig. 7. Four snapshots of the propagation of a 2D acoustic wave in a rectangular cavity subject to Neumann
and Dirichlet boundary conditions. The solution is calculated using a pseudospectral time domain method
with a sine or cosine basis for the spatial gradient calculation (see Table 2).
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4.4. Computational considerations

In addition to the ability to implicitly enforce Dirichlet and Neumann boundary conditions,
the use of a sine or cosine basis compared to a Fourier basis has several computational
advantages. First, the DTTs are all real-to-real transforms (rather than real-to-complex
or complex-to-complex). For 2D and 3D transforms, this means the output of the DTTs
will consume half the memory required by the corresponding FFT (in 1D, if the input is
real, the output of the FFT will be symmetric so only the unique half needs to be stored).
Multiplications in k-space are also cheaper to compute, as they operate on real data rather
than complex. Finally, interpolation to and from staggered grids is done automatically by
selecting the appropriate forward and inverse transforms, rather than by multiplying by a
shift-factor in k-space.

In general, the computational complexity of computing the DCT and DST is O(N log N).
However, according to Ref. 41, due to implementation details, the transforms C2, C3,
S2, S3 are the fastest, while the transforms C1, S1 can sometimes be significantly
slower. The computation time is also significantly less when the implied period M

(sometimes called the logical DTT size) has small prime factors. This differs from the
FFT, where the best performance is obtained when the sequence length N has small
prime factors. Table 1 outlines how to compute M from N for the different transform
types.

Other properties of the DTT-based PSTD method are equivalent to conventional
Fourier-based schemes. For example, in both cases, the wave field is decomposed into a
finite sum of trigonometric basis functions, and thus the same constraints on smoothness
and convergence apply (see e.g. Ref. 30). Similarly, the stability limits for the DTT-based
scheme are identical to the Fourier case, and higher-order time stepping schemes can equally
be used.

5. Nonreflecting Boundary Conditions

As described above and shown in Fig. 5, DTTs can be used to model four basic
pairs of boundary conditions in each dimension: Neumann–Neumann, Neumann–Dirichlet,
Dirichlet–Neumann, and Dirichlet–Dirichlet. For convenience, these cases will be denoted
in terms of the reflection coefficients of the left and right interfaces (RL, RR): (1, 1), (1,−1),
(−1, 1), and (−1,−1). Interestingly, the solution for more general boundary conditions can
be constructed as a linear combination of these four cases (up to a time limit). In other
words, the field that would result from any arbitrary real reflection coefficients on the left
and right boundaries can be found by summing the fields from these four cases with suitably
chosen weights.

To see how to choose the weights, first consider the implied periodicity in the four basic
cases, as shown in Fig. 8. In particular, note the polarity and magnitude of the image
sources. These can be written into a matrix, where each column corresponds to the polarity
of the image sources for a particular pair of boundary conditions, i.e. each column in M
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Fig. 8. The implied image sources for the four basic cases of Neumann–Neumann, Neumann–Dirichlet,
Dirichlet–Neumann, and Dirichlet–Dirichlet boundary conditions. The corresponding reflection coefficients
are shown in circles. One periodic unit is shown. (Fig. 10 shows an extended case.)

corresponds to a row in Fig. 8:

M =

⎡
⎢⎢⎢⎢⎣
1 1 −1 −1

1 1 1 1

1 −1 1 −1

1 −1 −1 1

⎤
⎥⎥⎥⎥⎦. (18)

Note that M/2 is unitary. Now, if the four fields calculated using the different sets of bound-
ary conditions are written as p = [p(1,1), p(1,−1), p(−1,1), p(−1,−1)]T, and the corresponding
weights for these fields as w = [w(1,1), w(1,−1), w(−1,1), w(−1,−1)]T, then the field for an arbi-
trary reflection coefficient at each end of the domain can be written as

p(RL,RR)(x, t) = wTp(x, t). (19)

The weights are calculated from

w =
1
4
MTr, (20)

where r corresponds to the amplitude of the implied image sources and is given by r =
[RL, 1, RR, RLRR]T.

One example of interest is the case where both boundaries are nonreflecting, i.e. RL =
RR = 0. It can immediately be seen that the weights in this case are⎡

⎢⎢⎢⎢⎣
w(1,1)

w(1,−1)

w(−1,1)

w(−1,−1)

⎤
⎥⎥⎥⎥⎦ =

1
4

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 1 −1 −1

−1 1 1 −1

−1 1 −1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0

1

0

0

⎤
⎥⎥⎥⎥⎦ =

1
4

⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦. (21)
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Fig. 9. Propagation of a 1D acoustic wave subject to different reflection coefficients at each end of the domain.
The chosen reflection coefficients define the amplitudes of the implied image sources r and the weightings
for the four basic fields w. (left panel) RL = 0 and RR = 0. (right panel) RL = 0 and RR = 0.5.

In other words, the field in the case of nonreflecting boundaries can be constructed by adding
together the four basic fields and dividing by four (see Fig. 10). This case is discussed in
detail in Ref. 45. Other cases can be calculated similarly. For example, the case for RL = 0
and RR = 0.5 requires weights w = [3, 1, 3, 1]T/8. Simulation results for these two cases
are given in Fig. 9. In this example, the initial pressure is defined as a Gaussian and the
initial particle velocity is set to zero, and thus the wave propagates in both directions. After

Fig. 10. An extension of Fig. 8, with the bottom line showing the weighted summation of the four basic fields
above. This represents the case where the reflection coefficients are both zero. The reflection coefficients are
shown in circles. The reason for the time limit of T = 3L/c0 in this case is that the inherent periodicity in
the transforms means that after this time there will be an arrival in the computational domain from the
image source on the left.
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the waves have left the domain, the wave cancellation is theoretically exact, and for the
examples give in Fig. 9 the pressure is zero to machine precision.

While this approach allows boundaries with arbitrary real reflection coefficients to be
defined (including nonreflecting boundaries), there are two important limitations. First, the
linear combination approach only works for times t = [0, T ). At time T , additional waves
enter the field. The reason for this limit is the inherent periodicity, which is visualized
for the nonreflecting case in Fig. 10. In the case when both boundaries are nonreflecting,
the limit is T = 3L/c0, where L is the size of the computational domain, although in the
general case the limit is stricter, T = 2L/c0. Second, the calculation requires four models
to be run in the 1D case, although the models are independent and so can be computed in
parallel. The same idea (with the same time limits) can be extended to higher dimensions,
however, the number of basic models required grows as 22d, where d is the number of spatial
dimensions. Thus to form a nonreflecting boundary requires 16 simulations in 2D, and 64 in
3D. On the other hand, within the time limits mentioned above, the approach is theoretically
exact, which may be an advantage in some situations over conventional absorbing boundary
conditions or perfectly matched layers which typically only give a few decimal points of
accuracy.

6. Summary

A DTT-based PSTD method for the wave equation is described that allows Neumann
(sound-hard) and Dirichlet (sound-soft) boundary conditions to be imposed. The spatial
gradients are calculated using a spectral collocation method with a discrete cosine or sine
basis, and time integration is performed using a conventional finite difference scheme. The
different combinations of staggered grids and boundary conditions lead to the use of 16
different discrete trigonometric transforms (8 DCTs and 8 DSTs). These can be grouped into
four distinct classes that are closed under differentiation and staggered-grid interpolation.
Practical details of how to use these transforms to compute spatial gradients are provided.
Numerical examples of the solution to the wave equation in 1D and 2D in a rectangular
domain subject to different boundary conditions are also given. Finally, the extension to
boundaries with arbitrary real reflection coefficients is discussed. The DTT library and
example scripts used in this paper are available open-source from GitHub.44

Acknowledgment

This work was supported by the Engineering and Physical Sciences Research Council
(EPSRC), UK, under grant numbers EP/M011119/1, EP/L020262/1, EP/P008860/1, and
EP/S026371/1. This work was also supported by The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme of Sustainability (NPU II);
project IT4Innovations excellence in science - LQ1602. This work was also supported in
part by the Australian Research Council/Microsoft Linkage Project LP100100588.

2050021-21



2nd Reading

October 12, 2020 17:36 WSPC/S2591-7285 130-JTCA 2050021

E. S. Wise et al.

References

1. B. Fornberg and D. M. Sloan, A review of pseudospectral methods for solving partial differential
equations, Acta Numer. 3 (1994) 203–267.

2. L. N. Trefethen, Spectral Methods in MATLAB (Siam, Philadelphia, 2000).
3. Q. H. Liu, Large-scale simulations of electromagnetic and acoustic measurements using the

pseudospectral time-domain (PSTD) algorithm, IEEE Trans. Geosci. Remote Sens. 37 (1999)
917–926.

4. J. P. Boyd, Chebyshev and Fourier Spectral Methods (Dover Publications, Mineola, New York,
2001).

5. J. S. Hesthaven, S. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems,
Vol. 21 (Cambridge University Press, London, 2007).

6. T. D. Mast, L. P. Souriau, D.-L. Liu, M. Tabei, A. I. Nachman and R. C. Waag, A k-space
method for large-scale models of wave propagation in tissue, IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 48 (2001) 341–354.

7. J. L. Robertson, B. T. Cox, J. Jaros and B. E. Treeby, Accurate simulation of transcranial
ultrasound propagation for ultrasonic neuromodulation and stimulation, J. Acoust. Soc. Am.
141 (2017) 1726–1738.

8. B. Fornberg, The pseudospectral method: Comparisons with finite differences for the elastic
wave equation, Geophysics 52 (1987) 483–501.

9. N. Albin and O. P. Bruno, A spectral FC solver for the compressible Navier–Stokes equa-
tions in general domains I: Explicit time-stepping, J. Comput. Phys. 230 (2011) 6248–
6270.

10. B. E. Treeby, J. Jaros, A. P. Rendell and B. Cox, Modeling nonlinear ultrasound propagation
in heterogeneous media with power law absorption using a k-space pseudospectral method, J.
Acoust. Soc. Am. 131 (2012) 4324–4336.

11. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Com-
put. Phys. 114 (1994) 185–200.
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Appendix A. Tables describing DTT methods

Table A.1. Differentiation for periodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWS u = {u0, . . . , u M
2
} û = C1u v̂ = {−k1û1, . . . ,−k M

2 −1û M
2 −1} v = 1

M S1v̂ WAWA

HSHS u = {u0, . . . , u M
2 −1} û = C2u v̂ = {−k1û1, . . . ,−k M

2 −1û M
2 −1, 0} v = 1

M S3v̂ HAHA

WAWA u = {u1, . . . , u M
2 −1} û = S1u v̂ = {0, k1û1, . . . , k M

2 −1û M
2 −1, 0} v = 1

M C1v̂ WSWS

HAHA u = {u1, . . . , u M
2
} û = S2u v̂ = {0, k1û1, . . . , k M

2 −1û M
2 −1} v = 1

M C3v̂ HSHS

WSHS u = {u0, . . . , u M−1
2

} û = C5u v̂ = {−k1û1, . . . ,−k M−1
2

û M−1
2

, 0} v = 1
M S5v̂ WAHA

HSWS u = {u0, . . . , u M−1
2

} û = C6u v̂ = {−k1û1, . . . ,−k M−1
2

û M−1
2

, 0} v = 1
M S7v̂ HAWA

WAHA u = {u1, . . . , u M+1
2

} û = S5u v̂ = {0, k1û1, . . . , k M−1
2

û M−1
2

} v = 1
M C5v̂ WSHS

HAWA u = {u1, . . . , u M+1
2

} û = S6u v̂ = {0, k1û1, . . . , k M−1
2

û M−1
2

} v = 1
M C7v̂ HSWS

Table A.2. Interpolation between staggered grids for periodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWS u = {u0, . . . , u M
2
} û = C1u v̂ = {û0, . . . , û M

2 −1} v = 1
M C3v̂ HSHS

HSHS u = {u0, . . . , u M
2 −1} û = C2u v̂ = {û1, . . . , û M

2 −1, 0} v = 1
M C1v̂ WSWS

WAWA u = {u1, . . . , u M
2 −1} û = S1u v̂ = {û1, . . . , û M

2 −1, 0} v = 1
M S3v̂ HAHA

HAHA u = {u1, . . . , u M
2
} û = S2u v̂ = {û1, . . . , û M

2 −1} v = 1
M S1v̂ WAWA

WSHS u = {u0, . . . , u M−1
2

} û = C5u v̂ = û v = 1
M C7v̂ HSWS

HSWS u = {u0, . . . , u M−1
2

} û = C6u v̂ = û v = 1
M C5v̂ WSHS

WAHA u = {u1, . . . , u M+1
2

} û = S5u v̂ = û v = 1
M S7v̂ HAWA

HAWA u = {u1, . . . , u M+1
2

} û = S6u v̂ = û v = 1
M S5v̂ WAHA
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Table A.3. Differentiation with staggered grids for periodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWS u = {u0, . . . , u M
2
} û = C1u v̂ = {−k1û1, . . . ,−k M

2
û M

2
} v = 1

M S3v̂ HAHA

HSHS u = {u0, . . . , u M
2 −1} û = C2u v̂ = {−k1û1, . . . ,−k M

2 −1û M
2 −1} v = 1

M S1v̂ WAWA

WAWA u = {u1, . . . , u M
2 −1} û = S1u v̂ = {0, k1û1, . . . , k M

2 −1û M
2 −1} v = 1

M C3v̂ HSHS

HAHA u = {u1, . . . , u M
2
} û = S2u v̂ = {0, k1û1, . . . , k M

2
û M

2
} v = 1

M C1v̂ WSWS

WSHS u = {u0, . . . , u M−1
2

} û = C5u v̂ = {−k1û1, . . . ,−k M−1
2

û M−1
2

, 0} v = 1
M S7v̂ HAWA

HSWS u = {u0, . . . , u M−1
2

} û = C6u v̂ = {−k1û1, . . . ,−k M−1
2

û M−1
2

, 0} v = 1
M S5v̂ WAHA

WAHA u = {u1, . . . , u M+1
2

} û = S5u v̂ = {0, k1û1, . . . , k M−1
2

û M−1
2

} v = 1
M C7v̂ HSWS

HAWA u = {u1, . . . , u M+1
2

} û = S6u v̂ = {0, k1û1, . . . , k M−1
2

û M−1
2

} v = 1
M C5v̂ WSHS

Table A.4. Differentiation for antiperiodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWA u = {u0, . . . , u M
2 −1} û = C3u v̂ = −k · û v = 1

M S2v̂ WAWS

HSHA u = {u0, . . . , u M
2 −1} û = C4u v̂ = −k · û v = 1

M S4v̂ HAHS

WAWS u = {u0, . . . , u M
2 −1} û = S3u v̂ = k · û v = 1

M C2v̂ WSWA

HAHS u = {u0, . . . , u M
2 −1} û = S4u v̂ = k · û v = 1

M C4v̂ HSHA

WSHA u = {u0, . . . , u M−1
2

} û = C7u v̂ = −k · û v = 1
M S6v̂ WAHS

HSWA u = {u0, . . . , u M−1
2

} û = C8u v̂ = −k · û v = 1
M S8v̂ HAWS

WAHS u = {u0, . . . , u M−1
2

} û = S7u v̂ = k · û v = 1
M C6v̂ WSHA

HAWS u = {u0, . . . , u M−1
2

} û = S8u v̂ = k · û v = 1
M C8v̂ HSWA

Table A.5. Interpolation between staggered grids for antiperiodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWA u = {u0, . . . , u M
2 −1} û = C3u v̂ = û v = 1

M C4v̂ HSHA

HSHA u = {u0, . . . , u M
2 −1} û = C4u v̂ = û v = 1

M C2v̂ WSWA

WAWS u = {u0, . . . , u M
2 −1} û = S4u v̂ = û v = 1

M S4v̂ HAHS

HAHS u = {u0, . . . , u M
2 −1} û = S4u v̂ = û v = 1

M S2v̂ WAWS

WSHA u = {u0, . . . , u M−1
2

} û = C7u v̂ = û v = 1
M C8v̂ HSWA

HSWA u = {u0, . . . , u M−1
2

} û = C8u v̂ = û v = 1
M C6v̂ WSHA

WAHS u = {u0, . . . , u M−1
2

} û = S7u v̂ = û v = 1
M S8v̂ HAWS

HAWS u = {u0, . . . , u M−1
2

} û = S8u v̂ = û v = 1
M S6v̂ WAHS
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Table A.6. Differentiation with staggered grids for antiperiodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWA u = {u0, . . . , u M
2 −1} û = C3u v̂ = −k · û v = 1

M S4v̂ HAHS

HSHA u = {u0, . . . , u M
2 −1} û = C4u v̂ = −k · û v = 1

M S2v̂ WAWS

WAWS u = {u0, . . . , u M
2 −1} û = S4u v̂ = k · û v = 1

M C4v̂ HSHA

HAHS u = {u0, . . . , u M
2 −1} û = S4u v̂ = k · û v = 1

M C2v̂ WSWA

WSHA u = {u0, . . . , u M−1
2

} û = C7u v̂ = −k · û v = 1
M S8v̂ HAWS

HSWA u = {u0, . . . , u M−1
2

} û = C8u v̂ = −k · û v = 1
M S6v̂ WAHS

WAHS u = {u0, . . . , u M−1
2

} û = S7u v̂ = k · û v = 1
M C8v̂ HSWA

HAWS u = {u0, . . . , u M−1
2

} û = S8u v̂ = k · û v = 1
M C6v̂ WSHA
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