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ClassBench-ng: Benchmarking Packet Classification
Algorithms in the OpenFlow Era

Jiřı́ Matoušek, Adam Lučanský, David Janeček, Jozef Sabo, Jan Kořenek, Gianni Antichi

Abstract—Packet classification, i.e., the process of categorizing
packets into flows, is a first-class citizen in any networking device.
Every time a new packet has to be processed, one or more
header fields need to be compared against a set of pre-installed
rules. This is done for basic forwarding operations, to apply
security policies, application-specific processing, or quality-of-
service guarantees. A lot of research efforts have identified better
lookup techniques, i.e., finding the best match between packet
headers and rules, by capitalizing on the rule sets characteristics.
Here, ClassBench has greatly served the community by enabling
the generation of IPv4 rule sets. In this paper, we present a
new tool, ClassBench-ng, that creates synthetic IPv4, IPv6, and
OpenFlow rules. We start from an analysis of classification rules
deployed in-the-wild and we use the findings to craft our solution.
ClassBench-ng can generate a user-defined number of rules as
well as an associated header trace matching them. Compared
to state-of-the-art solutions, the rule set generation process is
usually more accurate and it is able to produce rules matching
a number of different use cases, i.e., from an IPv4 router to
an OpenFlow switch, which is unique among current rule set
generation tools.

Index Terms—ClassBench, Packet Classification, OpenFlow,
IPv4, IPv6, Synthetic Rules.

I. INTRODUCTION

EVery networking device, no matter its purpose, capacity,
or layer of operation, shares a common functionality:

packet classification. As a new packet arrives, one or more
header fields need to be compared against a set of pre-
defined rules to assign a flow identifier. This is used for basic
forwarding operations, to apply security policies, application-
specific processing, or quality-of-service guarantees.

The continuous innovation in computer networks with
the advent of IPv6 first, and Software Defined Network-
ing (SDN)/OpenFlow [2] later, alongside a constant increase
of link capacities, has repeatedly challenged state-of-the-art
packet classification algorithms. In particular, the IPv6 pro-
tocol, which is not anymore an uninteresting rarity [3], [4],
quadrupled the size of IP addresses, making the lookup process
more complex than the IPv4 case. Moreover, SDN/OpenFlow
have extendend the matching criteria to multiple fields from
different layers. This has gathered the interest of many op-
erators spanning from Internet eXchange Points (IXP) [5] to
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Wide Area Networks (WAN) [6], [7], [8] and data center net-
works [9]. All those aspects have contributed in renewing the
interests of researchers and practitioners towards developing
new packet classification algorithms [10], [11], [12], [13], [14]
that could better cope with the stringent needs of fast lookup
and matching complexity.

A number of research efforts have identified better packet
classification techniques by leveraging the characteristics of
real rule sets [15], [16], [17]. Additionally, it has also
been demonstrated that the capacity and efficiency of the
most prominent hardware-based packet classification solution,
Ternary Content Addressable Memories (TCAM), are also
subject to the characteristics of rule sets [10]. So far, the lack
of publicly available rule sets has been mitigated by a number
of synthetic rule generators [18], [19], [20]. However, they
either focus on one specific case, i.e., IPv4 [18], IPv6 [20],
or they have been designed to be generic at the cost of not
following any specific real rule set characteristics [19].

In this paper, we present ClassBench-ng, a new open source
tool that can generate synthetic IPv4, IPv6, and OpenFlow
rule sets alongside an associated header trace matching them.
ClassBench-ng accepts as an input a description of statistical
properties for the rule set to be generated. In this context,
we analyzed a number of classification rule sets taken from
IPv4/IPv6 backbone routers and OpenFlow switches from
a cloud data center provider. Our analysis is then used to
build appropriate input configuration files for ClassBench-ng.
Finally, to make this solution attractive in the long term and for
a wide number of different use cases, we propose a mechanic
to create input parameter files from real rule sets. We aim
to use the tool’s repository as a place where researchers and
operators can continuously upload new parameter files that
match a number of different environments or use cases, e.g.,
a data center, Internet Service Provider, or Internet eXchange
Point. This will further increase the impact of ClassBench-ng
on the research community.

The main contributions of the paper can be summarized as
follows:

• An in-depth analysis of in-the-wild classification rule
sets from IPv4/IPv6 backbone routers and OpenFlow
switches.

• A new tool that is able to analyze and generate IPv4,
IPv6, and OpenFlow rule sets with an associated header
trace matching them.

• The tool is open and available to anyone at:
https://classbench-ng.github.io/.

The rest of the paper is organized as follows. We first
concentrate on research questions related to rule set and
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trace generation (Section II). We then present an analysis
of real IPv4, IPv6, and OpenFlow data sets (Section III),
alongside the ClassBench-ng architecture (Section IV) and the
experimental evaluation (Section V). Finally, we cover related
works (Section VI) and conclude the paper (Section VII).

II. RESEARCH QUESTIONS

In this section, we discuss the research questions driving
the ClassBench-ng design.

A. Rule Generation

The synthetic rule generation process transforms input pa-
rameters1 into a complete rule set. Available tools use as an
input either statistic distributions of real sets [18] or user-
defined characteristics [19]. It is clear that the former is better
when it is needed an output whose attributes are as close as
possible to a real case. This brings two specific challenges: (1)
what shall be included into a seed? and (2) how to produce a
rule set that reliably follow the input seed?

Past research, i.e., ClassBench [18], has already tackled
both aspects in the context of IPv4 5-tuples. While the
representation of layer four ports and protocol was designed
as quite simple, source/destination IP prefixes required more
sophisticated approach. The idea was to represent an IP prefix
set as a binary prefix tree, i.e., trie, that can be characterized
with four statistical parameters: a prefix length distribution,
a branching probability distribution, an average skew distri-
bution, and a prefix nesting threshold [18]. The prefix length
distribution characterizes the span of prefixes. The branching
probability distribution represents the probability, at each trie
level, of having one-child or two-children nodes. Skew is
instead defined in Equation 1.

skew = 1 − weight(lighter)

weight(heavier)
(1)

weight() function returns the number of prefixes in a spec-
ified subtree and lighter/heavier represent subtrees of a
two-children node with smaller/higher number of prefixes,
respectively. Finally, the prefix nesting threshold specifies
the maximum number of prefix nodes that appear on an
arbitrary path from the root to the leaves. We follow the same
representation also in this paper and we look for a way how
to extend ClassBench seeds in order to support IPv6 and
OpenFlow rule set generation.

Once this is done, it is possible to build a rule generator.
In this regard, we performed a test campaign to better un-
derstand ClassBench internals and evaluate its fidelity. Since
ClassBench has demonstrated an accurate generation of layer
four ports and protocol, Figures 1 compare selected IP prefix
set parameters extracted from an input IPv4 seed and from
rules generated by original ClassBench, along with their error
bars. While the prefix nesting threshold precisely follow the
required distribution, the other parameters do not. Indeed, the
generated branching probability meets the requirements only
for 13 trie levels, while the average skew only for 5. We believe

1We call them seeds.
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(a) Branching probability distribution (two-children nodes).
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(b) Average skew distribution.

Fig. 1: Comparison of destination prefix set parameters from
the acl4 seed and rule sets generated from this seed using
original ClassBench (target size was set according to the
seed). The parameters of the generated sets are represented
by average, minimum, and maximum values of 10 sets.

that such errors are caused by parameters interdependence:
once a parameter with the highest priority has been fixed, the
tool tries to meet the other requirements. The prefix nesting
threshold has the highest priority, thus justifying its accuracy.
In this paper, we build upon this and we look into how to
improve rule generation fidelity while allowing the increased
number of input parameters needed to support OpenFlow.

B. Trace Generation

Just a rule set would be sufficient for a basic analysis of
classification algorithm’s memory footprint, i.e., the size of its
memory representation, and performance, i.e., the number of
memory accessess required per lookup. However, it does not
allow to easily test its correctness. In practice, a single input
might trigger a match of many rules, but only the one with
the highest priority or with the most specified fields shall be
selected. To perform this analysis, it is important to generate
a trace associated to a given rule set. This brings one specific
challenge: given a rule set, how to efficiently generate a trace
with the minimal number of headers, that will hit all the rules
specified in the original set?

Answering this question is trivial in case of non-overlapping
rules: create one header per rule. However, in real scenarios,
rules usually do overlap [21], [22], [23]. Therefore, the trace
shall ideally contain headers that will match not only each
rule individually, but also all their overlaps. Figure 2 shows
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Fig. 2: Example set of 3 overlapping rules defined in two
dimensions (3-bit Address and 2-bit Port).

one of many possible cases of overlaps within a set of three
classification rules defined in dimensions Address (3 bits) and
Port (2 bits). The full classification space can thus be divided
into several, possibly discontinuous, subspaces that we call
regions. For instance, the space in Figure 2 consists of 8
regions:

• 1 region of 0-rule overlap
• 3 regions of 1-rule overlap (R1, R2, R3)
• 3 regions of 2-rule overlap (R1+R2, R2+R3, R3+R1)
• 1 region of 3-rule overlap (R1+R2+R3)
An ideal trace generator should analyze the input rule

set first and then generate a trace that will hit each region
corresponding to a non-empty set of overlapping rules. Nev-
ertheless, because of the number of classification dimensions,
e.g., up to forty five in OpenFlow 1.5.1 [24], and their size,
e.g., 2128 unique values in case of IPv6 address, a timely
analysis might be unfeasible. According to our experiments,
a real OpenFlow 1.0.0 rule set comprising approximately
20 k rules may define more than 2.14 × 1017 12-dimensional
elementary subspaces, which would the generator need to
transform into regions before even starting the trace generation
process itself. Header trace generators thus have to apply some
heuristics, which allows to generate the trace reasonably fast
and achieve a high coverage of non-empty regions at the
same time [18]. Unfortunately, the heuristic utilized by the
trace generator of original ClassBench allows to achieve a
high coverage of individual rules only. As shown in Figure 3,
its coverage of regions quickly decreases with an increasing
complexity of classification rules. In an effort to overcome this
limitation, in this paper, we answer the following question:
how to guarantee a “good” coverage for regions regardless
the complexity of an input rule set?

III. ANALYSIS OF REAL CLASSIFICATION RULES

This section provides an analysis of IP prefixes sets taken
from core routers (Section III-A), classification rules obtained
from access control lists (ACLs) applied at a university
network’s perimeter (Section III-B) and OpenFlow data sets
coming from a set of Open vSwitches running in a cloud data
center (Section III-C). Table I summarizes the data sets being
used in the analysis.
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Fig. 3: Coverage of non-empty regions in rule sets of various
type (IPv4 prefixes, ACL, a rule set with many overlaps)
by header traces of different size generated using the trace
generator of original ClassBench (average of 10 traces).

TABLE I: Utilized data sets. OpenFlow set of3 exists in
several instances, one for each day in the given interval.

Prefixes
Name or Rules Source Date

IPv4 Prefix Sets
eqix_2019 787 885

Route Views [25]
2019-07-02

eqix_2005 164 455 2005-07-02
rrc00_2019 812 723

RIPE RIS [26]
2019-07-02

rrc00_2005 168 525 2005-07-02
IPv6 Prefix Sets

eqix_2019 73 880
Route Views [25]

2019-07-02
eqix_2017 42 401 2017-07-02
eqix_2005 658 2005-07-02
rrc00_2019 75 008

RIPE RIS [26]
2019-07-02

rrc00_2017 41 838 2017-07-02
rrc00_2005 499 2005-07-02

ACL Rule Sets
uni_2010 96 ACLs from 2010-08-30
uni_2015 122 university network 2015-01-14

OpenFlow Rule Sets
of1 16 889 2015-05-29
of2 20 250 OpenFlow Switch 2015-05-29

of3
1 757 in a data center 2015-06-18

to to
7 456 2015-07-14

A. IP Prefixes

1) IPv4: Figures 4 compare the same prefix set (eqix)
in fourteen years time. While the prefix length distribution is
almost the same between years 2005 and 2019 (Figure 4a),
nowadays we are facing an increase of two-children nodes in
the trie (Figure 4b) and the average skew is lower (Figure 4c).
The prefix nesting threshold remained unchanged between
2005 and 2019. The same results are also confirmed in prefix
sets rrc00. Growing number of two-children nodes and
their smaller skew correlates with approximately 4.8 times
higher number of prefixes after 14 years, as shown in Table I.
Branching probability and average skew distributions follow
the same trends and although the prefix sets grew in size, prefix
length distribution is the same. These results are aligned with
the path towards the saturation of IPv4 addresses [27].

2) IPv6: We propose for the IPv6 analysis the same statis-
tical approach being used in the IPv4 context. Prefix sets are
collected from the same core routers over a span of fourteen
years.
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(a) Prefix length distribution.
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(b) Branching probability distribution (two-children nodes).
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(c) Average skew distribution.

Fig. 4: Comparison between eqix IPv4 prefix sets in 2005
and 2019.

Figures 5 compare the selected parameters between the
eqix prefix sets from years 2005 and 2019. Only the first
64 trie levels are shown as there were no IPv6 prefixes longer
than 48 bits in 2005. Figure 5a shows that the prefix length
distribution has changed significantly in the last 14 years.
While prefix length 32 dominated the distribution in 2005, cur-
rently the most common prefix length is 48. This has affected
both the branching probability distribution (Figure 5b) and the
average skew distribution (Figure 5c). We believe that such a
big difference in the prefix length distribution is related to the
steady growth of IPv6 deployments, which is also indicated
by an increased prefix nesting threshold. In 2005, most of
the allocated prefixes belonged to Internet Service Providers
(ISPs) or Regional Internet Registries (RIRs), while nowadays
most of the prefixes belong to end users (organizations) [28].
Changes of branching probability and average skew between
2005 and 2019 have been also caused by the emergence of

prefixes longer than 64 bits. Prefix sets rrc00 show similar
behavior.

In 2005, both the eqix and rrc00 prefix sets contained
only a few hundreds of IPv6 prefixes, while there are currently
more than 73 thousands of prefixes in both sets (Table I). In
this context, big changes over the parameter distributions, i.e.,
branching probability and average skew, are not surprising.
However, if we compare parameter values over a shorter span
(between 2017 and 2019), where the prefix length distribution
is almost stable, the values of branching probability and
average skew distributions follow similar trends. Note that
the number of IPv6 prefixes in the eqix set almost doubled
between 2017 and 2019.

TABLE II: Distribution of rules over protocol values.

Data Set Protocol Values
wildcard TCP UDP

uni_2010 26.0 % 71.9 % 2.1 %
uni_2015 38.5 % 54.9 % 6.6 %

B. Ports and Protocol

The following analysis is performed using rule sets taken
from ACLs in a university campus network (Table I). The
data spans over a period of five years to enable a comparative
analysis over time. We first concentrated on the distribution
of rules over protocol values (Table II). The results show an
increased number of rules specifying a wildcard or UDP, while
the number of rules specifying TCP is decreasing. The ICMP
protocol is not specified in the available rule sets at all.

Table III presents the distribution of rules over port classes,
separately for source and destination port fields. The classes
being used to describe port ranges are five [18]:

• WC — wildcard
• HI — user port range [1024 : 65535]
• LO — well-known system port range [0 : 1023]
• AR — arbitrary range
• EM — exact match

While the source port field is always treated with a wildcard,
the destination shows an interesting property over the time.
In particular, arbitrary range (AR) values and wildcard (WC)
entries increase at the expenses of exact match (EM) ones.

TABLE III: Distribution of rules over port classes.

Data Set Port Classes
WC HI LO AR EM

Source Port
uni_2010 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %
uni_2015 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Destination Port
uni_2010 26.0 % 0.0 % 0.0 % 5.2 % 68.8 %
uni_2015 38.5 % 0.0 % 0.0 % 8.2 % 53.3 %

Finally, we analyzed the distribution of rules over combined
source-destination port pair classes (PPCs). Figures 6 and
7 are based on the uni_2015 data set and refer to TCP
protocol and UDP protocol-based rules, respectively. The most
common class pair being adopted in the TCP case is WC-EM,
which represents rules specifying a wildcard for the source
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(a) Prefix length distribution.
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(b) Branching probability distribution (two-children nodes).
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Fig. 5: Comparison between eqix IPv6 prefix sets in 2005 and 2019.

port and an exact value for the destination. The exact match
values refer mostly to the SMTP protocol, widely used for
e-mail transmission. On the other hand, the UDP case shows
a big utilization of the WC-AR class pair. The rising of new
applications and the massive usage of the RTP protocol-based
solutions have led to specifically designed classification rules.

The analysis reported in this section shows that wildcard and
TCP matching are commonly used in the protocol declaration.
There is also an increasing usage of arbitrary ranges in the
destination port field selection. As new applications arise, the
need for arbitrary ranges become mandatory, thus justifying
the obtained result.

C. OpenFlow
This section provides an analysis of real OpenFlow rule sets

taken from a cloud data center in operation. We focused our
study on understanding the statistical properties of OpenFlow-
based rule sets as well as their temporal behavior. This

is a once-in-a-lifetime opportunity to observe technological
changes on such a grand scale, which is both practically
and scientifically important. We first focus on a header fields
distribution (Section III-C1). Then we moved our attention
to fields dependency (Section III-C2) and rule set dynamics
(Section III-C3).

1) Header Fields: OpenFlow 1.0.0 extends the standard 5-
tuple, i.e., ip src, ip dst, l4 src, l4 dst, and ip proto, with
seven more header fields [29]. Figure 8 shows the header field
distribution in rule sets of1 and of2 introduced in Table I.
Fields from the standard 5-tuple present a non-wildcard value
in at least 20 % of rules, while, except for mac dst and
eth type, the others show a big predominance of wildcard
entries. Moreover, header fields vlan id, vlan prio, and ip tos
are never specified. It is clear that in this case the network
configuration plays a key role, i.e., virtual LANs are not
enabled.
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TABLE IV: Per-field count of unique values and associated uniqueness factor expressed in percentage (in parenthesis).

Rule Set in port mac src mac dst eth type ip proto ip src ip dst l4 src l4 dst
of1 123 (86.6) 27 ( 3.2) 593 ( 4.7) 1 (<0.1) 3 ( 0.3) 478 ( 4.6) 109 (0.9) 4 ( 2.9) 48 ( 2.2)
of2 140 (86.4) 19 ( 8.1) 791 ( 5.0) 1 (<0.1) 3 ( 0.1) 390 ( 2.8) 97 (0.7) 4 (<0.1) 8227 (92.7)

Fig. 6: PPC matrix for protocol TCP (rule set uni_2015).

Fig. 7: PPC matrix for protocol UDP (rule set uni_2015).

Table IV shows a per-field count of unique values2 being
used in rule sets of1 and of2, alongside their uniqueness
factor expressed in percentage. The factor estimates the per-
field variance between rules. For instance, a value close to zero
suggests little variance, i.e., rules specifying that field tend to
use every time the same value, while a value close to one
suggests the exact opposite. The uniqueness factor shows an
interesting property of the of1 data set. While the mac dst
field has the highest number of unique values, its uniqueness
factor is close to zero. In contrast, the in port field has the
highest uniqueness factor. Therefore, we can state that rules
specifying a value for in port are physical-port-oriented, i.e.,

2eth type presents just one value referred to the IPv4 type – 0x0800
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Fig. 8: Per-field distribution of rules from the combined
of1+of2 rule set over specified and wildcarded classes.

the value of in port represents the most important part of the
rule. Things changes in the of2 data set. In this case, we
can assert that rules specifying a value for the l4 dst field are
application-oriented.

Figure 9 shows the prefix length distribution for the ip src
field in data set of1. The most common prefix lengths are 0
(a wildcard rule), 10, and 32 (an exact match rule). Similar
trends can also be seen for the ip dst field of the of1 data
set and both IP fields belonging to the of2 data set. The
differences between the presented prefix length distribution
and the one from Figure 4a are big. We justify this considering
the nature of OpenFlow rules: they are not dictated by any
routing protocol unless a given daemon is running on the top
of the controller. In addition, the different environment (a core
router for the previous study and a cloud data center for this
one) plays an important role.

A further analysis of data sets of1 and of2 shows that
the TCP protocol is specified only in 14.03 % of rules while
10.59 % of rules specify the ICMP protocol. Trends similar
to what was shown in Section III-B can also be shown for
the distribution of source/destination port values over five port
classes and their combination into source-destination port pair
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classes.
2) Rule Types: In this section we provide an analysis of

fields dependency. In particular, we characterize the relation-
ship between header fields to study which fields are more
likely to be specified together. Figure 10 shows the results of
our analysis on the combined of1+of2 rule set. We define
rule type as a template that indicate which header fields are
specified, i.e., have a non-wildcard value in a rule. To easier
the graph representation, each rule type has been associated to
a 12-bit number (rule type number) where each bit is referred
to a given header field. The bit set to 1 stands for a specified
field, while 0 for a wildcard. While it is clear that rule type
number 0 refers to the combination of all header fields with a
wildcard and 4 095 the exact opposite, it is important to define
the bit-field correlation to correctly read the proposed graph.
Starting from the most significant bit we used the following
order: in port, mac src, mac dst, eth type, vlan id, vlan prio,
ip tos, ip proto, ip src, ip dst, l4 src, and l4 dst. Given the
proposed encoding scheme, rule type number 796 refers to
rules where mac dst, eth type, ip proto, ip src, and ip dst
present specified values, while other fields a wildcard. Despite
there are 4 096 possible rule types, the amount of rule types
being used is much lower. In practice, our OpenFlow data sets
of1 and of2 contain rules of 18 types only. Six of them are
the most common and appear in more than 5 % of the cases.
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Figure 8 shows that eth type and ip proto are specified
by the same number of rules. Moreover, eth type is always
defined as IPv4 (value 0x0800) and it appears only in rules
that define also ip proto (note rule types 788, 789, 796, 1304,
and 1305 in Figure 10). For the sake of analysis they can be
considered redundant. Thus, mac dst is the only OpenFlow
header field that is specified in all the most common rule types.

3) Dynamics: Figure 11 shows the dynamics of rule set
of3 over a two-week period. We define the rate of changes
as the size (cardinality) of symmetric difference divided by
the size of union of of3 in two subsequent days.

The studied data center environment has 220 physical
hypervisors. The analysis has been performed exporting a flow
table snapshot from the same hypervisor every day at the
same time. Users creating/deleting virtual machines (VMs) or
updating security profiles on any VM trigger a flow change.
While the rate remains stable in June (not shown) and for the
first week of July, it presents a spike on 7th July 2015.
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Fig. 11: Rate of changes (compared to the previous day) of
rule set of3 between 1st and 14th July 2015.
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Fig. 12: Size of rule set of3 between 30th June and 14th July
2015.

The behavior can be justified with Figure 12. On that day,
in fact, the number of rules decreased drastically, thus creating
the big spike in the rate of changes.

IV. CLASSBENCH-NG: NEXT
GENERATION CLASSBENCH

This section discusses the design of ClassBench-ng. Fig-
ure 13 shows its high-level architecture composed by three
main building blocks. The Analyser takes as input either
IPv4/IPv6 5-tuples or OpenFlow rules to produce seeds that
can be then used to feed the Rule Generator module in charge
of producing synthetic rule sets. The Trace Generator instead
produces a sequence of packet headers to exercise packet
classification algorithms with respect to a given filter set.

Fig. 13: High-level architecture of ClassBench-ng.

A. Analyser

ClassBench-ng already provides seeds for rule generation.
However, we believe a seed generator is necessary to adapt
the tool to a number of different scenarios, especially for
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OpenFlow-enabled networks where the dynamics are bounded
by applications running on top of a controller.

Both the 5-Tuples and OpenFlow Analysis blocks have
been built from scratch. Analyser of 5-tuples parses either
an IPv4 or IPv6 rule set according to a provided format
description and produces a corresponding seed with the same
structure as defined by original ClassBench. This analyser is
therefore able to parse rule sets in common formats (e.g.,
those defined by ipfw and iptables tools) as well as
any unusual and non-standard formats, as long as they can
be described in the format file. On the other hand, OpenFlow
analyser is able to correctly parse a rule set in the format used
by the ovs-ofctl tool [30] and generate the appropriate
OpenFlow 1.0 seed.

An OpenFlow seed is composed of three main elements:
(1) a rule type distribution, (2) a 5-tuple seed, and (3) an
OpenFlow-specific fields seed. The first provides an overview
of fields dependency (as shown in Section III-C2) and
the second supplies 5-tuple-related distributions. Finally, an
OpenFlow-specific fields representation is based on the fol-
lowing types:

• values — a distribution over a set of original values;
• parts — a distribution over a set of the selected part of

original values;
• size — a total number of unique original values;
• null — no representation.
The pairing between a type and a particular header field

reflects different requirements. As an example, the values
representation contains specific information from the original
rule set. Therefore, it is appropriate only for fields that do
not carry confidential data, i.e., in port and eth type. On the
other hand, null and size representations do not include values
from the original rule set, thus they are suitable for header
fields carrying confidential content. The former (null) is used
for header fields with a relatively small number of possible
values, i.e., vlan prio and ip tos, while the latter (size) is used
for header fields with a potentially big subset, i.e., vlan id.
Finally, parts represents a trade-off between values and null.
ClassBench-ng uses this representation for the mac src and
mac dst header fields, as it stores their vendor part in a seed.

B. Rule Generator

This module can successfully generate rule sets of various
length given an input seed reflecting either IPv4, IPv6 or
OpenFlow semantic. The first two capabilities have been built
on top of the original ClassBench while improving its original
fidelity. The OpenFlow rule generator has been created from
scratch, instead.

1) IPv4 and IPv6: Our first insight is that it is possible
to restructure the original ClassBench to generate both IPv4
and IPv6 rule sets. The main reason is that the construction
mechanic adopted by ClassBench does not depend on specific
IPv4 features and thus can be potentially extended to support
larger fields, i.e., IPv6. To improve its generation fidelity
(Section II-A) we designed a solution that iteratively build an
output rule set with characteristics as close as possible to the
input seed. The pseudocode in Figure 14 shows the process of

1: function IMPROVEDCLASSBENCH(seed, size)
2: output rules← ∅
3: rules← CLASSBENCH(seed, size · 100)
4: src trie← TRIEPRUNING(rules.src trie, seed, size, 4)
5: dst trie← TRIEPRUNING(rules.dst trie, seed, size, 4)
6: max match← MAXBIMATCH(src trie, dst trie, rules)
7: for each rule ∈ max match do
8: output rules← output rules ∪ {rule}
9: rules← rules \ {rule}

10: REMOVEPREFIX(src trie, rule.src prefix)
11: REMOVEPREFIX(dst trie, rule.dst prefix)
12: for each dst prefix ∈ dst trie do
13: if not TRIEISEMPTY(src trie) then
14: rule← SELECTRULE(rules, dst prefix)
15: rules← rules \ {rule}
16: src prefix← GETANYPREFIX(src trie)
17: REMOVEPREFIX(src trie, src prefix)
18: REPLACESRCPREFIX(rule, src prefix)
19: output rules← output rules ∪ {rule}
20: return output rules
21: end function

Fig. 14: Pseudocode of rule set construction in Improved
ClassBench.

rule set construction in our Improved ClassBench block. The
tool first creates a big rule set using the original ClassBench
application (line 3). Then it prunes the tries representing
source and destination IP prefix sets to converge on a solution
which is accurate and contain the target number of IP prefixes
(lines 4, 5). The algorithm performing the trie pruning is
described in Figure 15.

The main idea behind Improved ClassBench is to select rules
from the initial set, i.e., rules, that contain source/destination
IP prefixes available also in the pruned tries, i.e., src trie and
dst trie. To find these rules, the tool employs the maximum
matching in a bipartite graph algorithm (line 6). The selected
rules are added to the final set, i.e., output rules, as shown in
line 8. Every time a new rule is added, it is also removed from
the initial set (line 9) and its source and destination prefixes
are removed from the pruned tries as well (lines 10, 11). In
case the maximum matching does not return the target number
of rules, the last loop (line 12) creates the remaining rules by
replacing a source prefix with an arbitrary prefix from src trie
(lines 14 to 18).

Figure 15 shows the pseudocode of the previously intro-
duced trie pruning process. In addition to its parameters trie,
seed (target values of trie parameters are extracted from line 3
to 6), and target size, parameter n is used to fix the number
of iterations over the last two pruning steps. These iterations
try to minimize the negative effect of the convergence over
the target amount of prefixes on average skew. While each
iteration decreases the number of prefixes in the trie by
1
n ·orig size (line 13), the last iteration adjusts the number of
prefixes to the target value (target size parameter), as shown
in line 11.

Branching Probability Adjustment: This step (line 7)
adjusts branching probability at each trie level (starting from
the root of the trie) by removing a subtree of two-children
nodes and then a subtree of one-child nodes. Sub-trees to be
removed are selected increasingly according to the number of
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1: function TRIEPRUNING(trie, seed, target size, n)
2: orig size← GETSIZE(trie)
3: prefixes← GETPARAM(seed, “prefix length distr”)
4: one child← GETPARAM(seed, “one child prob”)
5: two children← GETPARAM(seed, “two children prob”)
6: skew ← GETPARAM(seed, “skew distr”)
7: ADJUSTBRANCHING(trie, one child, two children)
8: for each i ∈ [1, n] do
9: ADJUSTSKEW(trie, skew)

10: if i = n then
11: ADJUSTPREFIXES(trie, prefixes, target size)
12: else
13: ADJUSTPREFIXES(trie, prefixes, n−i

n
· orig size)

14: return trie
15: end function

Fig. 15: Pseudocode of trie pruning.

1: function OPENFLOWGENERATION(seed, size)
2: of rules← ∅
3: ipv4 5tuples← IMPROVEDCLASSBENCH(seed, size)
4: for each rule ∈ ipv4 5tuples do
5: rule type← GENERATE(seed, “rule type”)
6: for each field ∈ IPv4 5-tuple fields do
7: if field /∈ rule type then
8: REMOVE(rule, field)
9: for each field ∈ OpenFlow-specific fields do

10: if field ∈ rule type then
11: field value← GENERATE(seed, field)
12: ADD(rule, field value)
13: of rules← of rules ∪ {rule}
14: return of rules
15: end function

Fig. 16: Pseudocode of OpenFlow rules generator.

prefixes they carry. Moreover, this step never removes the last
branch with the maximum prefix nesting to not alter the prefix
nesting threshold (already met by original ClassBench).

Average Skew Distribution Adjustment: This step (line 9)
increases or decreases average skew at each trie level (starting
from the leaves of the trie). In particular, it removes prefixes
from the lighter or the heavier subtree of two-children nodes.
As in the previous case, nodes are selected increasingly
according to the total number of prefixes in their subtrees.
This step does not remove the last prefix from the leaf nodes
and it tries to not alter average skew when removing prefixes
at already adjusted levels, i.e., levels below the current level.

Prefix Length Distribution and the Total Number of
Prefixes Adjustment: This step (lines 11 and 13) removes
prefixes at each trie level (starting from the root of the trie)
to get their total number matching the target value. When
removing the prefixes, the algorithm also tries to not alter the
skew of two-children nodes; this is obtained by tracking the
number of prefixes that should be removed from each subtree.
Similarly to the average skew distribution adjustment, this step
does not remove the last prefix from leaf nodes: doing so
would imply the deletion of the whole branch, thus altering
the branching probability.

2) OpenFlow Generation: The OpenFlow Generation
block generates a set of OpenFlow rules from an input seed.
Figure 16 shows the pseudocode of the generation process.

1: function TRACEGEN(rules, size, overlap foc, par a, par b)
2: gen num← NOREUSEGEN(rules, size)
3: overlap← ∅
4: while gen num < size do
5: prim← SELPRIM(overlap foc, overlap, rules)
6: sec← SELSEC(prim, rules)
7: hdr ← GENHDR(prim, sec)
8: gen num += PRINTHDRS(hdr, par a, par b)
9: if OVERLAP(prim, sec) then

10: overlap← overlap ∪ {prim, sec}
11: mrg ← MERGERULES(prim, sec)
12: nsec← SELNSEC(mrg, prim, sec, rules)
13: if OVERLAP(mrg, nsec) then
14: overlap← overlap ∪ {nsec}
15: hdr ← GENHDR(mrg, nsec)
16: gen num += PRINTHDRS(hdr, par a, par b)
17: end function

Fig. 17: Pseudocode of header trace generator.

IPv4 5-tuples are generated according to the OpenFlow seed
using the modules present in the Improved ClassBench block
(line 3). Each generated 5-tuple is then transformed to an
OpenFlow rule that complies with the generated ruletype
(line 5). In particular, some of the created fields might be
removed (function REMOVE in line 8) and some OpenFlow-
specific fields might be added (function ADD in line 12).

To generate consistent OpenFlow rules, some dependency
among fields has to be ensured. As an example, the value
of eth type depends on the presence of several others header
fields, e.g., the presence of a VLAN tag. Per-field constraints
are also taken into account: the value of ip tos is randomly
selected from a pool of values defined by IANA [31], while the
values of 0x000 and 0xFFF for vlan id are not allowed (the
VLAN standard [32] reserves these values for a special pur-
pose). A similar approach is applied when generating the value
of mac src and mac dst, which use the parts representation.
Their vendor part is generated according to the distribution
from the seed, but the device part is randomly generated.

C. Trace Generator

This module generates a sequence of packet headers that
match an input rule set, i.e., IPv4, IPv6 or OpenFlow, and
cover a high percentage of non-empty regions at the same time
(Section II-B). The pseudocode of the trace generator is shown
in Figure 17. First, the function NOREUSEGEN randomly
iterates over the rules provided as input and generates a
matching header for each of them (line 2). The function exits
when either the required trace size is reached or all the input
rules have been scanned. If the latter, a new loop starts to reach
the requested size (line 4). The main idea behind this loop is to
augment the trace with headers matching more than one rule
at a time. To do so, it is important to find overlapping rules.
Depending on the amount of present overlaps and the overall
size of a rule set, finding all overlaps may be impossible
due to memory requirements and time complexity. Instead of
performing such analysis, the generator iteratively selects a
random primary rule prim (line 5) with a bias towards known
overlapping rules. The function SELSEC tries to pair prim with
an overlapping secondary rule (line 6). If a match is not found
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after a number of tries, the last unsuccessful pairing is used. A
header is generated (line 7) by choosing values that match both
rules where possible, otherwise prim’s conditions are favored.
The header is then inserted into the trace multiple times, where
the number of repetitions is sampled from a Pareto distribution
(line 8). If an overlapping pair is found, a new temporary rule
is created by merging the two rules (line 11). It is then used
as a new primary rule and the same process of searching for
an overlap repeats. This time a header is generated only if an
overlapping pair is found.

V. CLASSBENCH-NG EVALUATION

This section first evaluates ClassBench-ng’s Rule Gen-
erator, focusing on the generation of IPv4 prefixes (Sec-
tion V-A), IPv6 prefixes (Section V-B), and OpenFlow rules
(Section V-C). In the case of IPv4 prefixes we compare
ClassBench-ng against ClassBench [18] and FRuG [19], while
IPv6 prefixes generation fidelity is compared against Non-
random Generator [33]. Finally, the OpenFlow Generation
block is evaluated against FRuG [19]. We do not asses layer
four ports and protocol generation, as ClassBench-ng relies
directly on ClassBench for them.

The evaluations of Rule Generator use the root-mean-square
error (RMSE), defined in Equation 2, to fairly compare the
different tools. In the equation, n represents the number of
generated rule sets, ȳ is the target value, and yi stands for the
generated ones. The experiments are carried on by generating
10 rule sets, i.e., n = 10, using tool-specific seeds extracted
from an original rule set. In this case, the characteristics of
the original rule set represent the target values, i.e., ȳ, against
which we compare the same characteristics extracted from rule
sets generated by various tools, i.e., yi.

RMSE =

√√√√ 1

n

n∑
i=1

(ȳ − yi)2 (2)

The last part of this section is devoted to the evaluation
of ClassBench-ng’s Trace Generator (Section V-D). We com-
pare ClassBench-ng against original ClassBench using three
parameters: the coverage of a rule set by the generated trace,
generator’s run time and its memory consumption. Similarly to
the evaluation of Rule Generator, presented results are based
on 10 independently generated traces for each experimental
setting.

A. IPv4 Prefixes Generation

This section compares the RMSE of ClassBench-ng, Class-
Bench, and FRuG on IP prefix set parameters. We first
generated an original rule set with ClassBench using the
acl4 seed provided with this tool. Then, capitalizing on
FRuG/ClassBench-ng capabilities of producing input seeds
from an input rule set, we created the appropriate seeds for
FRuG, ClassBench-ng, and ClassBench. We then used these
seeds to generate back rule sets whose characteristics are
assessed using their RMSE.

The comparison of ClassBench-ng, ClassBench, and FRuG
on IP prefix sets generation is shown in Figures 18. In terms of
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Fig. 18: Comparison of root-mean-squared error of
ClassBench-ng, ClassBench, and FRuG in IPv4 prefix
sets generation.

a branching probability distribution (Figure 18b), ClassBench-
ng outperforms ClassBench and results to be worse than FRuG
at only one trie level. The situation is more balanced with re-
spect to an average skew distribution (Figure 18c). In this case,
ClassBench-ng is more precise in approximately 50 % of trie
levels when compared against ClassBench and in more than
80 % of levels when compared against FRuG. On the other
hand, Figure 18a shows poor performance of ClassBench-ng
with respect to prefix length distribution fidelity. Although it is
not possible to improve ClassBench-ng generation fidelity for
this parameter without impacting negatively on the other ones,
it is worth noting that in this case the RMSE is ten times lower
than for the other parameters, making ClassBench-ng overall
a more accurate solution. In fact, Figure 19 shows the average
RMSE per trie level when all the evaluated parameters are
considered at once. In this case, ClassBench-ng outperforms
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the other solutions in most of the trie levels, and in particular
the 24th, which is the most commonly used in operation
(Section III-A).
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Fig. 19: Average root-mean-squared error of ClassBench-ng,
ClassBench, and FRuG in IPv4 prefix sets generation.

B. IPv6 Prefixes Generation

To evaluate the quality of IPv6 prefix set generation of
ClassBench-ng against Non-random Generator, we used two
prefix sets that come from the same core router. An input
seed for ClassBench-ng was extracted from IPv6 prefix set
rrc00_2019, while Non-random Generator’s input consisted
directly of IPv4 prefix set rrc00_2019. Although such a
setup leads to a not entirely fair comparison of the tools, we
note that Non-random Generator requires an IPv4 prefix set
to generate an IPv6 prefix set.

Results of the comparison are shown in Figures 20. Both
ClassBench-ng and Non-random Generator achieve compara-
ble quality of generation in terms of a prefix length distribution
(Figure 20a). However, ClassBench-ng is more precise with
respect to a branching probability distribution (Figure 20b)
and Non-random Generator wins the comparison on an average
skew distribution (Figure 20c).

C. OpenFlow Rules Generation

OpenFlow rules generation capability of ClassBench-ng is
compared against FRuG on two different aspects: (1) field de-
pendencies represented by the rule type parameter introduced
in Section III-C2 and (2) generation of selected OpenFlow-
specific fields. As a common original rule set, which is
required to fairly asses the two tools using an RMSE, we
chose of1.

Figure 21a compares the ClassBench-ng rule type RMSE
against the one obtained with FRuG. With respect to this
experiment, our tool clearly outperforms FRuG as it achieves
higher RMSE only for rule types 1304 and 2048. Therefore,
ClassBench-ng is more accurate in characterizing the relation-
ship between header fields, i.e., which fields are more likely
to be specified together in a rule. ClassBench-ng also proves
to be more accurate in the generation of selected OpenFlow-
specific header fields (Figure 21b). As vlan id, vlan prio,
and ip tos are always wildcarded in available rule sets, we
focus the assessment of OpenFlow field generation on the
in port, mac src, mac dst, and eth type header fields. While

the average RMSE of ClassBench-ng and FRuG is almost the
same (and very low) for in port, in the case of other fields our
tool is clearly better. Finally, Figure 21c shows the RMSE for
the values of vendor part of the mac dst field. ClassBench-ng
outperforms FRuG for all generated values.

D. Header Trace Generation

The evaluation of ClassBench-ng’s Header Trace Generator
was performed using at least one input rule set for each
supported type (see Table V). These rule sets were generated
by ClassBench-ng’s Rule Generator using seeds extracted from
corresponding real rule sets (see Table I) or a seed taken from
original ClassBench (i.e., acl4_gen). With the exception of
an OpenFlow rule set, the size of the generated rule sets is
of the same order of a magnitude as in case of corresponding
real rule sets.

TABLE V: Gereated rule sets used as trace generator’s input.

Name Rules Overlaps Regions
ipv4_rrc00_2019_gen 100 000 12 095 100 000
ipv6_rrc00_2019_gen 10 000 1 10 000
acl4_gen 1 000 332 1 287
of1_gen_1k 1 000 40 800 41 800

Table V shows the number of rules, rule overlaps, and
distinct regions (as defined in Section II) for each rule set.
While overlaps do not introduce new regions in case of IPv4
and IPv6 prefixes (a longer prefix is always fully contained in
a shorter prefix), this is not the case for more complex rules
like ACL and OpenFlow. Therefore, to allow a full coverage
of rule set’s regions, the size of a header trace generated by
the trace generator has to be proportional to the number of
regions in the input rule set, not its size in terms of rules.

Firstly, we evaluated the coverage of rule sets’ regions
by header traces of a various size generated using Header
Trace Generators of ClassBench and ClassBench-ng. Since
the trace generator of ClassBench is able to produce traces
that cover up to 100 % of regions in IP prefix sets (see
Figure 3), Figure 22 presents the results for more complex
rule sets (i.e., ACL and OpenFlow) only. The figure clearly
shows that in case of reasonably large ACL traces (the same or
larger number of headers compared to the number of regions),
ClassBench-ng’s trace generator is able to produce traces that
cover approximately 20 % more regions than traces generated
by ClassBench’s trace generator. Moreover, the results are
even better for the OpenFlow rule set. Its coverage keeps
increasing with larger traces generated by ClassBench-ng’s
trace generator, although it is constant (and very small) in
case of traces generated by the trace generator of ClassBench.

Finally, we evaluated memory consumption and execution
time of the trace generators. Although memory consumption
of ClassBench-ng’s trace generator is always little higher
compared to the trace generator of ClassBench (see Table VI),
both generators have almost constant memory requirements,
regardless the size of a generated trace. ClassBench-ng’s trace
generator thus achieves a better coverage at the cost of higher
excution time, which rapidly increases with the complexity
of an input rule set and the size of a generated trace. For
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Fig. 20: Comparison of root-mean-squared error of ClassBench-ng and Non-random Generator in IPv6 prefix sets generation.

instance, to generate a trace containing 5-times more headers
compared to the number of regions, ClassBench-ng needs
3 orders of a magnitude longer time compared to original
ClassBench in case of IPv4, IPv6, and ACL rule sets and
2 orders of a magnitude longer time in case of an OpenFlow
rule set. Nevertheless, absolute execution time of ClassBench-
ng’s trace generator (between 29.4 s for ACL and 1497.8 s for
IPv4) can be seen as affordable, considering that a header trace
corresponding to a rule set is generated only once and then
used multiple times.

VI. RELATED WORK

In the absence of publicly available classification rule sets,
past researchers faced the problem of how to realistically
assess the performance of new packet classification algorithms.
While a limited number of research groups obtained access to
real rule sets through confidentiality agreements, others dealt
with frameworks for synthetic rule sets generation. In this

TABLE VI: Peak real memory usage of ClassBench’s and
ClassBench-ng’s trace generators when generating header
traces with size between 1 % and 500 % of regions in a
corresponding input rule set (average of 10 runs).

Header Trace Generator IPv4 IPv6 ACL OpenFlow

ClassBench min [MB] 306.0 186.9 175.1 175.0
max[MB] 339.0 191.0 175.4 175.2

ClassBench-ng min [MB] 317.7 188.1 175.3 175.3
max[MB] 351.0 192.2 175.6 175.3

scenario, ClassBench [18] is the well known and commonly
used framework for IPv4 classification rules generation. So far,
it has been a very useful tool but it does not reflect anymore
current research community needs, as it focuses only on IPv4.

Sun et al. [20] responded to the increasing interest towards
IPv6 protocol proposing ClassBenchv6, a reshaped version of
the ClassBench framework for the IPv6 world. With a focus
on IPv6 lookup tables only, Wang et al. [33] developed new
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Fig. 21: Comparison of root-mean-squared error of
ClassBench-ng and FRuG in OpenFlow rule sets generation.

algorithms for the synthetic generation of IPv6 forwarding
tables. Following this effort, Zheng et al. [34] developed a
scalable IPv6 prefix generator, called V6Gene, for IPv6-based
route lookup algorithms benchmarking.

With an eye towards new future protocols, Ganegedara et
al. [19] proposed FRuG, a generic synthetic rule generator. It
allows the user to select the protocol fields and the character-
istics of each field, which can either be defined by the user or
configured to follow a distribution from an input seed file. The
user has complete control over the structure and the size of
the rule table which makes it a powerful benchmark to assess
various packet forwarding algorithms and for different types
of routers. However, only MAC and IP addresses fields can be
set to follow an input distribution. The other OpenFlow-related
fields need to be manually configured by the user, making this
solution less attractive if a realistic set of synthetic rules needs
to be generated.
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Fig. 22: Comparison of complex rule sets’ regions coverage by
header traces of various size generated using trace generators
of original ClassBench and ClassBench-ng (average of 10
traces).

ClassBench-ng has been designed to provide the flexibility
of generating IPv4, IPv6, and OpenFlow rule sets. It accepts
an input seed file which can specify a distribution for all the
OpenFlow 1.0.0 matching fields, making this solution very
attractive when a realistic rule set generation is needed. The
detailed analysis performed on real sets allows to include in
the tool input seeds that reflect the real world properties.
In addition, the ability to self-generate seeds from real sets
allows to create a repository for a number of seeds that reflect
different scenarios, e.g., data center, Internet Service Provider,
or Internet eXchange Point.

VII. CONCLUSION

This paper presents ClassBench-ng, a new open source tool
for the generation of synthetic IPv4, IPv6, and OpenFlow
classification rules alongside associated header trace matching
them. We analyzed real sets taken from backbone routers, edge
firewalls and cloud data centers to gain a better understanding
of the statistical properties of nowadays’ classification rules.
We used our insight to design specific input paramter files
that feed our generators. Furthermore, to make this solution
attractive in the long term and for a wide number of different
use cases, we upgraded our tool with the possibility of creating
input parameter files from real rule sets.

We aim to use the tool’s repository as a place where
researchers and operators can continuously upload new pa-
rameter files that match a number of different environments
or use cases, e.g., data center, Internet Service Provider,
Internet eXchange Point. We believe that this aspect will
further increase the impact of ClassBench-ng on the research
community.
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