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Vehicle Speed Measurement Using
Stereo Camera Pair

Pavel Najman and Pavel Zemčík , Member, IEEE

Abstract— We have proposed a novel method for vehicle speed
estimation using a calibrated and synchronized pair of stereo
cameras. In a newly proposed method, we first localize the vehicle
by detecting and tracking its license plate in a series of stereo
images; then, we triangulate the vehicle position along its trajec-
tory; and finally, we compute its speed based on the trajectory
and time. The experiments show that the proposed method over-
comes state-of-the-art results with a mean error of approximately
0.05 km/h, a standard deviation of less than 0.20 km/h, and a
maximum absolute error of less than 0.75 km/h. For the purpose
of evaluation, we have recorded a dataset that contains over
600 vehicles whose trajectories were recorded and for which
their ground truth speed was obtained from a pair of single
beam LIDARs in optical gate configuration. Using the presented
method, the speed was measured for over 99 % of the recorded
vehicles. Others were rejected by the method mainly due to their
short trajectories, obstructed license plates or frame errors that
would adversely affect the precision of the measurement.

Index Terms— Vehicle speed measurement, stereo matching,
sub-pixel registration, stereo vision.

I. INTRODUCTION

THE speed of a moving vehicle directly influences both
the risk of a crash and its consequences. To minimize

this risk and to increase the road traffic safety, speed limits
are imposed that should ensure that in the event of a crash,
impact energies remain below the threshold likely to produce
either death or serious injury.

The threshold usually depends on the most probable crash
scenario which varies with road location. In residential and
high pedestrian traffic areas it is usually around 30 km/h.
In cities or in areas with a higher probability of side impact
of vehicles and with a lower amount of pedestrian traffic, it is
around 50 km/h. And for highways, where rear-end collisions
are prevalent it is around 130 km/h [1].

In order to enforce the imposed speed limits, individual
countries typically implement metrological legislation that
defines possible tolerances of measurement devices usable for
speed enforcement. In most cases, the maximum allowable
tolerance is in the units of percents, in the case of the EU,
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for example, the maximum allowable tolerance is 3 % of
the measurement device range (i.e. in the case of 100 km/h
range, the maximum allowable tolerance is ±3 km/h). More-
over, tolerance should be met with a 99.9 % probability
in this case (in the metrological evaluation procedure, only
one in 1000 measurements can produce an erroneous result).
Therefore, if the distribution is Normal, the standard deviation
should not exceed 1 km/h.

The tolerances vary by country. Some countries leave the
enforcement tolerance up to the discretion of the arresting
officer or, in case of automatic systems, on the device manu-
facturer. Other countries have an official tolerance specified by
law. The official tolerance places a requirement of a maximum
allowed measurement error on a speed measuring device.
Consequently, only those devices that fulfil the maximum error
condition can receive proper certification and can be used by
officials for speed limit enforcement. The tolerances range
from very strict - 1 km/h (e. g. in Sweden) - to very lenient
20 km/h (e. g. in Russia) [2].

The speed measurement devices are usually classified as
either intrusive or non-intrusive [3]. Pneumatic tube detec-
tors, inductive loops, magnetometers and piezoelectric sen-
sors belong to the intrusive category. Although the devices
are accurate, and by themselves low cost, they need to be
embedded into the road. Their installation and maintenance
are therefore problematic and expensive because they usually
require lane closure, which disrupts the traffic, and a pavement
cut with a subsequent repair or resurfacing of the road.

The non-intrusive devices are placed either above the road
or by its side which makes their installation and maintenance
easier and cheaper in comparison with intrusive technologies.
Ultrasonic sensors, infrared sensors, radars and camera-based
technologies fall into this category. Ultrasonic, infrared and
radar systems all transmit a signal and analyze the signal that
was received based on the transmitted one. The speed can
be measured either indirectly, e. g. by detecting the vehicle
at the start and the end of the detection zone, or directly,
e. g. by exploiting the Doppler effect [4], [5]. Nowadays, more
attention is given to camera-based technologies because they
provide a rich array of data that can be quickly processed
on contemporary hardware. Single camera devices are very
interesting from an application perspective and a lot of work
has been done to improve the methods they use for calibration
and speed estimation. But certification of these devices is
problematic. Stereo camera devices, on the other hand, are
based on more transparent calibration and speed estimation
methods and their certification should be easier. In our case,
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the goal is to provide easy and metrologically acceptable
calibration and measurement algorithms that would be feasible
to implement in real-life devices.

Three main stereo reconstruction approaches include
local [6], semi-global [7], and global [8]. In our case, we need
only several individual points along the vehicle trajectory to
compute its speed; therefore, the reconstruction of the whole
scene is not necessary. The approach we use to get the
trajectory could be considered local and sparse.

The key contributions of this paper are:
• Localization of the vehicle by detecting and tracking its

license plate in a series of stereo images.
• Triangulation of the vehicle position along its trajectory.
• Speed computation that involves vehicle motion model.

Together they form a novel method for vehicle speed measure-
ment using a stereo camera pair whose results comply with
the EU metrological standards.

II. RELATED WORK

Stereovision-based methods for vehicle speed estimation
usually assume synchronized cameras previously calibrated
using already established methods. Their most important
parts deal with feature point selection and correspondence
search. Only a few papers that use a stereo camera pair for
vehicle speed estimation exist.

Jalalat et al. [9] use a vertical stereo setup pre-calibrated
using a chessboard pattern [10]. After background subtraction
in a selected ROI, they detect and track vehicles using a
Viola-Jones cascade classifier and Kalman filter. The feature
points are selected by uniform sampling in the lower part
of a detection bounding box and corresponding points are
found with sub-pixel precision by exploiting the single-step
DFT technique. The average vehicle speed is expressed in
terms of distance travelled, computed from triangulated vehicle
positions, per time between two frames. They report the speed
measurement error as an arithmetic mean of absolute error
percentages compared to reference measurements by Fama
Laser III. The worst mean percentage error was 3.3 %. The
absolute error was not reported.

El Bouziady et al. [11] use a horizontal stereo laboratory
pre-calibrated setup. After background subtraction, vehicles
are detected and tracked as convex blobs. The SURF detector
and descriptor is used to select the important points on the
vehicle and to find the point correspondences. They computed
the average speed in the same fashion as Jalalat et al. [9]. They
compared the measured speed with ground truth obtained from
a GPS. The result was a mean squared error of 1.67 km/h on
a dataset with a speed range of 60-90 km/h and 2.33 km/h on
a dataset with a speed range of 90-120 km/h. The maximum
absolute error was 2 km/h common for both datasets.

Yang et al. [12] use a horizontal stereo setup calibrated
using Zhang’s method [10]. They detect license plates using
a single shot multibox detector. License plate tracking and
feature point extraction and matching are done using speed up
robust features (SURF) [13]. They retain only those feature
point pairs that lie near the centre of the detected license
plate. These points are then triangulated and their distance

to the camera on the left is computed. The triangulated
points whose absolute distance z-score is greater than one are
filtered. Of the remaining points, the one that is closest to the
centre of the license plate is considered as the exact spatial
location of the target vehicle in the current stereo frame pair.
Using the spatial locations of the vehicle in two frames they
compute the average speed in the same fashion as in previous
works [9], [11]. They compared the measured speed with the
ground truth obtained from a professional satellite speed meter.
Their dataset contained 4 vehicle passes with a speed range of
between 20 and 50 km/h. The mean error was 0.02 km/h, mean
squared error was 0.42 km/h, the maximum absolute error was
1.6 km/h with a maximum percentage error of 3.8 %.

Halfway between the stereo camera and single cam-
era setups are two-camera setups. Llorca et al. [14] use
two synchronized cameras with different focal lengths and
non-overlapping views. Both cameras are calibrated so their
intrinsic parameters and their extrinsic relationship with
respect to the road are known. The license plate is used for
vehicle detection and tracking is done using optical character
recognition. The calibration results and the known license plate
dimensions are used to compute the vehicle position with
respect to the road reference. The average speed is obtained
from computed positions and their timestamps. They compared
the measured speed with ground truth obtained from DGPS for
8 vehicle runs at 8 different speeds (10 - 80 km/h), that is,
64 runs in total. The mean absolute error was 1.44 km/h and
the maximum error was 2.62 km/h.

Most work in camera-based vehicle speed estimation
focuses on single camera setups. The single camera methods
are based on estimating the vehicle motion plane and scene
scale. Once these two pieces of information are known,
the distance that the vehicle travelled between the two frames
can be retrieved by measuring the distance between two points
on a rectified and scaled motion plane. The speed measurement
is then simply obtained by dividing the distance by the time
difference between the two frames. Different approaches on
how to estimate the motion plane and scene scale exist.

A fully automatic method was presented by Dub-
ska et al. [15]. This method recovers the motion plane from
two originally orthogonal directions. The first of the directions
is obtained from the direction of the traffic and the second
one from the direction of vehicle edges perpendicular to the
vehicle motion. The scene scale is acquired by constructing
3D bounding boxes around vehicles and relating the pixel
dimensions to the dimensions of an average vehicle based on
the statistical data of sold cars. They achieve a mean error
of 1.9 % (cca 1.5 km/h) and the worst error of 4.3 %.

Sochor et al. [16], [17] later enhanced the method of
Dubska et al. [15] by a fine-grained classification of vehicles,
thus improving the accuracy of the scene scale estimate. They
report a mean percentage error of 1.4 % and mean absolute
error of 1.1 km/h. 99 % of measurements had an absolute error
below 3 km/h and the percentage error below 4.1 %.

Luvizon et al. [18] proposed a method that requires manual
input in the form of measured distances between four points
on the road plane for each lane. These four points and their
distances then provide a scene scale as well as a way to rectify
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the road plane through homography. The travelled distance is
measured as a distance between license plate feature points
and the rectified and scaled road plane. But since the license
plate is located above the road plane the measured speed
is higher than the actual one. To mitigate that, they use a
simple multiplicative constant. They achieve the mean error
of -0.5 km/h with a standard deviation of 1.4 km/h. The worst
errors were -4.7 km/h and 6 km/h.

Famouri et al. [19] refined the approach of Luvi-
zon et al. [18] by measuring the distances on actual vehi-
cle motion plane by calculating the height of the license
plate above the road plane using the Shape-from-template
method [20]. By doing that, they reduced the mean error of
Luvizon et al.’s [18] method by 25 %.

III. PROPOSED METHOD

The equipment setup suitable for the proposed method
consists of a synchronized and calibrated pair of two identical
cameras with the same focal length.

In the proposed method, we exploit a stereo camera pair
already calibrated with known calibration features (calibration
error). The method relies on existing algorithms of license
plate detection. The performance of the license plate detection
algorithm affects only the fact whether the speed measurement
is performed at all, but does not affect its precision. Using
the license plate co-ordinates in a series of images, we first
localize the vehicles passing in front of the stereo pair in
the series of frames. Consequently, we triangulate the vehicle
position in the series of stereo images forming a trajectory
using the information known about the stereo setup and the
calibration information. Finally, once the trajectory and its
individual points are known, we compute the speed (and also
acceleration along the trajectory). An overview of the proposed
method is shown in Fig. 1.

A. License Plates Detection and Tracking

We assume that each vehicle has a license plate that is firmly
attached to its body at a clearly visible place. This assumption
allows us to reduce the task of vehicles detection to the task
of the license plates detection, which we consider to be much
easier due to the standardized appearance of the license plates
of a given country. Although the appearances of the license
plates differ among countries, they are usually similar enough,
so that a detector trained on the license plates of one country
is able to detect the license plates from other countries. In the
first step of our method, we detect and track the license plates
of moving vehicles.

We utilize existing WaldBoost [21] detector with LBP
features that was trained to detect license plates with a size of
approximately 90 × 24 pixels and without or with very small
rotation and perspective distortion. Our detector works best for
cameras placed on a gate or a bridge above the road looking
directly against or with the direction of traffic. Alternatively,
the cameras can be placed on a pole on the side of the road, but
the angle between the view direction and traffic flow should be
kept small. The output of the detector is the top left coordinate
and the size of a rectangle that contains the found license

Fig. 1. Overview of the proposed method. Vehicle trajectory is represented
using a set of license plate pairs that are extracted from input stereo images.
Several points are triangulated along the trajectory using known calibration
parameters. Model of vehicle motion is fitted to the triangulated points in
order to measure the vehicle speed.

plate. License plates in the left and right images are detected
separately.

We detect license plates in both images and assign each
detected license plate in the left image to a corresponding
license plate in the right image, if possible. We assert that
the matching license plates are approximately the same size,
located at approximately the same position in both images and
meet the epipolar constraint. The corresponding license plates
then form the license plate pair. For the depiction of detected
license plate pairs, see Fig. 2a.

For each license plate pair, we need to decide whether it
belongs to a new vehicle or to a vehicle that was seen before.
This can be done in numerous ways, for example, using license
plate correlation, OCR, optical flow or Kalman filtering.
We opted for the latter, that is, license plate tracking using
the Kalman filter based on the constant acceleration model.
The constant acceleration model approximately corresponds
to the motion of the license plates in the images. We chose
this approach because it provides a good trade-off between
speed, accuracy, and complexity. The approximate predictions
supplied by the Kalman filter are enough to perform the license
plate re-identification based on its detected and predicted posi-
tions in the image and enough to maintain the tracking context
in frames where the detection has failed. The tracking in our
case is implemented using re-detection and re-identification of
license plates in each frame. We maintain a Kalman filter for
each vehicle that is currently passing in front of the cameras.
Each license plate pair position is checked against all current
Kalman filters’ predictions. If its position is close enough to
some predicted position we assign the checked license plate
pair to a set of license plate pairs of the tracked vehicle and
update the filter accordingly, otherwise, new vehicle tracking
is initialized. When the vehicle passes out of view, we stop
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Fig. 2. License plates detection and tracking. (a) Detected license plates in
the image from the camera on the left and their matching counterparts in the
right camera image forming a license plate pairs. (b) The license plates search
areas in both images were constrained by foreground masks constructed using
background subtraction. The right image search area was further constrained
using epipolar geometry. (c) A vehicle with its set of all license plate pairs.

the tracking and start processing its set of license plate
pairs. A vehicle with its set of license plate pairs is shown
in Fig. 2c.

B. Point Matching and Triangulation

After vehicle localization, we are going to triangulate its
passage throughout the scene. First, from its set of license plate
pairs, we select the pair which contains the largest license plate
images. Then, we take the left license plate image of this pair
and uniformly sample nine points on it. Around the sampled
points we construct small rectangular regions of interest (see
Fig. 3a).

Next, we take another license plate pair from the set and
match the regions of interest to its left license plate image
in order to obtain the points that match the sampled points.
To achieve sub-pixel accurate matches, the regions of interest,
as well as the template license plate image, are scaled and
smoothed prior to template matching. For regions of interest,
we use a scale factor of ten. Since the template license plate
image is smaller than the sampled license plate image the

Fig. 3. Point matching and triangulation. (a) Template left image with
uniformly sampled points and regions of interests constructed around them.
(b) Reference right image. (c) Template image with sampled points warped
using rough homography computed from sampled points and their counter-
parts obtained by template matching the regions of interest to the reference
image. (d) Template image with sampled points warped using fine homogra-
phy computed using enhanced correlation coefficient maximization initialized
with rough homography.

scale factor used to scale the template image should be greater.
Because we do not know the exact value of this scale factor,
we try several scales within a reasonable range and choose the
one with the highest similarity score. We use the normalized
cross-correlation as a similarity metric.

The matched points and the sampled points are used to
compute homography transformation between the two left
license plate images. This homography transformation is fur-
ther refined using enhanced correlation coefficient maximiza-
tion [22]. Finally, the sampled points are transformed using the
fine homography in order to obtain fine point matches. These
fine point matches represent the sub-pixel accurate left image
positions of sampled points in a different time. We repeat the
matching process for the rest of the left license plate images
from the set and essentially track the sampled points along
the vehicle trajectory in left camera images with sub-pixel
precision.

So far we have several points in left camera images and in
order to perform triangulation, we need to identify their corre-
spondences in right camera images. We can employ a similar
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procedure as in the case of finding correspondences among left
camera images. First, we take a license plate pair from a set
of vehicle license plate pairs and select the left license plate
image. Then, we uniformly sample nine points in it, construct
the regions of interest, match them to the right license plate
image template, compute rough homography and refine it as
we did before. Finally, we compute the fine point matches
using sampled points from the left license plate image and fine
homography transformation. The reference image and template
images that are warped using the rough and fine homographies,
described above, are shown in Fig. 3b, 3c, and 3d. We repeat
this process for the rest of the license plate pairs from the set
and receive nine stereo point correspondences for each license
plate pair.

Given stereo point correspondences and known internal and
external stereo camera pair parameters, we can triangulate the
3D positions of points using existing algorithms. We use the
well known Linear-LS method [23].

C. Speed Computation

To compute the average speed of a passing vehicle, we uti-
lize the triangulated positions from the previous step and their
timestamps. First, we correct the triangulated positions by pro-
jecting them onto a common plane obtained as a least-square
fit through the triangulated points with outliers removed using
RANSAC. The corrected points are then subdivided into nine
sets in such a way that the same license plate points with
different timestamps belong to the same set. These sets are
processed separately. The points from a single set, together
with their timestamps, serve as an input to a model describing
the vehicle motion throughout the scene. We assume that
the vehicle is moving with constant or zero acceleration.
This type of motion can be described by the following
equation:

pi = p + v ∗ �ti + 1

2
∗ a ∗ �t2

i (1)

where pi is a co-ordinate of the current position of a corrected
triangulated license plate point in time i ; p is a co-ordinate
of initial license plate point position; v is a vector of initial
speed; a is a vector of acceleration; and �ti is the time
difference between the current and initial positions. We insert
our positional (pi ) and time (�ti ) data to the model and
construct a system of N ∗ 3 linear equations, where N is
a number of triangulated positions available. This system is
usually overdetermined (N > 3) and it can be formulated
as:

A ∗ x = b (2)

where A is a N ∗ 3 matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 �t0
1

2
∗ �t2

0

1 �t1
1

2
∗ �t2

1

. . .

1 �tN−1
1

2
∗ �t2

N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (3)

Fig. 4. Our stereo camera pair setup. Two cameras, ethernet switch, and two
batteries mounted on an aluminium profile.

b is a N ∗ 3 matrix of triangulated positions

b =

⎡
⎢⎢⎣

x0 y0 z0
x1 y1 z1
. . .

xN−1 yN−1 zN−1

⎤
⎥⎥⎦; (4)

and x is a 3 ∗ 3 matrix of unknown vectors p, v and a

x =
⎡
⎣

px py pz

vx vy vz

ax ay az

⎤
⎦. (5)

This system can be solved using various methods for solving
linear least square systems such as SVD decomposition. As a
result, we obtain an initial point position, initial speed, and
acceleration from which we can compute the average speed
on the recorded track:

vavg = ||AN−1 ∗ x − p||
�tN−1

(6)

where AN−1 is the last row of matrix A. In order to make
the computation of the average speed more robust to errors
in position triangulation, we employ RANSAC [24] based
approach to remove triangulated positions outliers. We repeat
this average speed computation process for each of the nine
sets with triangulated license plate points and, in the end,
we receive nine average speeds. Finally, we select the median
of the computed average speeds as the vehicle average speed.

IV. EVALUATION

The properties of our method are evaluated on a dataset we
recorded using prototype hardware. We focus the evaluation on
the precision and accuracy of speed measurement and then we
discuss the cases where the measurement cannot be performed.

A. Hardware

Our setup (see Fig. 4) consists of two custom made cameras
mounted parallelly on a 1 m long aluminium profile placed
on a sturdy tripod. The cameras are fitted with PYTHON
1300 global shutter CMOS image sensors and 35mm fixed
focal length lens, which is positioned is a such a way that
its principal axis is perpendicular to the sensor plane and
intersects it at a sensor centre. The image sensors have
0.0048 mm x 0.0048 mm square pixels and provide mono-
chrome 1280 × 1024 px images. Raw image data is streamed
at a rate of 20 frames per second through a gigabit ethernet
switch to a computer where the images are JPEG compressed
and stored for further processing. The shutters of the cameras
are synchronized using an external trigger with one camera
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Fig. 5. Histogram of reference average speeds measured by two LIDARs.

being the master who sends the trigger signal to the second
camera. The cameras and the switch are supplied power from
two 6400mAh LiPo batteries attached to the profile.

B. Dataset

For the purpose of evaluation, we have recorded a dataset
using the above-mentioned hardware. The whole dataset
was recorded during a single session lasting approximately
40 minutes. During this session, we recorded 654 vehicle
passes in two lanes. The left lane (from the point of view
of cameras) is fully visible on both cameras while the right
lane is only partially visible. The camera setup was placed on
a footbridge across the road looking from above towards the
incoming vehicles.

To obtain the reference data, we employed the same
approach as Sochor et al. [25]. We used two LIDARs
(LaserAce�IM HR 300) placed at the same height parallel
to each other and perpendicularly to the street. The distance
D between the LIDARs was 28.05 metres and they were
synchronized by the GPS time (Leadtek LR9540D). The
distance and time data from both LIDARs was logged in
and processed separately. From the logged data, we calculated
for each vehicle its immediate speed when entering the first
and second laser, its average speed on the distance D, its
average acceleration, and its length. For more details about
measurement process, reference data calculation, and the dis-
cussion of measurement error see Sochor et al. [25]. The
histogram of average speeds of the recorded vehicles over the
distance D is shown in Fig. 5.

We want to compare the average speeds measured by the
proposed method with the reference average speeds obtained
from LIDARs, but those values are comparable if and only if
they were both measured over the same section of the road.
As the section of the road covered by the two LIDARs and
the section of the road in the view of our stereo camera pair
do not fully overlap, the reference and the measured average
speeds are not directly comparable and we need to adjust
them so that the road section, where the speed is measured,
is common for both setups. The common section starts at the
point where the vehicle enters the first LIDAR and ends at the
point where the last vehicle license plate is recorded by both
cameras (see Fig. 6). Because our cameras and LIDARs are

Fig. 6. Schematic drawing of the relative positions of the sensors, their
ranges, and their common area.

time-synchronized, we can use their timestamps as a common
ground for such an adjustment.

The adjusted reference average speed over the common
section of the road is computed as:

vr = v + 1

2
∗ a ∗ (t1 − t0) (7)

where v is the reference immediate speed when entering the
first laser; a is the reference acceleration; t0 is the reference
time when the vehicle entered the first laser; and t1 is the time
when the last license plate of the vehicle was recorded.

The adjusted measured average speed over the common
section of the road is computed as:

p0 = p + v ∗ (t0 − t) + 1

2
∗ a ∗ (t0 − t)2

p1 = p + v ∗ (t1 − t) + 1

2
∗ a ∗ (t1 − t)2

vm = ||p1 − p0||
t1 − t0

(8)

where p0 and p1 are co-ordinates of vehicle positions at times
t0 and t1; t0 is the reference time when the vehicle entered the
first laser; t1 is the time when the last license plate of the
vehicle was recorded; p is a co-ordinate of the initial vehicle
position at time t ; v is the co-ordinate of immediate vehicle
speed at time t ; and a is the co-ordinate of vehicle acceleration.
The values of p, v, and a are obtained from a vehicle motion
model (Eq. 5).

C. Timestamp Assignment Latency

One more thing should be considered, and that is the
delay between the end of camera exposure and the timestamp
assignment, which, in our case, takes place in the computer
that stores the frames. The cameras we used, as soon as the
exposure ends, pack the read-out lines into the UDP packets
and send them to the computer where they are received by
the software. The timestamp is assigned immediately after
receiving the first UDP packet of a new frame, and it is the
same for both images.

We measure the timestamp assignment latency by pointing
the cameras on a series of LEDs which encode the millisecond
part of current time in a binary format (see Fig. 7). We examine
the recorded frames and compare the time encoded in LEDs
to the millisecond portion of the frame timestamp. In our
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Fig. 7. A camera image cutout that contains blinking LEDs. This image
was assigned a timestamp with millisecond portion of 729. The LEDs in the
image encode millisecond time just after the end of exposure which was 726
(whose binary image is 10110 10110 as seen above). The latency of timestamp
assignment, in this case, is therefore 3 ms.

case, the timestamp assignment latency has a mean value
of 2.5 ms and a standard deviation of 1 ms. The measured
values are used to correct the recorded frame timestamps in
Eq. 8.

D. Implementation

We broke the proposed method pipeline into five smaller
steps and implemented them as separate programs. These
programs correspond to License plate detection and matching,
License plate tracking, Point matching, Triangulation, and
Speed measurement. The pipeline was implemented in C++
with the help of OpenCV and Boost libraries. The programs
pass the data along the pipeline in JSON format through
standard streams.

During the implementation, we focused more on the pre-
cision and accuracy of the measurement rather than on the
optimality of the implementation or the speed of computation.
We performed only a few optimizations that were aimed
mostly at reducing the detection time of licence plates by
limiting the image area in which the license plates were
going to be detected. To limit the license plate detection
area, we first performed the background subtraction for each
image of the stereo image pair. The foreground image masks
we obtained are then morphologically dilatated to close the
holes. After that, the license plates are detected in the masked
left image. For each license plate found in the left image,
we compute an epipolar line in the right image using a detected
rectangle top left corner and fundamental matrix. We use the
computed epipolar lines to further limit the search area in
the right image. The foreground masks are shown in Fig. 2b.
Finally, we detect the license plates in the masked right
image.

In any case, we evaluate the average time of execution
for each implemented step separately. The evaluation takes
place on a Linux desktop computer with an Intel Core
i5-6500 processor running at 3.2 GHz with 24 GB RAM.
The data is obtained using a sample vehicle recording that
consists of 20 frames in which its license plate is successfully
detected. The results are summarized in Table I. The total
processing time currently exceeds the 50 ms time limit for
real-time processing of 20 frames per second supplied by
the cameras. The most time demanding step, despite our

TABLE I

AVERAGE PER FRAME EXECUTION TIME OF INDIVIDUAL PIPELINE STEPS

Fig. 8. Histogram of speed measurement errors.

simple optimization, is still the License plate detection and
matching step and it has become the prime candidate for
further optimization or implementation in hardware.

The total processing time per stereo frame with a single
passing vehicle is approximately 0.45 seconds. The average
number of stereo frames that we process per vehicle in our
dataset is 13. Therefore, we can process a single vehicle in less
than 6 seconds. If the average time distance between the two
incoming vehicles is more than our processing time, we would
be able to process all of them in near real-time. The mean time
distance between the two incoming vehicles in our dataset
acquired during "peak times" is approximately 3 seconds.
Processing the traffic of this volume in near real-time would
require cutting the processing time per vehicle to half or, for
example, adding another computing unit. However, the traffic
volume changes during the day, and, given enough storage,
we can utilize the low volume periods to catch up with
the processing of the stored frames. Because the real-time
processing is usually not a requirement for traffic enforcement
systems, we should be able to compute the speed for all the
passing vehicles as long as the traffic volume on a given
location is less than approximately 14400 vehicles per day
(600 per hour).

E. Speed Measurement

We evaluate the accuracy and precision of speed mea-
surement using the above-mentioned dataset. The speed is
measured for 653 of a total of 654 recorded vehicles. One
measurement is missing because the license plate detector
failed to detect the vehicle license plate. Detailed results for
all vehicles in the dataset can be accessed online.1 From the
measured values we compute the measurement error as:

e = vm − vd (9)

1http://www.stud.fit.vutbr.cz/ xnajma00/results.json
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TABLE II

COMPARISON OF STEREO AND TWO-CAMERA BASED VEHICLE SPEED MEASUREMENT METHODS

where vm is average speed measured using the proposed
method and vd is reference average speed from our dataset.
For the histogram of the speed measurement errors see Fig. 8.
Overall, the measured speed has a maximum negative error
of -0.56 km/h and a maximum positive error of 0.72 km/h.
The mean error is -0.05 km/h with a standard deviation
of 0.20 km/h. The mean absolute percentage error is 0.23 %
and maximum percentage error is 1.11 %.

We compare the speed measurement errors with three
other stereo-based vehicle speed measurement methods and
one two-camera method mentioned in chapter II, namely,
Jalalat et al.’s method [9], El Bouziady et al’s method [11],
Yang et al.’s method [12], and Llorca et al.’s [14] method.
The comparison is shown in Table II. The proposed method
achieves better results than the other methods in all compared
statistics on a much bigger and more diverse dataset.

V. CONCLUSION

We proposed a novel method for vehicle speed measurement
using a stereo camera pair. First, the method detects vehicle
license plates in both images and matches them together.
Detected license plate pairs are tracked in the following stereo
images and the vehicle trajectory is reconstructed. After that,
several points are uniformly sampled on the left license plate
image of the largest recorded license plate pair on vehicle
trajectory. The same points are then found in the remaining
left and right license plate images using template matching.
Next, the left and right corresponding points are triangulated
and their co-ordinates are used in the mathematical model that
describes vehicle motion. Finally, the system of equations is
constructed, and upon solving, the vehicle speed is obtained.

Using our prototype hardware that consists of two synchro-
nized cameras, ethernet switch, and two batteries mounted
on one meter long aluminium profile, we recorded a dataset.
The dataset contains recordings of 654 vehicles for which
the reference average speeds were provided by a pair of
LIDARs. We use the reference average speeds and the average
speeds measured by the proposed method to compute the
measurement errors. The results were compared to the existing
stereo-based and two-camera based methods.

The newly proposed method measures the speed of the
passing vehicles more precisely than the other methods. One
metric is especially important - the standard deviation - only
in our case it is less than 1 km/h that is required to meet the
±3 km/h tolerance with 99.9 % probability. Not exceeding
the standard deviation of 1 km/h during metrological testing
is necessary for the device to become acknowledged by the
metrological legislation of EU as a measurement device. The
standard deviation and the maximum absolute error in our

case are 0.2 km/h and 0.72 km/h, respectively. These values
suggest that our method could be suitable for devices that
should comply with even stricter metrological legislations than
those enforced in the EU.

Future research should focus on optimization and accel-
eration of individual pipeline steps. In our implementation,
the total execution time of all pipeline steps exceeds 50 ms
which makes this implementation unsuitable for real time
processing of 20 frames per second. As the license plate
detection and point matching are the two most time consum-
ing steps, we suggest experimenting with different types of
detectors and matching algorithms and/or exploiting hardware
acceleration.

Apart from enhancing the presented pipeline, one may also
focus on maintaining the correct camera calibration in time.
This calibration correction may be necessary for any long-term
installed speed measurement stereo-based device as the initial
calibration is likely to change due to the external influences
such as temperature changes or tremors.

Our dataset was recorded in the morning hours during good
weather conditions. Therefore future work could also focus
on expanding the limited scope of situations present in the
dataset. The situations that can be included are severe weather
conditions, including the presence of rain, snow, or dust and
otherwise varying weather conditions.
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