
VideoTerror Service
Extensible tool for development and deployment

of computer vision applications

Technical Report - FIT - VG20102015006 - 2015 – 01

Ing. Vojtěch Fröml
Ing. Tomáš Volf

doc. Ing. Jaroslav Zendulka, CSc.

Faculty of Information Technology, Brno University of Technology

September 11, 2015

Abstract

This technical report describes VTServer, which is a RPC server pro-
viding services that can be used by computer vision applications. It is
based on VTApi, a framework for image and video data and metadata
management, a useful tool for computer vision application development.
The objective of both is to make the development of applications easier
and more effective.

1

Contents

1 Introduction 3

2 Concepts 4
2.1 System overview . 4
2.2 Application development . 5
2.3 Application deployment . 6
2.4 VTServer service . 7
2.5 VTApi framework . 7

2.5.1 VTApi terminology . 8
2.5.2 KeyValue mechanism and general functions 9
2.5.3 Specialized functions of specific objects 9
2.5.4 Specialized database functions 9
2.5.5 Indexing . 12
2.5.6 Supported data types . 12
2.5.7 Is VTApi extensible? . 13

3 Computer vision application development 14
3.1 Usage of the VTApi Method interface 14
3.2 Usage of the Event-based module interface 15

4 Service deployment 19
4.1 VTApi deployment . 19

4.1.1 Dependencies . 19
4.1.2 VTApi specific and useful common CMake preferences . . 19
4.1.3 Building VTApi . 21
4.1.4 Configuration file . 22

4.2 VTServer deployment . 22
4.2.1 Dependencies . 22
4.2.2 Install VTServer . 22
4.2.3 Run VTServer . 23

5 Event-based Video Analysis Tool (EVIDANT) 24

6 Conclusion 26

2

1 Introduction

The VideoTerror project was focused on development of image and video pro-
cessing methods and tools. Several methods have been developed and imple-
mented in the project. (e. g. video summarization or face tracking). These
implementations employ a data storage, which contains raw image and video
data, metadata related to and/or extracted from this data by them. To sim-
plify this data management and to support operations with it, a framework
VTApi (VideoTerror Application Programming Interface) has been developed.
It provides developers higher-level operations to access data, supports query-
ing and other more advanced operations. It is based on OpenCV library and
PostgreSQL database.

No matter of the fact that the main objective of the project was the de-
velopment of methods, we decided to extend VTApi to support not only im-
plementation of individual computer vision methods, but also to support in-
tegration of several processing modules into more complex applications. As a
result VTApi has been extended by processing modules metadata and analyt-
ical results management. In addition to this extended functionality of VTApi,
another superstructure framework which employs VTApi called VTServer has
been developed. It adds further controlling mechanisms and functionality that
allows developers to combine processing modules implementing computer vision
and other (e.g. analytical ones) into more complex and advanced applications.
It designed as a RPC server and in its basic form its service acts primarily as
a mechanism for developing and running event-based computer-vision applica-
tions. As a sample application based on VTApi and VTServer, an Event-based
Video Analysis Tool (EVIDANT) has been implemented.

This technical report is structured as follows. Chapter 2 describes the basic
concepts, including VTApi fundamentals. Chapter 3 shows briefly how VTApi
can be used in computer vision applications. VTApi and VTServer deployment
is described in Chapter 4. Chapter 5 presents the EVIDANT analysis tool.

3

2 Concepts

2.1 System overview

VideoTerror Service (VTServer) is an application which encapsulates various
computer-vision algorithms and data storage mechanisms. It provides easy mod-
ular interface for the developmment of both low-level analytical methods and
defining complex processing tasks using those; and allows end user to man-
age data and these tasks with a simple controlling interface. Overview of the
service’s components is shown in Figure 1.

Figure 1: Concept of VTApi + VTServer: user and developer usage

The service is implemented as a convenient extension of VideoTerror API
(VTApi). This framework automatically manages manipulation with image
data, metadata and computation results. Analytical algorithms may be im-
plemented as VTApi video-processing modules using internal modules API by
a programmer. Running, stopping and querying results of these modules is
achieved via process control services.

Because VTServer is intended as extension of an existing framework, its
functionality may easily be extended or modified according to specific analytical
needs. In its basic form, the service acts primarily as a mechanism for developing

4

and running Event-Based computer-vision applications. It processes requests for
data manipulation (add a video, change information about a video...), processing
task definitions, control of computation processing instances and querying of
result data in a specific videodata event format.

2.2 Application development

Figure 2: VTApi methods concept

Figure 2 shows an example of an analytical application consisting of three specif-
ically chained algorithms. VTApi provides unified interface for implementations
of methods (algorithm). Each method is defined by format of its input/output
computed data, input parameters and implementation provided by program-
mer. In this example above, defining input requirements for methods 2 and
3 as (a subset of) outputs of methods 1 and 2 respectively achieves desired
chaining of these partial methods into one application. Intermediary and final
results are automatically stored and retrieved from VTApi database using in-
ternal methods, no direct database programming is necessary. Running these
individuals methods as processes is done in sequence. Each of these computa-
tional instances accepts additional algorithm parameters specified by the user.
Together with method definition, these parameters define processing task which
could be assigned to afore-mentioned process along with video data chosen for
analysis. Developer may choose to implement module API directly or use an
Event-Based module API which simplifies it further into a need to implement
only one video-processing function.

5

Figure 3: Use case from the viewpoint of the user

2.3 Application deployment

In this section we describe typical usage of VTApi and VTServer from the
viewpoint of the user as is shown in figure 3.

In a first step, the user inserts selected multimedia (video or images) data
with their metadata to the VTApi storage. In a second step, user chooses
one of the available methods (modules) and subsequently defines a task (step 3),
which comprises chosen method, desired input arguments of method and op-
tionally also foregoing task. Next in a fourth step, the processes which ensure
task execution are launched. Each process has assigned task and certain data
to process - so parallel processing can be achieved. Last, user can query output
(step 5) data processed by using chosen method (in step 2).

6

2.4 VTServer service

VTServer is designed as a RPC server utilizing VTAPI abilities and adding
further controlling mechanisms and functionality. Its interface is defined using
Google Protocol Buffers and messages are passed through ZMQ1. Implemen-
tation is based on RPCZ library combining previously mentioned technologies,
having C++ and Python API. Overview of available methods is grouped into
subsets of the API servicing different stages of the event-detection process.

Brief overview of VTServer funcionality follows. Detailed technical specifi-
cation for all supported RPC methods may be found on project results server2

• Dataset API allows user to create or manage datasets for different
projects or simply subdivide video data files according to analytical needs.
Datasets encapsulate all project-related information - video metadata, de-
fined processing tasks, processing units, computed or otherwise processed
data and various metrics to query the event detection process and results.

• Videos API allows a user to load or delete video data to previously
created dataset.

• Processing tasks API provides methods for definition and querying the
processing tasks. Definition consists of selecting pre-installed computa-
tion method and specifying values of its input parameters. Prerequisite
processing task may also be specified to utilize its previously computed
outputs as inputs for the new task, thus allowing process-chaining (Video-
processing - Event-detection). During processing task creation, VTServer
automatically allocates necessary system resources for output data and
checks if all required inputs are available, notifying user of possible errors.
Created tasks may be queried for their progress or successfully completed
computing operations on certain videos.

• Processes API allows launching and control of system process instances
performing assigned processing tasks. Each process instance is assigned
previously defined processing task and a set of video data for which it
is responsible to complete the processing. Process parallelization is sup-
ported, multiple process instances responsible for same computation will
correctly prevent themselves from performing redundant work.

• Events API methods handle retrieving computed events - outputs of
Event-detection tasks. For faster analysis of events relevancy, it provides
built-in statistical and filtering functionality.

2.5 VTApi framework

VTApi, Video Terror Application programming interface, is an open source
API for computer-vision applications, which need to store data and metadata

1distributed messaging; http://zeromq.org/
2http://vidte.fit.vutbr.cz/vtapi.html

7

acquired and computed from a video, that was analysed by any computer-vision
algorithm and also to retrieve data and metadata for other purposes (for example
further processing, reporting and so on).

VTApi consists of a database and media file operations API and a frame-
work for custom modules development. It was designed to unify and accelerate
a development of computer-vision applications.

VTApi also allows to centralize data, metadata and computer-vision algo-
rithms into a single server which can provide these data, metada and algorithms
for a wide range of users. They can use them for their own analysis or develop-
ment new alghorithms building on any alghoritm using its outputs.

VTApi is written in C++. VTApi uses OpenCV as the primary computer-vi-
sion framework and PostreSQL database as primary data and metadata storage
(except multimedia files, which are stored in filesystem). Five versions of VTApi
was released during its development (between years 2010 and 2015). At this mo-
ment 4 of them are obsolete and we bring VTApi 3.0. Unless otherwise noted
descriptions in this technical report are related to latest VTApi 3.0.

2.5.1 VTApi terminology

• Dataset is a named set of multimedia data along with their metadata
(descriptive data). Each dataset contains sequences.

• Sequence is a named ordered set of frames (time-based ordering) referred
to as Video or a named ordered set of images referred to as ImageFolder
(or images).

• Method defines a structure of metadata consumed and produced
by the custom computer-vision algorithm.

• Task is selected method together with preset input parameters (encapsu-
lation of method with specific input parameters together) and optionally
also with outputs of preceding task (this approach allows task chaining
in a relatively simple way).

• Process is executive unit of task, which enables parallelization. Process
performs the task over the assigned data.

• Interval is any subsequence of Video or ImageFolder (images) whose el-
ements share the same metadata. For example, it can be a video shot
or any sequence of frames containing the monitored object in the video
or scene. Metadata of an interval are created by a process.

• Selection is a subset of logically related metadata, appropriately chosen,
so that operations (processes) are effective and allow the natural chain-
ing of tasks (some of outputs of one task may be inputs for other task).
Common examples of selection is Interval. This concept is related to the ef-
fective implementation and access to the metadata in the database.

8

2.5.2 KeyValue mechanism and general functions

Key-Value mechanism is the basic way of metada organization in VTApi.
It is a generic data structure (associative array) that allows to store data
as <key, value> pairs, so changes in data definition do not imply changes
of the VTApi code.

The simplified class diagram of VTApi is illustrated in figure 4. Most classes
inherit from the class KeyValues, that provides the basic operations needed to
manage key-value pairs, on which the VTApi model is based.

The KeyValues class is crucial to ensure the functionality and generality
of the framework by the main function next(), which includes not only naviga-
tion over data structures, but also executes database queries, commits changes
made by setters and also commits new data added by setters.

VTApi is strongly typed, so KeyValues class also include general getters
and setters for each supported type. In the following description is used notation
of X referring to any supported data type (all supported data types you can see
in section 2.5.6, vector of data types are in the form XVector), k reffering to key
and v reffering to its value of type X. Getters are in the form getX(k), whereas
setters are in the form updateX(k, v).

2.5.3 Specialized functions of specific objects

Classes derived from KeyValues contain only functionality related to the consis-
tency of data and to make some operations easier for VTApi users and factory
methods. For instance, function getLocation() returns the physical data loca-
tion (e.g., a dataset or a directory with pictures). The method loadSequences()

of the Dataset class object is an example of a factory method (these methods
are marked as loadO() in figure 4, where O is particular object). It creates anew
object of the class Sequence with all necessary parameters. So, then it is possible
to access all the current dataset’s sequences identified by getName() by calling
the next() method.

In addition to general functions, some VTApi objects contain also specialized
functions, whose presence are necessary from the nature of specific objects. Main
representatives of these specific objects are objects Image and Video.

The differences can be found in process of acquiring the image or the video:
function getImageData() from class Image returns opencv matrix (cv::Mat)
representing appropriate image, whereas function openVideo() from class Video
returns opencv capture (cv::VideoCapture) representing appropriate video.
While image is static, video is a variable set of images, where we need to find out
for example FPS rate (rate of frames per second) or a speed of video. For these
purposes there are another specialized functions, concretely a function getFPS()

and a function getSpeed().

2.5.4 Specialized database functions

VTApi contains also a set of specialized database functions, that ensure consis-
tency of more difficult operations – since the database functions are performed

9

Figure 4: Simplified VTApi class diagram

10

in a single database transaction. There are also some specialized functions that
complement missing functionality in PostgreSQL.

These functions can be divided into five groups:

1. Support functions for datasets
These functions encapsulate creation (function VT dataset create())
or deletion (function VT dataset drop()) of datasets, where is needed
to add (or delete) the row from datasets table in public schema and also
create (or drop) appropriate schema designed for data of dataset. Dataset
may be also truncated – this operation can be done by using function
VT dataset truncate(). The last function offered in this group
is VT dataset drop all(), which is useful for deletion of all datasets and
their data.

2. Support functions for methods
Functions from this group encapsulate registration of some method
in database by using function VT method add() or its unregistration
by function VT method delete(). Function for registration of method
is crucial for developers of methods.

3. Support functions for tasks
These functions encapsulate creation (function VT task create()) or dele-
tion (function VT task delete()) of methods‘ tasks. Function
VT task create() is important for dynamic creation of output data in-
frastructure. It creates table for storing task‘ output data and creates
indexes for more efficient output data searching; all this functionality
is based on method data given by registration proces of method.

4. Support functions for events filtering
VT task out filter event() is a function, which simplifies and encap-
sulates filtering of events. There are four available filters, which can be
combined: duration filter, realtime filter, daytime filter and spatial filter.

• Duration filter is given by minimal or/and maximal duration in sec-
onds.

• Similarly, the realtime filter is given by minimal or/and maximal
real date and time.

• Daytime filter is little bit special filter – it is given by minimal
or/and maximal time within each day; using this filter may be filtered
all events which occurred for example between 11 and 12 o’clock.

• Spatial filter is given by region, in which the event occurred.

5. Other support functions
VTApi enriches PostgreSQL database by 3 conversion functions. First
one is function tsrange() that returns tsrange from given timestamp
and number of seconds. Last two are functions daytimenumrange(),

11

that return numrange - one from two given times, next from given times-
tamp and number of seconds. As the name of last function implies, it is de-
signed for daytime filter (numrange of seconds within the day).

2.5.5 Indexing

We can find two types of indexes in VTApi database schema. First of them
are statically created indexes (fixed indexes), the other one are dynamically
created indexes (custom definable indexes).

Fixed indexes are created above the tables, where is needed by VTApi
for searching in specific columns or for joining tables on specific columns. For ex-
ample, you can see index above columns taskname (index
processes taskname idx) or state.status (index processes status idx)
in table processes.

Second approach, which is used in VTApi, is dynamically created indexes
based on used method. These indexes are created above task’s output table
(table generated based on method and its keys definition). There can be de-
fined for each key of method, whether index is to be created above whole col-
umn or only its certain part (or more parts) in the appropriate task’s output
table. Whole column is indexed if indexedkey property of methodkeytype

is set to TRUE. Certain part of column (which is of user-defined type) is indexed
in case, that its position within user-defined type is defined in indexedparts

array property of methodkeytype; similarly for more certain parts.

2.5.6 Supported data types

This chapter briefly clarify, which data types you can use for VTApi applications
and its computer-vision algorithms. VTApi suports perphaps all common data
types. Simple supported boolean, character and numeric data types are:

• boolean

• char

• string (character array)

• integer

• long integer (int8)

• float

• double

Furher, VTApi supports also an array data types – concretely a vector
of most of the aforementioned simple data types:

• Vector of strings

• Vector of integer

12

• Vector of long integer (int8)

• Vector of float

• Vector of double

There are also supported some other special data types as:

• Timestamp (std::chrono::system clock::time point)

• OpenCV matrix (cv::Mat)

• PostgreSQL 2D spatial point (Point)

• Vector of these points

• IntervalEvent (special data type for video application event descriptor)

• processState (special data type for state of the process)

2.5.7 Is VTApi extensible?

Yes, VTApi can be extended in several ways. It can be extended to support
more other (unsupported by official release) common, specific or even custom
data types as well as to support other SQL database as a data and metadata
storage.

2.5.7.1 Datatype extending

In addition to using already supported datatypes (see section 2.5.6) you can ex-
tend VTApi to support other common data types like other PostgreSQL spatial
types (only 2D point is currently supported by VTApi). You can find other spe-
cific data types like PostGIS geometry types, which can also extend supported
data types by VTApi. You can even create your own data types, which you can
then also include to support by VTApi.

In case you would like to develop a support for other data types, let yourself
be inspired by, for example, getCvMat() and updateCvMat() methods declara-
tion in a file ./include/vtapi/data/keyvalues.h and their implementations
in a file ./src/backends/postgresql/pg resultset.cpp.

2.5.7.2 Database storage extending

You can also extend VTApi to support other database as a storage of data
and metadata. VTApi supports variable database storage, however no support
to any other database is fully implemented. There is only a stub for SQLite
database, but no one for any other databases.

In case you would like to develop a support for other database, let your-
self be inspired by this SQLite stub – see ./src/backends/sqlite/*.h files
for methods declaration and ./src/backends/sqlite/*.cpp files for their im-
plementations.

13

3 Computer vision application development

VTApi may be integrated into a specific analytical applications in various de-
grees. The most typical type of use is implementing the provided Method in-
terface and compiling the implementation into a dynamic library for loading
and running by a loader application (vtmodule). Example of such application
is shown an described in section 2.2. using Method interface is the best option
for application which don’t conform to Event-based format of results.

Another interface which may be used for the development is an Event-based
module interface. This is suitable for applications that use the Event-based
format of results as it hides much of manipulation with VTApi library and
thus reduces learning curve and saves time. The interface is designed to be as
minimalistic as possible requiring only the video processing function alone to be
implemented.

It is also possible to use VTApi as standalone library without using any of
its external interfaces. If used this way VTApi primarily functions as a useful
database API for video data management.

3.1 Usage of the VTApi Method interface

Modules examples for demonstration purposes may be found in src/modules
folder in Git repository. All such modules developed using Method interface
requires implementation of following functions:

/**

* @brief Module initialization

* Called ALWAYS on plugin initialization

* Throw vtapi:: RuntimeModuleException on failure

* @param vtapi main vtapi object to access VTApi

↪→ for initialization purposes

* @throws vtapi :: RuntimeModuleException

↪→ initialization error

*/

virtual void initialize(VTApi & vtapi) = 0;

/**

* @brief Module uninitialization

* Called ALWAYS on plugin uninitialization

*/

virtual void uninitialize () noexcept = 0;

/**

* @brief Main processing function

* Called after initialization ended without error

* Throw vtapi:: RuntimeModuleException on failure

14

* Throw vtapi:: ModuleUserAbortException on user

↪→ abort

* Proper processing may get a bit complicated ,

↪→ check demo modules

* for example

* @param process process object representing

↪→ processing to be done

* @throws vtapi :: RuntimeModuleException

↪→ processing error

* @throws vtapi :: ModuleUserAbortException

↪→ processing error

*/

virtual void process(Process & process) = 0;

/**

* @brief Call to this function should cause

↪→ currently active processing

* to throw a vtapi:: ModuleUserAbortException

* It is called during process () function from a

↪→ different thread (!)

* It should return ASAP and not wait for

↪→ processing end

*/

virtual void stop() noexcept = 0;

3.2 Usage of the Event-based module interface

Modules examples using the Event-based interfaces are located in vtapi modules
folder in Git repository. These must be compiled with provided sources of
intermediate layer between Method API (which is already implemented) and
Event-based modules interfaces. There are two such interfaces that represent
two phases of a analytical process and must be implemented:

Video-Processing computes time/resource intensive processing tasks and
stores its data in raw format (eg. feature vectors). Following interface must be
implemented:

/**

* @brief Returns reference to singleton interface

↪→ implementation

* @return singleton instance

*/

static IVideoProcessing &instance ();

/**

* @brief Called ALWAYS before processing

* @param params parameters of processing task

15

* Throw vtapi:: RuntimeModuleException on error

* @throws vtapi :: RuntimeModuleException on failed

↪→ initialization

*/

virtual void initialize(const :: vtapi:: TaskParams

↪→ & params) = 0;

/**

* @brief Called ALWAYS after processing or failed

↪→ initialization

*/

virtual void uninitialize () noexcept = 0;

/**

* @brief Main video processing function

* Throw vtapi:: RuntimeModuleException on failure

* Throw vtapi:: ModuleUserAbortException on user

↪→ abort

* @param video processed video object

* @param output object for outputting intervals

* @param progress object for updating video

↪→ progress

* @throws vtapi :: RuntimeModuleException on failed

↪→ processing

* @throws vtapi :: ModuleUserAbortException

↪→ processing error

*/

virtual void processVideo(const :: vtapi:: Video &

↪→ video ,

:: vtapi:: IntervalOutput & output ,

:: Modules :: IVideoProgressUpdater & progress) =

↪→ 0;

/**

* @brief Call to this function should cause

↪→ currently active processing

* to throw a vtapi:: ModuleUserAbortException

* It is called during processVideo () function

↪→ from a different thread (!)

* It should return ASAP and not wait for

↪→ processing end

*/

virtual void stop() noexcept = 0;

Event-Detection uses the results of Video-Processing task and performs
lightweight on-the-fly interpretation of these data according to parameters spec-

16

ified by user. It should save its output in Event format and implement following
interface:

/**

* @brief Returns reference to singleton interface

↪→ implementation

* @return singleton instance

*/

static IEventDetection &instance ();

/**

* @brief Called ALWAYS before processing

* @param params parameters of processing task

* Throw vtapi:: RuntimeModuleException on error

* @throws vtapi :: RuntimeModuleException on failed

↪→ initialization

*/

virtual void initialize(const :: vtapi:: TaskParams

↪→ & params) = 0;

/**

* @brief Called ALWAYS after processing or failed

↪→ initialization

*/

virtual void uninitialize () noexcept = 0;

/**

* @brief Main event detection function

* Throw vtapi:: RuntimeModuleException on failure

* Throw vtapi:: ModuleUserAbortException on user

↪→ abort

* @param video video object

* @param input input intervals from video

↪→ processing

* @param output object for outputting intervals

* @param progress object for updating video

↪→ progress

* @throws vtapi :: RuntimeModuleException on failed

↪→ processing

* @throws vtapi :: ModuleUserAbortException

↪→ processing error

*/

virtual void processVideo(const vtapi:: Video &

↪→ video ,

:: vtapi:: Interval & input ,

:: vtapi:: IntervalOutput & output ,

17

:: Modules :: IVideoProgressUpdater & progress) =

↪→ 0;

/**

* @brief Call to this function should cause

↪→ currently active processing

* to throw a vtapi:: ModuleUserAbortException

* It is called during processVideo () function

↪→ from a different thread (!)

* It should return ASAP and not wait for

↪→ processing end

*/

virtual void stop() noexcept = 0;

18

4 Service deployment

4.1 VTApi deployment

4.1.1 Dependencies

VTApi uses some third party libraries and executables. There is a list of them
with their minimum required versions, in parenthesis is mentioned usual package
name:

• Cmake 2.8.9 (cmake)

• pkg-config (pkg-config)

• POCO 1.613 (libpoco-dev)

• OpenCV 2.44 (libopencv-dev)

• PostgreSQL 9.35 (libpq-dev)

• libpqtypes 1.56 (libpqtypes-dev)

• SQLite 3.87 (libsqlite3-dev)

4.1.2 VTApi specific and useful common CMake preferences

VTApi uses CMake for building. Following table desctibes useful common
CMake preferences:

preference with type of value description default value

CMAKE INSTALL PREFIX=<path> A path, where will be in-
stalled VTApi.

/usr/local

CMAKE BUILD TYPE=<type> Through this preference,
you may set build type
to Debug, if you need it.

Release

Table 1: Common CMake preferences

In addition to common CMake preferences, VTApi extends CMake
with its own preferences related to used dependencies.

3http://pocoproject.org/
4http://opencv.org/
5http://www.postgresql.org/
6http://libpqtypes.esilo.com/
7https://www.sqlite.org/

19

Dependencies are searched in standard system path(s) by default. In case,
they are installed in non-standard path, you will need to specify some of VTApi
specific CMake preferences. Similarly, pkg-config looks in the directory
<prefix>/lib/pkgconfig/ for *.pc files. In case, that considered *.pc file
is not located in aforementioned directory, base directory of this file can be
added to the PKG CONFIG PATH environment variable or it can be used again
some of VTApi specific CMake preferences.

These VTApi specific CMake preferences are described in the following table,
all of them are of type path (<preference>=<path>).

preference description

OPENCV PC PATH A path, where is located opencv.pc file
for pkg-config.

PG CONFIG PATH A path, where is located pg config.

LIBPQTYPES PATH A path, where is located libpqtypes li-
brary (this path must contain include/

and lib/ subdirectories, where are located
header files and libraries).

POCO PATH A path, where is located POCO (this path
must contain include/ and lib/ subdi-
rectories, where are located header files
and libraries).

POCO INCLUDE PATH A path, where are located POCO
header files (it is useful in case,
that header and library directories
are located separately in different paths).

POCO LIBRARY PATH A path, where are located POCO
library files (it is useful in case,
that header and library directories
are located separately in different paths).

POCOFOUNDATION INCLUDE PATH A path, where are located POCO Founda-
tion header files (it is useful in case, that
different parts of POCO project are on dif-
ferent locations).

POCOJSON INCLUDE PATH A path, where are located POCO JSON
header files (it is useful in case, that dif-
ferent parts of POCO project are on dif-
ferent locations).

20

POCOUTIL INCLUDE PATH A path, where are located POCO Util
header files (it is useful in case, that dif-
ferent parts of POCO project are on dif-
ferent locations).

POCOXML INCLUDE PATH A path, where are located POCO XML
header files (it is useful in case, that dif-
ferent parts of POCO project are on dif-
ferent locations).

POCOFOUNDATION LIBRARY PATH A path, where are located POCO Founda-
tion library files (it is useful in case, that
different parts of POCO project are on dif-
ferent locations).

POCOJSON LIBRARY PATH A path, where are located POCO JSON
library files (it is useful in case, that dif-
ferent parts of POCO project are on dif-
ferent locations).

POCOUTIL LIBRARY PATH A path, where are located POCO Util li-
brary files (it is useful in case, that differ-
ent parts of POCO project are on different
locations).

POCOXML LIBRARY PATH A path, where are located POCO XML li-
brary files (it is useful in case, that differ-
ent parts of POCO project are on different
locations).

SQLITE3 PC PATH A path, where is located sqlite3.pc file
for pkg-config.

Table 2: VTApi specific CMake preferences

4.1.3 Building VTApi

For build of VTApi you can use following steps:

cd <VTApi directory>

mkdir build

cmake .. [-D<CMake preference>] [-D<CMake preference>] [...]

make

sudo make install

21

Or you can also use prepared script build release.sh for easy build
of VTApi.

4.1.4 Configuration file

For easy configuration of VTApi you can use script ./vtapi-postinstall.sh,
which serves as a post-installation guide of VTApi.

4.2 VTServer deployment

4.2.1 Dependencies

VTServer uses some third party libraries and executables. There is a list of them
with their minimum required versions, in parenthesis is mentioned usual package
name:

• VTApi 3.0 (package not available - must be installed from the source)

• Boost 1.548 (libboost-thread-dev libboost-program-options-dev)

• Protocol Buffers 2.59 (libprotobuf-dev libprotoc-dev)

• ZeroMQ 4.0.410 (libzmq3-dev)

• libpqtypes 1.511 (libpqtypes-dev)

• rpcz12 (package not available - must be installed from the source - see
footnote)

4.2.2 Install VTServer

Installation of VTServer is performed by the following steps:

1. compilation of VTApi, VTApi modules and VTServer using scripts:

• vtapi/build release.sh

• vtserver/build release.sh

• vtapi modules/build release.sh

2. environment settings

• add usr/local/bin to PATH

• add usr/local/lib to dynamic library search path

8http://www.boost.org/
9https://developers.google.com/protocol-buffers/

10http://zeromq.org/
11http://libpqtypes.esilo.com/
12https://github.com/thesamet/rpcz

22

4.2.3 Run VTServer

To run VTServer follow the subsequent steps:

1. creation of database using these scripts:

• vtapi/sql/pg createdb.sql

• vtapi modules/sql/pg modules.sql

2. configuration settings

• create vtapi.conf in the folder from which you’re running vtserver

(use vtapi/vtapi example.conf as template)

• set datasets dir to some empty folder (do not accidentaly delete
your stuff)

• set modules dir to /usr/local/lib

• unset default dataset

• set connection to database

• make sure logfile is set

• log at least errors and warnings

3. run

• vtserver [--config=/some/other/vtapi.conf]

23

5 Event-based Video Analysis Tool (EVIDANT)

The EVIDANT is an application based on VTServer and VTAPI solution and
designed as client-server application using web technologies. The client imple-
ments GUI to manage user projects and video datasets (see Fig. 5), configure
and control the functional blocks’ execution, analyze detected video events and
prepare graphical or textual reports. The client is thin front-end of the web
server application that implements data model for user-specific data, database
interface and application-dependent services. The web-server video-processing
services are connected to VTServer and provide the EVIDANT processing func-
tionality.

Figure 5: EVIDANT user interface

EVIDANT currently incorporates applications for these Event-based mod-
ules:

• Activity - activity detector based on temporal changes,

• Summary - compact video-parts with changing image content and con-
strained by required maximal length of final video,

• Face - face detection and tracking,

• People - people detection and tracking,

• Matcher - block comparing the image content of query video with record-
ings in video dataset, and

24

• VideoType - classification of the scenes by visual content.

25

6 Conclusion

The VTServer is a RPC server that can be employed as a service in computer
vision applications. Currently it directly supports event-based computer vi-
sion applications development because its general controlling mechanisms and
functionality is extended to process events. But its functionality can easily be
extended or modified according to specific analytical needs.

26

References

[1] Beran, V. et al: VideoTerror demonstrator. Event-based Video Analytic
Tool (EVIDANT). Technical Report FIT - VG20102015006 - 2015 – 02. FIT
BUT in Brno. 2015. 38 p.

[2] Chmelař, P. a daľśı: VTApi v. 2.0. Technická zpráva FIT - VG20102015006
- 2013 – 01. FIT VUT v Brně. 2013. 46 s. (in Czech)

27

