
Technical Report: PC Browser and Android Applications Fingerprinting

Malombe Victor

Faculty of Information Technology, Strathmore University - Kenya

Supervisor: Ing. Petr Matousek, Ph.D., M.A.

Faculty of Information Technology

Brno University of Technology

July 2020

ii

Table of Contents

List of Figures .. iii

List of Tables ... iv

Preamble ... 1

Chapter 1: Introduction ... 2

Definitions ... 3

Chapter 2: Literature Review ... 4

Analysis of Encrypted Network Traffic ... 4

Client Identification and Fingerprinting ... 4

Transport Layer Security ... 5

Structure of Web Browser Communication .. 6

Structure of Android Applications Communication ... 8

Chapter 3: JA3 Fingerprinting for Web Browsers ... 9

Motivation ... 9

Preliminaries .. 9

TLS library ...10

Random Values in TLS...10

JA3 Algorithm ...12

Dataset ...13

Web Browsers ..13

Android Applications ..15

JA3 Extension & Implementation ..16

Application Architecture ...16

Sequence Diagram ...20

Chapter 4: Results ...22

Web Browsers ...22

Firefox ..22

Google Chrome & Opera ...24

Android Apps Fingerprinting ...29

Lumen Analysis ...29

Conclusion ...30

References ..31

iii

List of Figures

Figure 1: Browser Architecture .. 7

Figure 2: Computing JA3 Hash .. 9

Figure 3 ClassifyJA3 System Architecture: ...17

Figure 4: DNS Records Extraction Commands ..18

Figure 5: TSHARK Fields and Filter ..19

Figure 6: Sequence Diagram ...20

Figure 7: Firefox Fingerprints ...22

Figure 8: Database Fingerprint Entries ...23

Figure 9: Firefox Identification, Kali Linux ..23

Figure 10: Firefox Identification, Mac OS ..23

Figure 11: Firefox Identification, Windows ..23

Figure 12: Wireshark GREASE Fields ...24

Figure 13: Google Chrome Ciphersuite Values ..25

Figure 14: GREASE Values ..26

Figure 15: Filtered Fields ...26

Figure 16: Chrome / Opera Identification ...29

iv

List of Tables

Table 1: Popular Web Browsers ... 6

Table 2: JA3 hashes with and without GREASE values ..11

Table 3: Browser Communication Dataset ..14

Table 4: Mobile Application Versions ..15

Table 5: Google Chrome Fingerprints ..27

Table 6: Opera Browser Fingerprints ...27

Table 7: Firefox Fingerprints ..28

Table 8: Lumen Monitor Flows ...30

1

Preamble

This technical report summarizes results of the research focused on identification of PC browsers

and Android applications from network communication. I review several fingerprinting methods

and highlight their advantages and disadvantages. I will then delve on web browser fingerprinting

by examining the values from TLS handshake, HTTP headers and DNS traffic. I discuss the

reliability and stability of this multi-OS profiling of web browsers.

Chapter 3 focuses on JA3, a specific method for creating TLS fingerprints in an easy to produce

and shareable way. Based on previous research, I conduct various experiments using datasets

obtained from network communication to observe the reliability of this approach in profiling web

browsers and Android applications.

This work was supported by Erasmus+ programme at Brno University of Technology in Czech

Republic. The author acknowledges and appreciates Ing. Petr Matousek, Ph.D., M.A. for overall

guidance in conducting the research, and Strathmore University (Kenya) for granting this chance.

2

Chapter 1: Introduction

Transport Layer Security (TLS) provides security in the form of encryption to all manner of

network connections, including browsers and mobile applications. Those using TLS operate under

the assumption that although an eavesdropper can easily observe the existence of their session, its

source and destination IP addresses, that the content itself is secure and unreadable without access

to cryptographic keying material at one or both ends of the connection. However, using TLS

Fingerprinting, it is easy to quickly and passively determine which client is being used, and then to

apply this information from both the attacker and the defender perspectives.

Lee Brotherston has discovered that during an SSL handshake, most client user agents will initiate

a TLS handshake request in a unique way. This includes Web Browsers in different operating

systems such as Linux, Mac OS and Windows, and Android Mobile Applications. The fingerprint

relies on data from ClientHello messages in the SSL handshake. Inspired by Lee’s work, a team

from Salesfoce (John B. Althouse, Jeff Atkinson & Josh Atkins) created JA3, a standard for

creating SSL client fingerprints in an easy to produce and shareable way.

The proposed method does not require active interaction with the browser or a mobile application.

The communication snapshot can be obtained by simple passive data capturing using, e.g.,

Wireshark. The approach assumes that each browser / mobile app differs in versions, settings, and

implementations that keep traces in network traffic. By profiling, relevant data from the captured

network traffic is extracted and used to build a profile of the device. Captured communication

usually includes both user-initiated communication, e.g., web browsing, and system/application-

initiated communication, e.g., connectivity tests, regular updates, service synchronization, etc.

Both types of communication are valuable sources of features for building a device profile.

In this project, a structure of web browser traffic is described. The researcher shows what protocols

can be exploited to obtain fingerprinting data. Using the combination of different identification

techniques, a browser & mobile app profile that can be used for identification of a given web

browser or mobile app in the network traffic is created.

3

Definitions

In this part, two important terms related this work are defined: Profiling and fingerprinting.

Profiling is the process of "discovering" correlations between data in databases that can be used to

identify and represent a human or nonhuman subject (individual or group), and/or the application

of profiles (sets of correlated data) to individuate and represent a subject or to identify a member

of a group or category. Data mining technology is generally considered as a means by which

relevant patterns are discovered and profiles are generated from larger quantities of data (WP6,

2008).

Fingerprinting is a method for collecting publicly available information called attributes or features

about a remote computing device for the purpose of identification. The data forms a digital

fingerprint of the remote device. Fingerprints can be used to fully or partially identify individual

users or devices. Active fingerprinting requests a specific fingerprinting data from a remote device

using querying, e.g., obtaining web browser parameters or network settings. Passive fingerprinting

relies on data obtained by monitoring the communication of a remote device without interfering to

it.

https://www.zotero.org/google-docs/?QEV6Cw
https://www.zotero.org/google-docs/?QEV6Cw

4

Chapter 2: Literature Review

Analysis of Encrypted Network Traffic

The rising popularity of encrypted network traffic is a double-edged sword. On the one hand, it

provides secure data transmission, protects against eavesdropping, and improves the

trustworthiness of communicating hosts. On the other hand, it complicates the legitimate

monitoring of network traffic, including traffic classification and host identification. Nowadays,

we can monitor, identify, and classify plain-text network traffic, such as HTTP, but it is hard to

analyze encrypted communication (Husák. et al., 2016).

Researchers have identified the options of establishing SSL/TLS communication and options are

used in real traffic. They use methods from a survey by Velan et al., (2015). as the basis and a real

network data to identify these options. Then, they found which of the options are varying the most

and if the variability of these options indicates different traffic patterns, e.g., different

communicating partners or type of traffic.

Client Identification and Fingerprinting

The client identification and browser fingerprinting contribute largely to network security and

detection of malicious activities, e.g., by outdated system identification or unusual behavior

detection. Identification and fingerprinting are moreover useful for commercial purposes (targeting

ads, price discrimination, assessing financial credibility), network accounting, and client behavior

monitoring (Bujlow et al., 2015).

Some researchers have used HTTP User-Agent string to identify clients, however this method is

not reliable. There is a constant risk that the User-Agent string is forged. For instance, illegitimate

web crawlers and bots typically spoof the User-Agent string as to be mistaken for legitimate ones

such as Googlebot (Zeifman, 2012). Another reason why HTTP UA strings cannot be trusted is

because since a long time ago web browsers have been including identifiers of each other to their

User-Agent to resolve compatibility issues with certain web pages.

5

One of the viable approaches researched in the past for the identification of mobile devices based

on the captured network communication is fingerprinting based on mobile device hardware. This

method evaluates physical characteristics of the device: the image sensor, frequency response of

the speaker-microphone system, an accuracy of the accelerometer, clock skew of GPS, touch screen

misalignment, etc (Bojinov, et al., 2014). By this approach, we can identify a group of devices that

have the same or similar hardware. Obtaining such fingerprint requires active communication with

the device which is usually provided via a specifically tailored application that extracts all

necessary data from the device. Passive network monitoring cannot easily obtain hardware features.

Transport Layer Security

Transport Layer Security (TLS) refers to cryptographic protocols designed to provide

communications security over a computer network (Dierks & Rescorla, 2008). Prior to entering

initiating encrypted communications, TLS needs to create a handshake between the client and

server which is then used to select the best mutually acceptable cryptographic ciphers, compression

systems, hashing algorithms, etc. This is conducted in the clear, because the method of

cryptography to use has yet to be determined.

Using TLS Fingerprinting, it is easy to quickly and passively determine which client is being used,

and then to apply this information from both the attacker and the defender perspectives (Lemon,

2015). A TLS connection will always begin with a Client Hello packet which announces to the

server end of the connection the capabilities of the client, presented in preference order. The server

will send back a similar packet, a “server hello” describing the server capabilities in preference

order. By comparing the two packets, the client and server can determine the optimal cipher suites,

compression algorithms, etc. to use per their preferences.

By capturing the elements of the Client Hello packet which remain static from session to session

for each client, it is possible to build a fingerprint to recognise a client on subsequent sessions. The

fields captured are TLS version, record TLS version, cipher suites, compression options, and a list

of extensions. Additionally, data is captured from three specific extensions (if available): signature

algorithms, elliptic curves and elliptic curve point format. The use of this combined data is not only

6

reliable in terms of remaining static for any particular client, but offers greater granularity than

assessing cipher suites alone, which has a substantially larger quantity of fingerprint collisions.

Structure of Web Browser Communication

There are a lot of web browsers available in the market. The following are the most common web

browser available today:

Table 1: Popular Web Browsers

Browser Vendor

Internet Explorer Microsoft

Google Chrome Google

Mozilla Firefox Mozilla

Netscape Navigator Netscape Communications Corp.

Opera Opera Software

Safari Apple

Sea Monkey Mozilla Foundation

K-meleon K-meleon

The most basic component that all web browsers must exhibit are the following:

Controller/dispatcher that works as a control unit in the CPU. It takes input from the keyboard or

mouse, interprets it and makes other services to work based on input it receives. Interpreter

receives the information from the controller and executes the instruction line by line. Some

interpreters are mandatory while some are optional, for example, HTML interpreter program is

mandatory and java interpreter is optional. Client Program describes the specific protocol that

will be used to access a service. The most used client programs are HTTP, SMTP, FTP, NNTP,

and POP.

7

Figure 1: Browser Architecture

Web browsers communicate with web servers using the HyperText Transfer Protocol (HTTP).

Web servers wait for client request messages, process them when they arrive, and reply to the web

browser with an HTTP Response message. The response contains an HTTP Response status code

indicating whether or not the request succeeded (e.g. "200 OK" for success, "404 Not Found" if

the resource cannot be found, "403 Forbidden" if the user isn't authorised to see the resource, etc).

The body of a successful response to a GET request would contain the requested resource.

When an HTML page is returned it is rendered by the web browser. As part of processing the

browser may discover links to other resources (e.g. an HTML page usually references JavaScript

and CSS pages), and will send separate HTTP Requests to download these files.

HTTPS (HyperText Transfer Protocol Secure) is an encrypted version of the HTTP protocol. It

uses SSL or TLS to encrypt all communication between a client and a server. This secure

connection allows clients to safely exchange sensitive data with a server, such as when performing

banking activities or online shopping.

8

Structure of Android Applications Communication

Most network-connected Android apps use HTTP to send and receive data. The Android platform

includes the HttpsURLConnection client, which supports TLS, streaming uploads and downloads,

configurable timeouts, IPv6, and connection pooling. On devices running Android 9 and lower, the

platform DNS resolver supports only A and AAAA records, which allow looking up the IP

addresses associated with a name, but does not support any other record types. On devices running

Android 10 and higher, there is native support for specialized DNS lookups using both cleartext

lookups and DNS-over-TLS mode. The DnsResolver API provides generic, asynchronous

resolution, enabling you to look up SRV, NAPTR, and other record types. Note that parsing the

response is left to the app to perform.

Network operations are introduced on a separate thread to avoid creating an unresponsive user

interface (UI). Since the NetworkFragment runs on the UI thread by default, it uses an AsyncTask

to run the network operations on a background thread. This Fragment is considered headless

because it does not reference any UI elements. Instead, it is only used to encapsulate logic and

handle lifecycle events, leaving the host Activity to update the UI. Android applications use

HttpsUrlConnection to fetch data. The application takes the given URL and use it to perform an

HTTP GET request. Once a connection has been established, the application retrieves the data as

an InputStream, which is then decoded and converted into a target data type such as image data.

9

Chapter 3: JA3 Fingerprinting for Web Browsers

Motivation

The primary concept for fingerprinting TLS clients came from Lee Brotherston’s 2015 research

(Lemon, 2015) where he discovered that it is possible to build a fingerprint to recognise a particular

client on subsequent sessions by capturing the elements of the Client Hello packet which remain

static from session to session for each client. This concept was implemented and expanded by John

Althouse, Jeff Atkinson and Josh Atkins (2019) by creating an open source tool named JA3.

This research aimed to extend the JA3 work by making it possible to easily identify the type of

web browser based on network communication. Three additional SSL handshake fields are

introduced to make the data more informative. This includes time since reference or first frame,

source IP address, and destination IP address.

Preliminaries

Most of TLS fingerprinting methods use the first packet sent by the client: Client Hello. The Client

Hello contains an imprint of TLS configuration of the client application that depends on the used

TLS library and operating system. In this paper we study JA3 fingerprint that is computed as MD5

hash from five TLS handshake fields: TLS Handshake version, Cipher suites, Extensions,

Supported Groups (former Elliptic Curve), and Elliptic Curve point format, see Figure 2. Some

TLS fingerprinting implementations use different TLS fields, e.g., Kotzias et al. (2018) omit the

TLS version.

Figure 2: Computing JA3 Hash

10

TLS library

TLS fingerprint of an application depends on the TLS library that was used during implementation.

There are plenty of TLS libraries available to developers, e.g., GnuTLS, Oracle JSSE, BSD

LibreSSL, OpenSSL, or Mozilla NSS. When two applications are implemented using the same

TLS library, it may happen that their TLS fingerprints are the same. TLS fingerprints can change

with a new version of the application, version of the TLS library, or the operating system. Table

4.2 shows JA3 hashes for common web browsers: Mozilla Firefox v.73, Chrome v.80, and Opera

v.66 under four operating systems: Linux Ubuntu, Windows 10, Kali Linux and Mac OS.

We can see that Firefox has four unique JA3 fingerprints. Two of them are present in all tested

operating systems. In the case of Chrome and Opera, one JA3 fingerprint value corresponds to both

browsers under all operating systems. These browsers were possibly compiled with the same TLS

library.

JA3 hashes of Common Web browsers

This experiment proves that TLS fingerprints change with the version and operating system. More

observations related to JA3 fingerprinting of web browsers are written in Section 4.3. Similar

experiment over a larger dataset is also mentioned by Razaghpanah, et al., (2017).

Random Values in TLS

In 2016, Google started to Generate Random Extensions and Sustain Extensibility (GREASE)

values to TLS. This technique was adopted by IETF in January 2020 as RFC 8701 [5]. GREASE

11

values are randomly generated numbers of cipher suites, extensions and supported groups present

in TLS Hello packets. They prevent extensibility failures in the TLS ecosystem. During TLS

handshake, the responding side must ignore unknown values. Peers that do not ignore unknown

values fail to inter-operate which means a bug in implementation. Therefore, RFC 8701 adds

GREASE values as a part of the list of cipher suites, extensions and supported groups to detect

invalid implementations.

When experimenting with Opera browser under Win 10 we noticed that the browser generates 155

unique JA3 fingerprints out of 207 TLS handshakes. By excluding GREASE values, the number

of unique JA3 fingerprints decreased to four. The high number of JA3 fingerprints was caused by

random GREASE values in TLS handshakes. Table 4.3 shows six JA3 fingerprints of Opera

browsers under Ubuntu with all extracted TLS values (the upper six lines). The last six lines present

TLS values without GREASE values. The brown values in the upper table represent GREASE

values as defined in RFC 8701. When ignoring these values, the last four lines in the upper table

would have the same JA3 hash.

Table 2: JA3 hashes with and without GREASE values

In addition to GREASE values, it is also good to omit extension value 65281 from TLS

fingerprinting. This value represents a renegotiation option in TLS handshake (Rescorla, et al.,

2010), see red numbers in the list of extensions. The last option that can be ignored is the TLS

Client Hello Padding Extension defined by RFC 7685 (Postel, 1980). The padding extension (value

21, depicted by green value in the table) is added by a client to make sure that the packet is of a

desired size.

In order to keep JA3 fingerprints stable, it is necessary to eliminate above mentioned values. Most

JA3 implementations usually exclude GREASE values from TLS fingerprinting.

12

JA3 Algorithm

The JA3 method is used to gather the decimal values of the bytes for the following fields in the

Client Hello packet:

1. TLSVersion: The version of the TLS protocol by which the client wishes to communicate

during this session. This SHOULD be the latest (highest valued) version supported by the

client. For example, 00000303.

2. Ciphers: This is a list of the cryptographic options supported by the client, with the client's

first preference first. If the session_id field is not empty (implying a session resumption

request), this vector MUST include at least the cipher_suite from that session. For example,

4865-4867-4866-49195-49199-52393-52392-49196-49200-49162-49161-49171-49172-

51-57-47-53-10.

3. Extensions: Clients MAY request extended functionality from servers by sending data in

the extensions field. For example, 0-23-65281-10-11-35-16-5-51-43-13-45-28-21.

4. EllipticCurves and EllipticCurvePointFormats: These allow negotiating the use of

specific curves and point formats (e.g., compressed vs. uncompressed, respectively) during

a handshake starting a new session. These extensions are especially relevant for constrained

clients that may only support a limited number of curves or point formats. The client

enumerates the curves it supports, and the point formats it can parse by including the

appropriate extensions in its ClientHello message. The server similarly enumerates the

point formats it can parse by including an extension in its ServerHello message. For

example, 0000001d 00000017 00000018 00000019 00000100

 00000101 0

The hexadecimal values in tls-version and elliptic-curves are converted to decimal. It then

concatenates those values together in order, using a “,” to delimit each field and a “-” to delimit

each value in each field. The resulting string looks like below:

771,4865-4867-4866-49195-49199-52393-52392-49196-49200-49162-49161-49171-49172-51-

57-47-53-10,0-23-65281-10-11-35-16-5-51-43-13-45-28-21,29-23-24-25-256-257,0

13

This string is then hashed using md5, and a fixed length hash value is generated. The above string

produces the hash below:

B20b44b18b853ef29ab773e921b03422

This is the JA3 fingerprint for one client-hello packet. If a similar browser is used it will have the

same client-hello message, leading to a positive identification through matching the hashes. This

technique is what is referred to as fingerprinting.

Dataset

Web Browsers

The data used in this project consisted of captured network communication (PCAP) files from

different browsers in various operating systems. While capturing the traffic, specific domains /

URLs were accessed in all browsers to ensure that communication can be reliably filtered by

analysing DNS records. These include:

1. superuser.com/questions/247127/what-is-and-in-linux/247131

2. linuxsig.org/files/bash_scripting.html

3. strathmore.edu

4. vutbr.cz/en

5. facebook.com

6. adobe.com

7. amazon.com

8. bitbucket.org/dashboard/overview

9. forums.kali.org

10. offensive-security.com

The packets relating to these URLs were identified by examining DNS records. Corresponding IP

addresses were gathered and used to filter tls.hello packets. These IP addresses include:

198.57.179.99 147.229.2.82 147.229.2.90 157.240.30.35 184.51.8.147 2.18.68.206 52.30.88.10

34.253.101.66 34.249.165.210 52.48.145.94 34.255.235.176 54.171.79.102 52.19.22.175

34.248.108.242 52.45.117.194 52.205.228.94 34.232.204.33 34.232.6.198 52.5.59.12

54.174.68.95 52.7.248.149 52.7.114.31 52.46.135.211 52.46.141.49 54.239.26.255 99.86.240.33

99.86.241.241 18.205.93.1 18.205.93.2 18.205.93.0 192.124.249.12 192.124.249.5

14

The table 2 describes the captured data in detail:

Table 3: Browser Communication Dataset

 All IP Addresses Filtered IP Addresses

Browse

r

Operat

ing

System

Broswe

Versio

n

Packet

s #

tls.hell

o

Packet

s

Unique

Finger

prints

Packet

s #

tls.hell

o

Packet

s

Unique

FInger

prints

File

Size

(Bytes)

Timest

amp

Google

Chrom

e

Kali

Linux

80.0.39

87.106 12013 179 174 4730 33 31

183797

76

Feb 17

21:19

Google

Chrom

e

Mac

OS

80.0.39

87.106 26914 155 149 4431 16 16

206124

64

Feb 18

13:15

Google

Chrom

e Ubuntu

80.0.39

87.132 5835 76 73 260 6 6

336868

0

Mar 11

14:57

Google

Chrom

e

Windo

ws

80.0.39

87.106 19686 180 17 10739 41 11

196937

84

Feb 17

15:50

Mozilla

Firefox

Kali

Linux

68.2.0e

sr 9864 164 3 3307 36 3

128800

12

Feb 18

14:46

Mozilla

Firefox

Mac

OS 73 20217 194 5 4634 29 3

133994

64

Feb 18

13:15

Mozilla

Firefox Ubuntu 73.0.1 20474 183 4 6584 20 3

143743

32

Mar 11

15:14

Mozilla

Firefox

Windo

ws 70.0.2 18014 220 4 8516 42 4

168705

32

Feb 17

15:50

Opera

Kali

Linux

66.0.35

15.72 12558 191 186 2968 30 28

177634

52

Feb 17

20:43

Opera

Mac

OS

66.0.35

15.72 28300 198 192 8016 27 27

208530

84

Feb 18

13:15

Opera Ubuntu

67.0.35

75.53 22053 204 199 6184 18 18

163352

28

Mar 11

15:01

Opera

Windo

ws

66.0.35

15.95 8445 117 8 5315 22 4

796938

8

Feb 17

15:50

Opera

Windo

ws

67.0.35

75.53 20344 207 200 5991 25 23

172171

92

Mar 5

14:54

15

Android Applications

Capture Files

The last dataset was focused on variety of mobile apps installed on a real device Tecno J8 with

Android 5.1. Dataset includes following apps: BoomPlay Music, Chrome Browser, Equa Bank app,

Facebook app, Gmail app, Google calender, KB klic, Messenger, Mobilni Banka app, NextBike,

Telegram, TikTok, WhatsApp and Youtube app. Each app was running five times on the restarted

device so that captured communication corresponds to a typical usage. 5,308 TLS handshakes were

extracted from the captured traffic. The above-mentioned datasets were used for experiments with

JA3 and JA3S fingerprints.

Lumen Monitoring App

To capture mobile apps traffic, the researcher evaluated tool Lumen that was created by Int.

computer Science Institute in University of California, Berkeley and IMDEA Networks Institute,

Madrid, Spain. Lumen App is available through Google store1. Lumen is a tool that helps you to

keep user personal data under control and obtain network traffic logs. It analyses the app’s traffic

to identify personal information leaks and the organizations collecting such sensitive data.

For monitoring, 25 mobile applications on different versions were used, see table 3. During

experiments we noticed that 88.7% traffic was transmitted by HTTPs, 4,1% was XMPP, 3,1% was

HTTP, and 4.1% other traffic. Communication of 8.951 connections to 288 unique IP addresses

was analysed, occupying around 811 MB storage size.

Table 4: Mobile Application Versions

App Version (Exp1) Version (Exp2) Version (Exp3)

FMWhatsApp

2 2.19.291 2.20.123 -

Gmail 2020.04.12.307915656.release - 2020.04.26.310266462.release

Google Play

Store

19.7.12-all [0] [PR]

305919187

20.0.15-all [0]

[PR] 309479531

20.1.17-all [0] [PR]

310643216

PHX Browser 4.7.2.2330 4.8.3.2355 4.9.2.2370

Chrome 81.0.4044.117 81.0.4044.138 83.0.4103.83

TikTok 15.5.5 16.0.42 16.2.4

nextbike v4.7.4 - v4.8.1

16

Google

Backup

Transport 5.1-1743759

Google 11.6.8.21.arm64

Maps 10.40.1

YouTube 15.17.38 15.19.34 15.20.33

Messenger 261.0.0.21.119 261.0.0.23.120 265.0.0.24.107

Equa bank 16.1.0 16.2.0 -

Boomplay 5.7.5 -

Duolingo 4.61.0 4.65.1

Weather 1

KB Klic 2.6.1 - -

Mobilni banka 6.3.2 - -

Telegram 6.1.1 - -

Facebook 267.1.0.46.120 270.1.0.66.127 271.0.0.55.109

JA3 Extension & Implementation

The tool consists of a shell script that processes PCAP files to compute JA3 fingerprints of known

web browsers. Tshark commands are used to extract the relevant fields from the Client Hello

packets. Unix string manipulation commands parse the fields to prepare for fingerprint generation

/ hashing. Computed fingerprints are saved into CSV files so that unknown PCAP files can be

compared.

Application Architecture

The shell script implementation includes various steps intended to extend the JA3 functionality by

being able to identify the web browsers used in a communication. Various command-based tools

are used to read and analyse PCAP files in order to reveal the browser identity. Figure 1 illustrates

the various components of the tool.

17

Figure 3 ClassifyJA3 System Architecture:

The first step uses TSHARK to extract the following packet fields from a PCAP file:

A. frame.time - This is the frame arrival time

B. ip.src - This is the Internet Protocol Version 4 address source

C. tcp.srcport - This is the Transmission Control Protocol Source Port

D. tcp.dstport - This is the Transmission Control Protocol Destination Port

In order to fingerprint only packets to known destinations, packets representing noise from other

apps should not be examined. A full packet capture includes traffic to / from many destinations,

including Operating System, background applications and other running apps communicating with

18

remote services. Since this project is only focused with browser TLS fingerprinting, traffic from /

by other applications / services should be eliminated. However, browser traffic includes

communication by browser plugins, advertisements, and other remote services not explicitly

initiated by the user. This should also be eliminated to remain with communication to destinations

initiated by the user. This will help at ensuring the fingerprints are clean and possible to identify

across different operating systems or browser versions. This also has a secondary benefit of

minimising the size of the dataset to be analysed, hence increasing the tool efficiency.

This is achieved by filtering traffic based on known DNS destinations. “A” records are analysed

and IP addresses matched with known domain names. TLS Client Hello packets to the identified

destinations are extracted and fingerprints generated. The steps below were followed to achieve

this:

Step 1: Identify a set of URLs to use and run them in a browser. Capture and save traffic

using Wireshark. Use Bulk URL Opener browser plugin to load multiple URLs at once.

Step 2: Extract DNS A records and DNS response names from the PCAP files and save the

results in CSV files. Combine these in a single CSV file. The commands in figure 4 achieve

these:

Figure 4: DNS Records Extraction Commands

Step 3: Search for the DNS response names for the domains identified, and match with

corresponding IP addresses. Extract the IP addresses and use them inside the TSHARK

filter, as shown in figure 5:

19

Figure 5: TSHARK Fields and Filter

The extracted fields are then processed using awk tool and saved into a text file f1.txt for

subsequent merging with browser name information.

The next major step is to calculate JA3 fingerprints, hashed from the following packet fields:

A. tls.handshake.version - This is the Transport Layer Security version,

B. tls.handshake.ciphersuite - This is the supported Transport Layer Security version cipher

suite,

C. tls.handshake.extension.type - This is the Transport Layer Security extension type,

D. tls.handshake.extensions_supported_group - This is the Transport Layer Security supported

group, and

E. tls.handshake.extensions_ec_point_format - This is the Transport Layer Security elliptic

curve point format

These packet fields are extracted from Client Hello messages that are not encrypted. Research

shows that different applications generate these fields in unique ways. In order to generate a JA3

equivalent fingerprint, the fields are processed using string manipulation tools such as awk and sed.

This processing includes replacing all commas with dashes and converting hexadecimal fields to

decimals. Each line is then md5’d and output of fixed length hashes saved into a text file, hashes.txt.

The main reason behind MD5 usage is to ensure the fingerprints are short. Also, given the limited

data set, hash collisions are not a concern here.

20

The generated fingerprints (hashes.txt) are then compared with static verified fingerprints in the

database, see appendix 1. For each fingerprint in hashes.txt, an SQL query checks the database for

matching records and returns the application name (such as Firefox, Chrome, Opera,...), otherwise

it returns UnknownApp value and saves the output to a text file, f2.txt.

The last step combines the contents of f1.txt and f2.txt to show which we browsers were used to

generate each packet.

Sequence Diagram

Figure 6: Sequence Diagram

Load PCAP file: The user runs the shell script with a PCAP file as a parameter, which is then

loaded into a bash variable $1. If the file cannot be read (due to various reasons such as

inexistence), the script returns an error and variable $1 is not initialised.

21

Extract 4 fields: TShark is a network protocol analyzer that is used by the script to read packets

from a previously saved capture file (PCAP). Tshark extracts the following fields from the

capture file: frame.time, ip.src, tcp.srcport, and tcp.dstport.

Save to text file f1.txt: Awk and sed are Unix utilities that parse and transform text on an input

stream (a file or input from a pipeline). The script passes data from Tshark through a pipe, which

is formated and saved into a text file.

Extract 5 fields: Tshark extracts the following fields from the capture file: frame.time, ip.src,

tcp.srcport, and tcp.dstport.

Calculate hashes: MD5 message-digest algorithm is to hash the lines, producing a 128-bit hash

value.

Save to hashes.txt: The set of 128-bit hash values are saved to a text file for further processing.

Compare new hashes with known ones: An SQL query is used to match each fingerprint to a

pre-calculated set and fetch the corresponding application name. If a match is not found, the

query returns the “Unknown App” string.

Save app names in t2.txt: The query results above are saved in a text file.

Combine f1.txt + f2.txt: f1.txt contains four packet fields from the communication, with each

row corresponding to a row of application name in f2.txt.

Display packet fields with associated applications: A combination of f1 and f2 text files shows

which web browser was used in the communication.

22

Chapter 4: Results

Web Browsers

Firefox

Browser identification was done for Firefox communication across four operating systems i.e. Kali

Linux, Mac OS, Ubuntu and Windows. The browser version was different across the three

operating systems.

JA3 fingerprints were generated from known PCAP files for Firefox. To ensure that noise is not

fingerprinted, DNS analysis was conducted whereby packets in the PCAP file were filtered based

on the destination IP addresses of the domains entered during the traffic capture. DNS A records

were matched with corresponding DNS response names in order to identify the destination IP

addresses of selected domains. These were identified and all client hello packets with such

destination IPs were fingerprinted. Unique fingerprints across the four operating systems were

identified. As at now, only Firefox had matching fingerprints, as shown in figure 7.

Figure 7: Firefox Fingerprints

The matching fingerprint records were inserted into a database table, which will be queried every

time a new PCAP needs to identify the browsers used in communication. Figure 8 shows the

database table.

23

Figure 8: Database Fingerprint Entries

Firefox was identified in the communication from the three operating systems, as shown in figures

8, 9 and 10.

Figure 9: Firefox Identification, Kali Linux

Figure 10: Firefox Identification, Mac OS

Figure 11: Firefox Identification, Windows

24

Google Chrome & Opera

Browser identification was done for Google Chrome & Opera communication across three

operating systems i.e. Kali Linux, Mac OS and Windows. The browser version was different across

Kali Linux, Ubuntu, Mac OS and Windows operating systems. Unique fingerprints could not be

identified across these browsers using the implemented JA3 method.

This led to deep examination of Client Hello fields used in JA3 fingerprinting and identifying the

differences in comparison to Firefox. Google Chrome PCAP files were analysed using Wireshark.

It was noted that the tls.handshake.ciphersuite field was different. It contains Cipher Suite:

Reserved (GREASE) (0x9a9a) which is not in Firefox. GREASE, which is an acronym for

“Generate Random Extensions And Sustain Extensibility”, is a new mechanism designed by

Google for TLS to catch incompatibility issues. GREASE was added to Chrome in Version 55.

Figure 12 shows this:

Figure 12: Wireshark GREASE Fields

https://www.chromestatus.com/feature/6475903378915328

25

The values change randomly across packets as shown in the first part of strings in figure 13:

Figure 13: Google Chrome Ciphersuite Values

GREASE values were also seen in tls.handshake.extension.type and

tls.handshake.extensions_supported_group Client Hello fields.

It has been proved that the hexadecimal numbers in GREASE are random and change every time

a page is refreshed. This explains the instability of fingerprints that we observed across different

browser sessions and operating systems. The results were similar for Opera browser because it is

built on the Chromium and Blink engine just like Chrome.

Modified Technique for Chrome / Opera Fingerprinting

It is still important to be able to fingerprint Chrome / Opera browsers. Because GREASE has been

found to introduce random values, its occurrences in the Client Hello messages will be eliminated

in the respective fields and fingerprints generated without it. The screenshot below (figure 14)

illustrates the fields to be removed, so that dataset resembles that of Firefox as indicated:

26

Figure 14: GREASE Values

Tshark was used to extract the five Client Hello fields. These were processed, manipulated and

saved as comma separated values. GREASE related fields were removed and finally md5 hash

values calculated for each record. Figure 15 shows two sets of records; one with full fields and the

other without GREASE fields:

Figure 15: Filtered Fields

A significant decrease in unique records indicate that GREASE values are quite random, and are

different for communications with the same host. Elimination of these values gives a more

consistent flow, which increases the chances of effective fingerprinting.

Note: Fields with hexadecimal values were not converted to decimal, as required in JA3 method.

This process was done for Google Chrome PCAP files from Windows, Mac OS, Kali Linux and

Ubuntu operating Systems. Initial tests show that one fingerprint

(9ff0023372e249c161e03a71055216ca) is unique for Google Chrome across all the operating

systems under review, see table 3:

27

Table 5: Google Chrome Fingerprints

chrome-klinux-

80_0_3987_106

chrome-mac-

80_0_3987_106

chrome-windows-

80_0_3987_106

chrome-ubuntu-

80_0_3987_132

7ea9c5678db69497cac

5ea5efedbbcf3

7ea9c5678db69497cac

5ea5efedbbcf3

29928ea197b2dd37dbdc

3144040d3bb9

9ff0023372e249c161e

03a71055216ca

8551ff8dc5d6c8379e28

cf8ecfdbf7e9

9ff0023372e249c161e

03a71055216ca

664c79a566a55e42851b

76c6e245915b

9ff0023372e249c161e0

3a71055216ca

9ff0023372e249c161e0

3a71055216ca

Opera Browser:

PCAP files from Opera browser belonging to Windows, Mac OS, Kali Linux and Ubuntu operating

Systems were analysed and indicated a common unique fingerprint

(9ff0023372e249c161e03a71055216ca) across the four operating systems as indicated in the table

4:

Table 6: Opera Browser Fingerprints

opera-klinux-

66_0_3515_72

opera-mac-

66_0_3515_72

opera-ubuntu-

67_0_3575_53

opera-windows-

66_0_3515_95

3534a4d8fcabf5fee54e

d010c34b45a0

7ea9c5678db69497cac

5ea5efedbbcf3

29928ea197b2dd37dbd

c3144040d3bb9

664c79a566a55e42851

b76c6e245915b

7ea9c5678db69497cac

5ea5efedbbcf3

9ff0023372e249c161e

03a71055216ca

6a7f738f44c5ad879841

dbe0f688fb66

9ff0023372e249c161e0

3a71055216ca

9ff0023372e249c161e

03a71055216ca

eeb35a05bfa15e7b7dc

92f84e3cc3fd7

7ea9c5678db69497cac5

ea5efedbbcf3

9ff0023372e249c161e0

3a71055216ca

The similarity between Google Chrome and Opera browser is because they share the same engine,

Chromium and Blink engine.

28

To validate the tool for Chrome / Opera fingerprinting, PCAP files for Firefox were used and

different fingerprints generated as indicated in the table 5:

Table 7: Firefox Fingerprints

firefox-klinux-

68_2_0esr

firefox-ubuntu-

73_0_1
firefox-mac-73_0

firefox-windows-

70_0_2

21890d87fa7da98f2b6c

da22df895bcb

21890d87fa7da98f2b6c

da22df895bcb

21890d87fa7da98f2b6c

da22df895bcb

4411f0b337f1c2708cb8

d98f58b9a447

74f477829a69ba89ff79

42171e4f6f54

74f477829a69ba89ff79

42171e4f6f54

74f477829a69ba89ff79

42171e4f6f54

4b186ca6dfb44d2a496

773fdc2b6944a

942292e4839c47998b8

c32b97e45694c

942292e4839c47998b8

c32b97e45694c

942292e4839c47998b8

c32b97e45694c

74f477829a69ba89ff79

42171e4f6f54

942292e4839c47998b8

c32b97e45694c

Since Chrome / Opera fingerprints are indistinguishable at the moment, I have merged their names

in the database app field. Running the script with x option (./chromeJA3.sh capture.pcapng -x) on

a Chrome PCAP generates a results as illustrated in figure 16:

29

Figure 16: Chrome / Opera Identification

Android Apps Fingerprinting

Lumen Analysis

Table 7 indicates a subset of the results obtained by the Lumen App. It lists all detected privacy

leaks with their description and mobile apps that were involved in these leaks.

30

Table 8: Lumen Monitor Flows

Conclusion

Preliminary results have indicated that Firefox web browsers can be accurately identified across

different operating systems. This is because of its unique fingerprint in the Client Hello TLS

message. The application was modified in order to fingerprint Google Chrome and Opera browsers

across the four operating systems.

Finally, the browser version does not matter regarding fingerprint generation. The tests were done

using different versions of browsers across the four operating systems, and similar fingerprints

were identified.

The tool consists of a shell script that processes pcap files to compute JA3 fingerprints of known

web browsers. Tshark commands are used to extract the relevant fields from the Client Hello

packets. Unix string manipulation commands parse the fields to prepare for fingerprint generation

/ hashing. Computed fingerprints are saved into CSV files so that unknown pcap files can be

compared.

31

References

Bojinov, H., Michalevsky, Y., Nakibly, G., & Boneh, D. (2014). Mobile device identification via

sensor fingerprinting. arXiv preprint arXiv:1408.1416.

Bujlow, T., Carela-Español, V., Solé-Pareta, J., & Barlet-Ros, P. (2015). Web tracking:

Mechanisms, implications, and defenses. arXiv preprint arXiv:1507.07872.

Dierks, T., & Rescorla, E. (2008). The transport layer security (TLS) protocol version 1.2.

Husák, M., Čermák, M., Jirsík, T. et al. HTTPS traffic analysis and client identification using

passive SSL/TLS fingerprinting. EURASIP J. on Info. Security 2016, 6 (2016).

https://doi.org/10.1186/s13635-016-0030-7

John Althouse, Jeff Atkinson and Josh Atkins (2019): TLS Fingerprinting with JA3 and JA3S.

Retrieved from https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-

247362855967 on 4 March 2020.

Kotzias, Platon, et al. "Coming of age: A longitudinal study of tls deployment." Proceedings of the

Internet Measurement Conference 2018.

Lemon, S. (2015). TLS Fingerprinting Smarter Defending & Stealthier Attacking. Online], Sep,

25.

Postel, J. (1980). RFC0768: User Datagram Protocol.

Razaghpanah, A., Niaki, A. A., Vallina-Rodriguez, N., Sundaresan, S., Amann, J., & Gill, P. (2017,

November). Studying TLS usage in Android apps. In Proceedings of the 13th International

Conference on emerging Networking EXperiments and Technologies (pp. 350-362).

Rescorla, E., Ray, M., Dispensa, S., & Oskov, N. (2010). Transport layer security (TLS)

renegotiation indication extension (Vol. 43, p. 44). RFC 5746 (Proposed Standard).

Zeifman, I,. (2012). Was that really a Google bot crawling my site? Retrieved from

https://www.incapsula.com/blog/was-that-really-a-google-bot-crawling-my-site.html on

2 July 2020.

https://doi.org/10.1186/s13635-016-0030-7
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://www.incapsula.com/blog/was-that-really-a-google-bot-crawling-my-site.html

