
Optimization of Fracture Tests Simulation in
Civil Engineering
Gabriel Bordovsky and Jiri Jaros

Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations, CZ

The Three Point Bending Fracture Test

Reconstructions of historic buildings require precise determination of

material properties. New blocks of sandstone has to match with oth-

ers in terms of material fatigue. Sample of the old material has to be

destroyed during the bending test to obtain information about mate-

rial reaction to constant load.

Characteristics Validation Based on Simulation

The output of the test is Load P and deformation (Crack Mouth Open-
ing Displacement) diagram and depends on many material character-

istics that may be difficult to determinate analytically. The result of the

simulationmatches the real test if correct characteristics are provided.

During the bending test, the quasi-bristle material such as sandstone

change behavior from elastic to quasi-fragile. There are first created a

micro fractures and then a main fracture line is formed and widened

in the quasi-fragile phase.

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.0002 0.0004 0.0006 0.0008 0.001

P
[N

]

CMOD[m]

P-CMOD diagram

Model Description

Used model is composed of randomly placed points bonded together

to form blocks, finite elements. Each block has its own matrix of stiff-

ness describing how the movement of one point in the block affects

others. The reactions R affecting a point i are computed from all N
blocks that the point is a member of, and changes in position of other

points j from the beginning of simulation.

Ri =
N
∑

n=1

7
∑

j=0

�

p j(t)− p j(0)
�

· Sn[i][j]

The new position p(t + h) of the points is then computed from the
current position p(t) and speed v(t + h) using the Euler method with
step h. For the speed v(t + h) of the point, the Euler method is also
used. The c is used as attenuation coefficient, m as a weight of the
point and R as total reaction that affected given point in step t.

p(t + h) = p(t) + h · v(t + h)

v(t + h) = v(t) + h ·
�

R− c · v(t)
m

�

Used Optimization and Scalability

The original prototype has taken 27 815 seconds to simulate the frac-
ture test with a model composed from 2 310 elements / 2 946 points on
a single thread (on Anselm). The critical section of simulation’s main

loop was parallelized using physical threads, vectorized using AVX, re-

ordered and unrolled. In last phase the parallel processing was mod-

ified to run for whole simulation, and not just for the critical section,

therefore, the threads creation overhead was lowered.

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 4 8 16

S
im

u
la

ti
o
n
 t

im
e
 [

s]

Number of CPU cores

Original
Vectorized (AVX)

Unrolled
One threads creation

The single thread version was 3.69 times faster (7 531 s) after the
optimization. When using all eight processors cores on one chip, the

solution was even 5.7 times faster (1 320 s). In total the solution on 8
cores wasmore then 21 times faster then prototype.

Optimized Simulation Analyze

Since for the accurate simulation, it is sufficient to compose the model

from circa 3 000 points, great part of required data may be stored in

L3 cache. Increasing granularity of the model does not increase the

output quality.

The simulation requires the usage of double precision number rep-
resentation. The interactions between points in the beginning of the

simulation are very small but significant. Neglecting them by using

single precision cause the load P to go into negative numbers, which is
physically impossible.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

P
 [

N
]

CMOD [m]

FLOAT
DOUBLE

The main problem with the scalability of the simulation is a short

iteration runtime. On one chip the computation of a single iteration

takes 132µs in average, from which 44µs in the critical section. This
does not provide enough time to exchange required data between

cores placed on different chips. Also random distribution of points

and undefined maximal number of finite elements per point makes it

difficult to split the simulation domain into balanced chunks.

Conclusions

The optimized solution provides 3.69 times faster solution thanks to
identification of compute demanding sections, theirs vectorization

and rearranging of the code, mainly loops. With effective thread cre-

ation the code provides another 0.71 ∗ number o f cores speedup on
single processor.

One core All cores Speedup Effectivity

Anselm (8 cores) 7 531s 1 320s | 22,00min 5,705 71, 316%
Salomon (12 cores) 7 060s 826s | 13,76min 8,547 71.226%

IT4Innovations
national#1!0€€
supercomputing
center0€01#11#

This work was supported by The Ministry of Education, Youth and Sports of the Czech Republic from the Large Infrastructures for Research, Experimental

Development and Innovations project “IT4Innovations National Supercomputing Center – LM2015070”, and the National Programme of Sustainability (NPU II)

project “IT4Innovations Excellence in Science – LQ1602”.

