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Abstract

String-number conversion is an important class of con-
straints needed for the symbolic execution of string-
manipulating programs. In particular solving string con-
straints with string-number conversion is necessary for the
analysis of scripting languages such as JavaScript and Python,
where string-number conversion is a part of the definition of
the core semantics of these languages. However, solving this
type of constraint is very challenging for the state-of-the-art
solvers. We propose in this paper an approach that can ef-
ficiently support both string-number conversion and other
common types of string constraints. Experimental results
show that it significantly outperforms other state-of-the-art
tools on benchmarks that involves string-number conver-
sion.
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1 Introduction

Symbolic execution is a very popular technique that allows
programmers to check the feasibility of a path in a program,
i.e., determining the value of the inputs under which the
given path can be executed. The path feasibility problem is
usually solved by a reduction to the satisfiability of a formula.
More precisely, program statements in the path are trans-
lated to equivalent constraints in static single assignment
(SSA) form and then solved by Satisfiability Modulo Theory

(SMT) solvers. The types of constraints needed depend on the
types of program expressions to be analyzed. Therefore, SMT
solvers need to support different combinations of theories
so that they can handle a wide range of types.

Among all data types, the string data type is omnipresent
in modern programming languages. Various security vul-
nerabilities such as injection and cross-site scripting attack
are caused by malicious string values. Therefore, string con-
straint solving has received considerable attention in the con-
straint solving community. Operations such as equality con-

straints (e.g. x .y = y.x), regular constraints (e.g., x ∈ (a.b)∗),
and integer constraints (e.g., |x | − |y | > 3), are widely sup-
ported by most state-of-the-art string constraint solvers such
as, CVC4 [8], OSTRICH [13], Sloth [21], Trau+ [1, 2, 5], Z3
[15] and Z3Str3 [9].
An important class of string operations is the string-

number conversions. While string length operations are
sometimes well supported, converting a string x to an inte-
ger n (e.g., using the operation n = toNum(x )) or turning an
integer value n into its string form x (e.g., using the opera-
tion x = toStr(n)) suffer from limited support (in terms of
the scale of formulae they can handle) by the state-of-the-art
string constraint solvers.
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In fact, a code that receives string input tends to need to
convert at least some of that input into numbers. For example,
the program fragment below is a variant of the Luhn test
algorithm that is often used in credit card or ID validation.

function checkLuhn(value) {

var sum = 0;

for (var i = value.length - 1; i >= 0; i-=2) {

var d = parseInt(value.charAt(i));

sum += d;

}

for (var i = value.length - 2; i >= 0; i-=2) {

var d = parseInt(value.charAt(i));

if ((d *= 2) > 9) d -= 9;

sum += d;

}

var last= sum.toString().charAt(sum.length-1);

return last == '0';

}

The input value of the Luhn test algorithm is a sequence
of digits. The algorithm processes the digits in the reversed
order. The value of every odd digit (e.g., 1st, 3rd, etc.) is
added to sum directly. For the value of every even digit, the
algorithm (1) doubles its value, (2) subtracts its value by 9
if the doubled-value is larger than 9, and (3) adds the final
result to sum. At the end, the input is validated if the last
digit of sum is 0 (i.e., sum mod 10=0).
To check whether the program path that traverses both

loops exactly once and finally passes this test has a valid
input, we create the following (string) constraint:

1 value0 ∈ [1, 9]+ ∧ sum0 = 0∧
2 i0 = |value0 | − 1∧
3 d0 = toNum(charAt(value0, i0))∧
4 sum1 = sum0 + d0∧

5 i1 = |value0 | − 2∧
6 d1 = toNum(charAt(value0 , i1))∧
7 sum2 = sum1 + ite(d1 ∗ 2 > 9, d1 ∗ 2 − 9, d1 ∗ 2)∧
8 i2 = 0
9 last0 = charAt(toStr(sum2), |toStr(sum2)| − 1)∧
10 last0 = ł0”

Here value0 and last0 are string variables and the others
are integer variables. The method charAt(x , i) returns the
character at index i in the string x while n = ite(b, e , e ′)
assigns to n the value of the expression e if b is true and the
value of the expression e ′ otherwise. Line 1 describes the
initial condition: value should be a sequence of digits and
sum is initially zero. Lines 2-4 and lines 5-7 describe one
execution of the first and second loop, respectively. Line 8
describes the condition on i2 before leaving the loop. Finally,
Lines 9-10 describe the condition that the last digit of sum is
zero. Observe that to describe such a program path, we need
a solver that supports the following types of constraints:

• Regular constraints (e.g., value0 ∈ [1, 9]+, which says
value0 is in the regular language [0, 9]+),

• Integer constraints (e.g., i0 = |value0 | − 1, which says
i0 equals the length of value0 minus one),

• Equality constraints (often y = charAt(x , i) is encoded
as x = x1.x2.x3 ∧ |x1 | = i ∧ |x2 | = 1 ∧ y = x2, which
uses equality of string terms x and x1.x2.x3), and

• String-number conversion (e.g., toStr(sum2), which is
the string value of the number sum2).

Most of the state-of-the-art string constraint solvers pro-
vide limited support to the combination of above constraints.
In Table 3 of our evaluation (Section 9), CVC4 fails to solve
constraints corresponding to checkLuhn of more than 6 loop
iterations in 2 minutes, Z3 can only solve the cases corre-
sponding to 2 to 5, and 9 loop iterations, and Z3Str3 fails to
solve any case.
Even, more crucially, in many programming languages,

string-number conversion is a part of the definition of their
core semantics. JavaScript, which powers most interactive
content on the Web and increasingly server-side code with
Node.js, is one of such languages. Other scripting languages
do too, but we focus on JavaScript due to its prominence.
To see how string-integer conversion pervades semantics,
consider the following program:

for(var i = 0; i < 10; i++) {

arr[i] = 0;

}

A casual glance at the above code reveals no use of strings
at all, but the semantics of field access is somewhat unusual
in JavaScript. In fact, the arrays in JavaScript are indexed
by strings, and numeric indices are converted to strings.
This conversion is mandated explicitly by the JavaScript
semantics. The 2019 edition of ECMAScript [16] requires
that ToPropertyKey be called on the element expression
(ğ12.3.2.1), andToPropertyKey calls ToString on that value
in all but special cases (ğ7.1.14). Therefore, any faithful sym-
bolic execution of JavaScript must handle such conversions
for even basic array operations to work correctly. Consider
the following code snippet that manipulates an array x, with
its value shown on the right:

1 x = [0,0,0,0,0] [0,0,0,0,0]
2 x[3] = 4 [0,0,0,4,0]
3 x[03] = 2 [0,0,0,2,0]
4 x["3"] = 5 [0,0,0,5,0]
5 x["03"] = 7 [0,0,0,5,0] and x["03"] = 7
6 x["03"-1] = 2 [0,0,2,5,0] and x["03"] = 7

Here x[3] in line 2, x[03] in line 3, and x["3"] in line 4 all
denote the same array element of x["3"] (due to the implicit
conversion of numeric indices to strings in JavaScript), but
x["03"] denotes a completely different element (which is
stored at the index "03" of the array). So naïve modeling
of array indices with integers will not work ś it cannot
distinguish the indices "3" and "03".

But if array indices are modeled as strings, we must handle
arithmetic somehow. Let us look at the case of line 6, we need
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to update the value of x["03"-1]. The evaluation of the ex-
pression "03"-1 involves an implicit type conversion from
the string "03" to an integer value 3 due to the - (minus) op-
eration. The result of the evaluation of "03"-1 is the integer
2, which is then converted back to string "2" and used as the
array index. Hence x["03"-1] means the array element of
x["2"]. Even for a simple example like this, the conversion
between string and number is unavoidable. This is a rather
basic array operation in JavaScript, and not handling string-
number conversion operations will cripple any analysis of
non-trivial JavaScript code. Thus, we need stronger solvers
that are able to handle string-number conversion operations
in order to be able to analyze real code.

Solving string constraint with string-number conversion
is a very challenging problem. From the theoretical point of
view, this problem is already proven to be undecidable [14].
From practical point of view, our experimental results (in
Section 9) show that the current the state-of-the-art string
constraint solvers provide little support to string-number
conversion.
In this paper, we propose a framework that efficiently

handles string constraints with string-number conversion.
Since the problem is provably unsolvable, our framework
combines over and under-approximation techniques. The
over-approximation is for proving UNSAT when possible,
while the under-approximation is for proving SAT when pos-
sible. Both over- and under-approximation fall in a decidable
fragment of string constraints that we can efficiently solve.

For ease of presentation, we use the following toy example

Φ= {ł0”x =xł0”, toNum(x )= toNum(y), |y |>|x |>1, 1000<|y |}

to explain the main ideas behind our decision procedure. To
make our terminology explicit:Φ states that ł0” concatenated
with x is the same as x with ł0”, the numeric value of the
string x is equivalent to that of y, y is longer than x , y is
longer than 1000 characters, and x is longer than 1. Notice
that Φ is satisfiable. E.g., it has a model x = ł00” and y =
ł01002”. Although this toy example is seemingly trivial, all the
state-of-the-art string constraint solvers we tried (including
Z3, CVC4, and Z3Str3) cannot solve it within 10 minutes.
Our new decision procedure solves the example in few

seconds. It proceeds in two steps: The first step consists in
over-approximating the set of input constraints into a set
that falls in the chain-free fragment [5], which is decidable.
Observe that we could over-approximate the input constraint
into any decidable fragment, e.g. the acyclic fragment [3] or
the straight-line fragment [13]. Our choice of the chain-free
fragment [5] is only motivated by the fact that the chain-
free fragment is the largest known decidable fragment for
that class of string constraints. In our example, we over-
approximate the formula Φ by converting ł0”x = xł0” to two
formulae {x1 = ł0”x, x2 = xł0”} and replacing the constraint
toNum(x ) = toNum(y) withnx = ny∧(nx = −1∨(nx , −1∧
x ∈ [0−9]∗))∧(ny = −1∨(ny , −1∧y ∈ [0−9]∗))). Observe
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Figure 1. An example of a parametric flat automaton

that if the over-approximation is UNSAT then our decision
procedure declares that the original formula is also UNSAT
and terminates. Surprisingly, despite its simplicity, our over-
approximation procedure works very well in practice as
shown by our experimental results (in Section 9). Coming
back to the formula Φ, the over-approximation module will
return SAT in this case.
The second step of our decision procedure is only en-

abled if the over-approximation step returns SAT. In this
case, our decision procedure uses an under-approximation
technique (which is our main contribution) to restrict the
search domain of each string variable to strings that obey
some predefined and parameterized pattern. We propose to
use patterns defined by parametric flat automata (PFA). A
PFA is a flat finite state automaton consisting of a prede-
fined sequence of loops, each of fixed length (see Figure 1).
The size of the PFA is parameterized by the length of the
sequence of loops and the size of each loop. Adjusting these
parameters enlarges or prunes the potential solution space.
This approach based on PFA is very flexible yet allows very
efficient manipulation. In fact, our procedure restricts the
search space for each variable to the set of words accepted
by the corresponding given PFA.

Then, we show that given such restriction, one can reduce
the string constraint solving problem to a linear formula sat-
isfiability problem in polynomial-time. To gain in efficiency,
we label each transition of a PFAwith a unique character vari-
able (whose domain is the set of natural numbers) instead
of having a transition between every two states for each
symbol in the alphabet. This is done by associating to each
character in our alphabet a unique natural number. This al-
lows us to avoid the alphabet explosion problem from which
the approach in [1] suffers and it is the key for handling
string-number conversion efficiently.

In the following, we explain the construction of the linear
formula using Φ as an example. Assume that we project the
domains of x and y to the PFA in Figure 2 (a) and (b), respec-
tively. The variables v0, v1, v2, v3 in the figure are character
variables. Thus, v0, v1, v2, v3 are also integer variables.

The linear formula produced after the domain restriction
will be over variables v0, v1, v2, v3, as well as the number
of occurrences of each character variable #v0, #v1, #v2, #v3.
Each model of the linear formula encodes a model of the
string constraint. For example, x = ł00” andy = ł01002” is en-
coded by the assignment (v0,v1,v2,v3, #v0, #v1, #v2, #v3) →
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Figure 2. Parametric flat automata of x and y

(0, 0, 0, 0, 1, 1, 501, 501).1 The assignment says, for example,
that x is the parametric word obtained by traversing the loop
of Ax once (because #v0 = #v1 = 1), which is v0v1. Under
the assignment v0 = 0 and v1 = 0, we obtain x = ł00”.

If a model of the produced linear formula is found, then the
procedure concludes SAT with an assignment to the string
variables. If not, our procedure changes the PFAs to a more
expressive one (by adding more states and transitions) and
repeat the analysis. We report unknown after failing to prove
SAT using a certain number of PFAs.
To demonstrate the usefulness of our approach, we have

implemented our decision procedure in an open source
solver, called Z3-Trau and evaluated it on a large set of bench-
marks obtained from the literature and from symbolic execu-
tion of real world programs. The experimental results show
that Z3-Trau is among the best tools for solving basic string
constraints and significantly outperforms all other tools on
benchmarks with string-number conversion constraints. In
this benchmark, the total amount of tests cannot be solved
by Z3-Trau is only a half to the second best tool.

Summary of the Contributions.

• An efficient procedure for checking satisfiability of
string constraints with string-number conversion.

• The class of parametric flat automata which is the key
for efficient handling of string constraints.

• An algorithm that translates the satisfiability problem
of string constraints to the satisfiability problem of a
linear formula in polynomial-time when the search
space restricted by PFAs.

• An open source tool Z3-Trauwith experimental results
that demonstrate the efficiency of our approach on
both existing and real-life benchmarks

Outline. After recalling the definition in Section 3, Section 4
presents a brief overview of our decision procedure. Section
5 introduces the class of parametric flat automata. Section 6
describes how to use PFA to restrict the searching domain of
string variables. Section 7 shows how to construct the linear
formula for basic string constraints (i.e., regular, equality, and
integer constraints). Section 8 presents the construction of
the linear formula for string-number conversion operations.
Section 9 presents the details of our implementation and our
experimental results. Related works are discussed in Section

1In these examples, we use the shorthand (x1, . . . , xk ) → (n1, . . . , nk )

to denote the function {x1 7→ n1, . . . , xk 7→ nk }.

10. Finally, Section 11 concludes the paper with a discussion
of future works.

2 Preliminaries

We use N and Z to denote the sets of natural numbers and
integers. For a set A, we use |A| to denote its size. For n,m ∈

N, we write [n,m] for the set of natural numbers {k | n ≤

k ≤ m}. The function f with the domain restricted to a set
D is denoted by fD , and a set of functions F restricted to a
set D is FD = { fD | f ∈ F }. An alphabet is a finite set Σ of
characters and a word over Σ is a sequencew = a1 . . . an of
characters from Σ, with ϵ denoting the empty word. We use
w1 ·w2 to denote the concatenation of wordsw1 andw2. Σ

∗ is
the set of all words over Σ, Σ+ = Σ

∗ \{ϵ} and Σϵ = Σ∪{ϵ}. A
language over Σ is a subset L of Σ∗. We use |w | to denote the
length of w and |w |a to denote the number of occurrences
of the character a ∈ Σ inw .

A finite automaton (FA) is a tuple (Q,T , Σ,qi ,qf ), whereQ
is the set of states,T ⊆ Q×(Σ∪{ϵ})×Q is the set of transitions,
Σ is the alphabet, qi is the initial state, and qf is the final
state. A run π ofA over a wordw = a1 · · ·an is a sequence of
transitions (q0,a1,q1), (q1,a1,q2), . . . , (qn−1,an,qn). The run
π (resp. the word w) is accepting (resp. accepted) if q0 = qi
and qn = qf . The language of A (denoted by L(A)) consists
of the set of all accepted words.
Through the paper, we will use quantifier-free linear in-

teger arithmetic formulae, and call them linear formulae for
short. Given a linear formula ϕ over variables V and an in-

teger interpretation of V , a function I : V → Z, we denote
by I |= ϕ that I satisfies ϕ (which is defined in the standard
manner), and call I a model of ϕ. We use [[ϕ]] to denote the
set all models of ϕ.
The Parikh image of a word w ∈ Σ

∗ maps each Parikh

variable #a, where a ∈ Σ is a character, to the number of
occurrences of a inw . Formally, given a set S , let #S denote
the set of Parikh variables {#s | s ∈ S}. The Parikh image
ofw is a function P(w) : #Σ → N such that P(w)(#a) = |w |a
for each a ∈ Σ. The Parikh image of a language L is defined
as follows P(L) = {P(w) | w ∈ L}. It is well known that the
Parikh image of a regular language can be characterized by
a linear formula.

Lemma 2.1 ([40]). Let A be a FA over the alphabet Σ. Then,

we can compute, in linear time, a linear formula ΦP(A), over

#Σ, such that [[ΦP(A)]]#Σ = P(L(A)).

3 String Constraints

In this section, we formally define string constraints. To
begin with, we fix a finite alphabet Σ ⊆ N. Note that here we
assume that the alphabet is a finite subset of natural numbers.
Essentially, we try to capture the numerical encoding of the
corresponding symbols in computers (e.g., in ASCII, ‘A’ is
encoded as 65). Hence, we can assume w.l.o.g. that there
is a one-to-one mapping between numbers in Σ and the
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character it encodes. For the simplicity of presentation, we
assume that the character ‘0’ is mapped to the number 0,
‘1’ to 1,. . ., and ‘9’ to 9. For other character c , we use [[c]] to
denote the number that it maps to. Notice that this approach
is general enough to support any finite set of characters.
A minor technical difficulty is that sometimes we may

need to treat ϵ as a number. Therefore, we encode ϵ as some
fixed number [[ϵ]] ∈ N \ Σ.

Assume that X is a set of string variables ranging over Σ∗

and Z a set of integer variables ranging over Z. An interpre-

tation over X and Z is a mapping I : X ∪Z → Σ
∗ ∪Z. A word

term is an element in X ∗. We lift the interpretation I to word
terms and linear constraints in the standard manner.
We use four types of atomic string constraint:

• An equality constraint ϕe is of the form t1 = t2 where
t1, t2 are word terms. The model of ϕe is the set of
interpretations [[ϕe ]] = {I | I (t1) = I (t2)}. A disequality

constraint ϕd is of the form t1 , t2 and is interpreted
analogously.

• An integer constraint ϕi is a linear constraint over the
integer variables in Z and values of |x | for all x ∈ X ,
where | · | : X → N is the string length function defined
in the standard way. We define [[ϕi ]] = {I | I (ϕi ) =

true}.
• A regular constraint ϕr is of the form x ∈ L(A) where
x is a string variable and A is a finite automaton. The
model of ϕm is the set of interpretations [[ϕm]] = {I |

I (x) ∈ L(A)}.
• A string-number conversion constraint ϕs is of the form
n = toNum(x ), where the function toNum(x ) is de-
fined as follows. For a ∈ [0, 9], we have toNum(a) = a
and forw ·a ∈ [0, 9]+, toNum(w · a) = 10×toNum(w)+
a. Forw < [0, 9]+, toNum(w) = −1. We define [[ϕs ]] =
{I | I (n) = toNum(I (x))}. The number-string conver-
sion constraint x = toStr(n) is treated as a syntactic
sugar for n = toNum(x ). We assume decimal encoding
of numbers.

A string constraint is then a conjunction of atomic string
constraints, with the semantics defined in the standard man-
ner. It is satisfiable if there is an interpretation which evalu-
ates the constraint to true. Often we refer to the first three
types of atomic string constraints the basic string constraints.

Notice that only positive integer is supported in the string-
number conversion function. This is the semantics used by
most of the SMT solvers, and hence we follow it in this
paper. The encoding has a benefit that it can also handle
the case where x is łnot a number", using the condition
toNum(x ) = −1. Supporting only positive integer is not a
strong restriction, since converting from negative integer
can still be encoded using only the positive version.

4 Decision Procedure Overview

Our decision procedure has two steps: The first step consists
in over-approximating the set of input constraints into a
set that falls in the chain-free fragment [5], which is decid-
able. The over-approximation module proceeds as follows:
First, it replaces all string-number conversion constraint
n = toNum(x ) by n = −1 ∨ (n , −1 ∧ x ∈ [0 − 9]∗) to ob-
tain an over-approximation Φ consisting of only basic string
constraints. Then, it over-approximates Φ to a chain-free

string constraint [5], which consists of only integer, member-
ship, and chain-free equality constraints. Informally, a set of
equality constraints has a chain if we can find some circu-
lar dependency between the string variables in the equality
constraints. Our procedure iteratively searches for such de-
pendency chains in the equality constraints. If a chain is
found then we replace a variable appearing in that chain by
a fresh one. By doing this, we break that chain.We repeat this
procedure until there are no more chains. Observe that if the
over-approximation is UNSAT then our decision procedure
declares that the original formula is also UNSAT.
The second step of our decision procedure is only en-

abled if the over-approximation step returns SAT. In this
case, our decision procedure under-approximates the string
constraints by restricting the search domain of each string
variable to the language defined by some PFA. This approach
based on PFA allows very efficient manipulation. We will
show that given such restriction, one can reduce the string
constraint solving problem to a linear formula satisfiability
problem. The rest of the paper will be mainly dedicated to the
explanation of the under-approximation technique (which
is our main contribution).

5 Parametric Flat Automata

We introduce parametric flat automata that will be used
to define patterns used by the under-approximation
module to restrict the domain of string variables.
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q20

q
l0
0
−1 q11

q21

ql11
−1 q1m

q2m

q
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−1

a00
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Flat Automata. A finite state automaton A =

(Q,T , Σ,q00,q
0
m) is said to be flat if it satisfies the fol-

lowing structural constraints (see also the figure above):

1. The final state q0m is reached from the initial state
q00 through a straight path of m − 1 transitions

(q0i ,ai ,q
0
i+1) ∈ T with q0i ∈ Q and ai ∈ Σ for i ∈

[0,m − 1].
2. Each state q0i is the origin of a unique simple cycle

of the length li ∈ N, consisting of states q
j−1
i ∈ Q

and transitions (q
j−1
i ,a

j−1
i ,q

j mod li
i ), with a

j−1
i ∈ Σ, for

j ∈ [1, li ]. Notice that the case when li = 0 is also
admissible and means that there is no cycle on qi .

947



PLDI ’20, June 15ś20, 2020, London, UK P.A. Abdulla, M.F. Atig, Y-F. Chen, B.P. Diep, P. Janků, H-H. Lin, L. Holík, and W-C. Wu

3. Each character in Σ appears on at most one transition
of the automaton A.

The crucial feature of flat automata is that their seman-
tics can be faithfully represented by a linear formula and
handled efficiently by an SMT solver. Such encoding into
linear formula results in efficient algorithms and decision
procedures. For instance, we avoid dealing with costly stan-
dard automata operations (e.g., checking the non-emptiness
of the intersection of several regular languages is known
to be Pspace-complete while it is in NP for the class of flat
automata). The encoding is possible due to the flat struc-
ture, which has the property that łevery word w ∈ L(A) is
uniquely determined by its Parikh image P(w)". More pre-
cisely, the Parikh image of a wordw ∈ L(A) can be seen as
an encoding ofw and can be uniquely decoded:

Lemma 5.1. For a flat FA A, there is a function decodeA such

that for eachw ∈ L(A), decodeA(P(w)) = w .

Observe that the P(w) value of any variable appearing
within a cycle of A is equal to the number of repetitions
of that cycle in the accepting run. This is an immediate
consequence of the fact that every character appears on at
most one transition. Thus, the accepting run onw (and sow
itself) can be reconstructed from P(w).

More concretely, the function decodeA can be implemented
as follows. Given I# : #Σ → N, and assuming that the lengths
of the loops of A are l0, . . . , lm , decodeA(I#) is constructed
as the word w0a0w1 · · ·am−1wm where for each i ∈ [0,m],

wi = (a0i · · ·a
li−1
i )#a

0
i if li > 0 andwi = ϵ if li = 0.

For example, in the automaton given at the beginning
of this section, from |x |a0 = |x |a1 = · · · = |x |am−1

= 1,
|x |a0

1
= |x |a1

1
= |x |a2

1
= 2 and |x |aij

= 0 otherwise, we derive

that x = a0(a
0
1
a1
1
a2
1
)2a1 · · ·am−1.

Parametric (Flat) Automata. Next, we define parametric

automaton (PA) as a pair P = (A,ψ )whereA is an automaton
operating over an alphabet V of character variables and ψ
is an interpretation constraint, a linear formula over V . Para-
metric flat automaton (PFA) is then a parametric automaton
whose automaton is flat. See Figure 1 and 2 for examples of
PFAs (without interpretation constraints, i.e.,ψ = true.).
Parametric automata accept words over V , called para-

metric words, but we still use them as representations of
languages over Σ. Namely, words over V are interpreted
as words over Σ under an interpretation of V , a mapping
I : V → Σϵ (recall that Σϵ ::= Σ ∪ {ϵ} ⊆ N). For a
parametric word x = v1v2 · · ·vk over V , its interpreta-
tion I (x) is then defined as I (v1) · I (v2) · . . . · I (vk ). We
then define the semantics of the PA P as the set of strings
[[P]] = {I (x) | x ∈ L(A), I ∈ [[ψ ]]} of all interpretations
satisfyingψ of all parametric strings in the language of A.

We say that a mapping Ie : V ∪#V → N is a word encoding
of a word w (or a P-encoding of w) if w is an instantiation
of some parametric word x ∈ L(P) whose Parikh image

and interpretation of character variables are defined by Ie .
Conversely,w is a P-decoding of Ie . We use encodeP (w) below
to denote all P-encodings of a word w , and decodeP (Ie ) to
denote all P-decodings of a word encoding Ie . Namely,

encodeP (w) = {Ie |x ∈ L(P), I (x) = w, I ∈ [[ψ ]], Ie = I ∪ P(x)}

decodeP (Ie ) = {w |x ∈ L(P), I (x) = w, I ∈ [[ψ ]], Ie = I ∪ P(x)}

Since a word encoding Ie only records the numbers of
occurrences of character variables (Parikh image), the same
word encoding may be shared by multiple words, as formal-
ized in the definition of decodeP (Ie ).

Example 5.2. Let use consider the PFA Px = (Ax , true)

from Figure 2 (a) and let Y=(v1,v2, #v1, #v2). Then we have
encodePx (łaaa”) = {(Y→([[a]], [[ϵ]], 3, 3),Y→([[ϵ]], [[a]], 3, 3)}

and decodePx ((Y→([[a]], [[ϵ]], 3, 3)) = {łaaa”}.

If P is a PFA, then by Lemma 5.1, every word encoding
Ie ∈ encodeP (w) can be decoded uniquely to the wordw , i.e.

{w} = decodeP (encodeP (w))

Similarly, as stated by the following corollary of
Lemma 5.1, Parikh image of parametric words in L(A) paired
with character variable interpretations satisfyingψ encode
precisely the words in [[P]].

Corollary 5.3. For a PFA P = (A,ψ ),

[[P]] = decodeP ({(I ∪ I#) | I# ∈ P(L(A)), I ∈ [[ψ ]]}).

6 Flat Domain Restriction

In this section, we describe formally how to restrict the
domain of string variables to patterns defined by PFA. We
start the description of the algorithm that converts a string
constraint ϕin to a linear formula representing the set of
solutions under the domain restriction.
The domain restriction is formally defined by restricting

the domain of each string variable by a chosen PFA. Namely,
assuming that X is the set of string variables of ϕin, a flat
domain restriction for ϕin is a mapping R that assigns to each
variable x ∈ X , a PFA R(x) over character variables Vx . Let
VR =

⋃
x ∈X Vx be the set of all character variables used in R.

We require that these PFA operate over pairwise disjoint sets
of character variables, that is if x , y then Vx ∩Vy = ∅. The
particular choice of a PFA for each variable depends on the
strategy used in the implementation, and will be discussed
in Section 9. The flattening of the input string constraint ϕin,
denoted flattenR(ϕin), will be built inductively following the
structure of ϕin. For a conjunction of string constraints, we
let flattenR(ϕ∧ϕ

′) ::= flattenR(ϕ)∧flattenR(ϕ
′). We do such

decomposition until reached atomic string constraints. We
show how to build a flattening flattenR(ϕ) for every atomic
string constraint ϕ in the following sections.
The semantics of a string constraint ϕ restricted by R is

then defined as [[ϕ]]R = {I ∈ [[ϕ]] | ∀x ∈ X : I (x) ∈ [[R(x)]]}.
The correctness of the entire construction of flattenR(ϕin)

is expressed by Theorem 6.2. It uses the decoding function
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decodeR parameterized by the domain restriction R. Let Z be
the set of integer variables in ϕin. The function maps an inter-
pretations Ie overZ∪VR∪#VR to an interpretation overZ∪X ,
following the domain restriction R. Informally, it łdecodes"
an interpretation of integer variablesZ∪VR∪#VR to an inter-
pretation of variables in the string constraint ϕin. Formally,
we define decodeR(Ie ) ::= {I | ∀z ∈ Z : I (z) = Ie (z) ∧ ∀x ∈

X : {I (x)} = decodeR(x)((Ie )VR(x )∪#VR(x )
)}. The condition says

that (1) I and Ie are consistent over variables in Z and (2)
(Ie )VR(x )∪#VR(x )

is a word encoding that R(x)-encodes I (x).
We also define the R-encoding function as the counterpart
of R-decoding, namely, for a interpretation I of the string
constraint ϕin, we let encodeR(I ) = {Ie | decodeR(Ie ) = {I }}.
We lift decodeR and encodeR to sets of interpretations in the
standard manner.

Example 6.1. We consider the domain restriction R such
that R(x) = (Ax , true) from Figure 2 (a) and R(y) =

(Ay , true) from Figure 2 (b). Let the set of integer vari-
ables be Z = {vz } and let VR(x ) = {v0,v1,v2,v3}. For the
interpretation Ie = (vz,v0,v1,v2,v3, #v0, #v1, #v2, #v3) →

(3, [[a]], [[b]], [[c]], [[ϵ]], 3, 3, 2, 2), we have decodeR(Ie ) =

{(z, x,y) → (3, łababab”, łcc”)}.
Conversely, for I = (z, x,y) → (3, łababab”, łcc”) and Y =
(vz,v0,v1,v2,v3, #v0, #v1, #v2, #v3), we have encodeR(I ) =

Y → (3, [[a]], [[b]], [[c]], [[ϵ]], 3, 3, 2, 2),

Y → (3, [[a]], [[b]], [[ϵ]], [[c]], 3, 3, 2, 2),

Y → (3, [[a]], [[b]], [[c]], [[c]], 3, 3, 1, 1)




Theorem 6.2. decodeR([[flattenR(ϕin)]]) = [[ϕin]]
R

The theorem can be proved by a structural induction
over ϕin. However, for the induction step to go through, we
will need to guarantee a stronger correspondence of string
constraints ϕ and their flattenings flattenR(ϕ) than just the

semantic equality decodeR([[flattenR(ϕ)]]) = [[ϕ]]R . Particu-
larly, we will need to ensure that flattenR(ϕ) captures exactly

all R-encodings of [[ϕ]]R (indeed, notice that if it would be
allowed to capture only some of the encodings, then for
instance flattenR(ϕ) ∧ flattenR(ϕ

′) could only underapprox-

imate [[ϕ ∧ ϕ ′]]R ). The inductive argument needed in the
correctness proof of the under-approximation then reads as

[[flattenR(ϕ)]]VR∪V#R
= encodeR[[ϕ]]

In the next sections, we will formulate the corresponding
correctness lemma for flattening constructed from each type
of atomic string constraints. We note that the restriction of
[[flattenR(ϕ)]] to VR ∪ V#R here is needed since flattenR(ϕ)
will be constructed with some auxiliary variables.

7 Flattening of Basic String Constraints

We will first discuss flattening of the basic string constraints,
that is, regular, equality, and integer constraints. We start
by two needed operations over PA, synchronization and
concatenation.

Synchronization of PAs. We will now discuss a construc-
tion of the synchronization formula for two PAs P and P ′. It
is a linear formula ΨP×P ′ that specifies how each word in
the semantic intersection [[P]] ∩ [[P ′]] is encoded by P and
by P ′. More precisely, the models of ΨP×P ′ represent pairs
of word encodings Ie and I

′
e such that Ie ∈ encodeP (w) and

I ′e ∈ encodeP ′(w) (hencew ∈ [[P]] ∩ [[P ′]]).
Particularly, the synchronization formula is built for two

PAs P=((Q,T ,V ,qi ,qf ),ψ ) and P ′
=((Q ′

,T ′
,V ′
,q′i ,q

′
f
),ψ ′)

such that V ∩ V ′
= ∅. It is extracted from the asynchro-

nous product of P and P ′. The asynchronous product is an
automaton that usesQ ×Q ′ as the set of states andVϵ ×V

′
ϵ as

the alphabet. Every accepting run of P × P ′ corresponds to a
pair of accepting runs, a run of P over a parametric word x
and a run of P ′ over a parametric word x ′. The word accepted
by the run of P×P ′ induces constraints on the interpretations
of I over V and I ′ over V ′ under which the two parametric
words have the same interpretation, i.e. I (x) = I ′(x ′).

Intuitively, when the product automaton P × P ′ takes a
transition ((q1,q

′
1
), (v,v ′), (q2,q

′
2
)), it means the character

variablev andv ′ should be assigned the same value, P moves
under v from state q1 to state q2 and P

′ from q′
1
to q′

2
under

v ′. When P × P ′ takes a transition ((q1,q
′
1
), (v, ϵ), (q2,q

′
1
)),

it means that the character variable v should be assigned
ϵ , P moves under v to q1, and P

′ takes no action, since no
action is needed to match P ’s reading of ϵ (hence consumes
no symbol from the input word). Symmetrically, P ′ might
read a variable v assigned ϵ and P may stay.
Formally, the asynchronous product automaton is a tu-

ple P × P ′
= (Q × Q ′

,T×,Vϵ × V ′
ϵ , (qi ,q

′
i ), (qf ,q

′
f
)), where

the transition relation T× is the minimal set satisfying the
following:

• If (q1,v,q2) ∈ T and (q′
1
,v ′
,q′

2
) ∈ T ′, then we have

((q1,q
′
1
), (v,v ′), (q2,q

′
2
)) ∈ T×.

• If (q1,v,q2) ∈ T , then for all states q′ ∈ Q ′, we have
((q1,q

′), (v, ϵ), (q2,q
′)) ∈ T×.

• If (q′
1
,v ′
,q′

2
) ∈ T ′, then for all states q ∈ Q , we have

((q,q′
1
), (ϵ,v ′), (q,q′

2
)) ∈ T×.

The synchronization formula ΨP×P ′ is extracted from P × P ′

as follows. Its first part is the Parikh formula ΦP(P × P ′) of
the product, which encodes all accepting runs of P × P ′. The
second part is a constraint that extracts from a run of P × P ′

the corresponding runs of P and of P ′:

Ψ# ::=
©­«
∧
v ∈V

#v =
∑
x ′∈V ′

ϵ

#(v, x ′)
ª®¬
∧

( ∧
v ′∈V ′

#v ′
=

∑
x ∈Vϵ

#(x,v ′)

)

Notice that x, x ′ are either variables or ϵ . Finally, the third
part forces the interpretations of the parametric words ac-
cepted by P and P ′ to be the same:

Ψ= ::=

∧
x ∈Vϵ ,x ′∈V ′

ϵ

#(x, x ′) > 0 → (x = x ′)
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The synchronization formula is then the conjunction

ΨP×P ′ ::= ΦP(P × P ′) ∧ Ψ# ∧ Ψ= ∧ψ ∧ψ ′

The correctness of this construction is stated in Lemma 7.1
below. The correctness of the construction of under-
approximations of equality constraints and regular con-
straints in Section 7.1 and Section 7.2 rely on it.

Lemma 7.1. [[ΨP×P ′]]V∪V ′∪#V∪#V ′ = {Ie ∪ I ′e | Ie ∈

encodeP (w), I
′
e ∈ encodeP ′(w),w ∈ [[P]] ∩ [[P ′]]}

Informally, the lemma states that the models of ΨP×P ′ en-
code precisely the pairs of equivalent encodings of words
from [[P]] and [[P ′]], that constitute the intersection [[P]] ∩

[[P ′]]. Since that the models of ΨP×P ′ include also an assign-
ment to the auxiliary variables of (Vϵ ×V

′
ϵ ) ∪ #(Vϵ ×V

′
ϵ ), the

lemma restricts [[ΨP×P ′]] to V ∪V ′ ∪ #V ∪ #V ′.
Notice that if P is flat (or, symmetrically, if P ′ is flat), then

the semantic intersection [[P]] ∩ [[P ′]] can be still decoded
from the synchronization formula ΨP×P ′ . Namely, due to
Corollary 5.3, we have that if P is a PFA, then

decodeP ([[ΨP×P ′]]V∪#V ) = [[P]] ∩ [[P ′]]

Concatenation of PFAs. Concatenation of PFAs will be
needed when flattening equality constraints. Its implemen-
tation is straightforward, connect the final state of the first
PFA with the initial state of the second by an ϵ-transition.
Since our automata do not allow transition directly labeled
by ϵ , the ϵ-transition is labeled by a fresh variable vϵ forced
by the constraint vϵ = ϵ to take the value ϵ .
Formally, given PFA P = ((Q,T ,V ,qi ,qf ),ψ ) and P

′
=

((Q ′
,T ′
,V ′
,q′i ,q

′
f
),ψ ′) with Q ∩ Q ′

= ∅ = V ∩ V ′, their

concatenation is the PFA P · P ′
= (Q ∪ Q ′

,T ∪ T ′ ∪

{(qf ,vϵ ,q
′
i )},V ∪V ′ ∪ {vϵ },qi ,q

′
f
,ψ ∧ψ ′ ∧ vϵ = ϵ) where

vϵ is fresh, not from V ∪V ′.

Lemma 7.2. encodeP ·P ′([[P · P]])V∪V ′∪#V∪#V ′ = {Ie ∪ I ′e |

Ie ∈ encodeP ([[P]])∧ I
′
e ∈ encodeP ′([[P ′]])}, for PFAs P and P ′.

With synchronization and concatenation of PA, we are
ready to describe flattening of the basic string constraints.

7.1 Flattening of Regular Constraints

Let us first describe the construction of flattenR(ϕr ) for a
regular constraint ϕr ::= x ∈ L(A). In order to synchro-
nize the FA A with the PFA R(x), we represent A by a PA
P ′
= (A′

,Ψchar ). The automaton A′ of P ′ operates over fresh
character variables va,a ∈ Σϵ , and is obtained from A by re-
placing every occurrence of each charactera ∈ Σϵ on a transi-
tion by the variableva . The interpretation restriction formula
Ψchar of P

′ then binds the fresh character variables to the char-
acter values they represent, namely, Ψchar =

∧
a∈Σϵ va = [[a]].

Obviously, L(A) = [[P ′]]. We then let

flattenR(ϕr ) = ΨR(x )×P ′

The following lemma states the correctness of this con-
struction. It follows from Corollary 5.3 and Lemma 7.1.

Lemma 7.3. [[flattenR(ϕr )]]VR∪#VR
= encodeR([[ϕr ]]) .

7.2 Flattening of Equality Constraints

We now describe the construction of flattenR(ϕe ) for an
equality constraint ϕe ::= x0 · x1 · · · xn = xn+1 · xn+2 · · · xm .
To simplify the presentation, we assume that the variables
are pairwise different, i.e. that i , j =⇒ xi , x j . We may
make this assumption without loss of generality, since multi-
ple occurrences of variables in ϕe can be eliminated. In fact,
whenever xi = x j for i , j, we may replace x j by a fresh
variable x ′j and conjoin the modified ϕe with a new equality

x j = x
′
j . We also assume that all disequality constraint t , t ′

are already converted to equivalent equality constraints and
integer constraints in the standard way [4].

Having made these assumptions, we may proceed follows.
First, we build two PFAs P left and P right that encode the left
and the right-hand side word term of the equality constraint
ϕe , respectively, by concatenating the restrictions of the in-
dividual variables. That is

P left ::= R(x1) · . . . · R(xn) P right ::= R(xn+1) · . . . · R(xm)

The under-approximation of ϕe is then obtained as their
synchronization formula

flattenR(ϕe ) = ΨP left×P right

The correctness of the construction is stated by the lemma:

Lemma 7.4. [[flattenR(ϕe )]]VR∪#VR
= encodeR([[ϕe ]]).

7.3 Flattening of Integer Constraints

Given an integer constraint ϕl that talks about lengths |x |
of string variables x ∈ X . We use a version of ϕl where
every occurrence of every length function |x | is replaced
by an auxiliary length variable lx and we add a formula to
ensure that the value of lx is equal to that of |x | even when
x is encoded using the character variables Vx and Parikh
variables #Vx of R(x). We will need a set auxiliary variables
{lv | v ∈ Vx } to express the length by which the character
variable v contributes to the length of an R-encoded string
x . That is, lv will be 0 if v is assigned [[ϵ]], otherwise it will
equal to the number #v of its occurrences in the word:

Ψlv ::= (v = [[ϵ]] ∧ lv = 0) ∨ (v , [[ϵ]] ∧ lv = #v)

The length of the encoded word x is then the sum of the
lengths contributed by the individual character variables in
Vx , hence we let

Ψlx ::= lx =
∑
v ∈Vx

lv ∧
∧
v ∈Vx

Ψlv .

Finally, the linear formula created for ϕl is

flattenR(ϕl ) ::= ϕl ∧
∧
x ∈X

Ψlx

and the following lemma states its correctness.

Lemma 7.5. [[flattenR(ϕl )]]VR∪#VR
= encodeR([[ϕl ]])
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8 Flattening of String-Number Conversion

Last, we present the main contribution of this paper, the
construction of a flattening flattenR(ϕs ) of string-number
conversion constraint ϕs ::= n = toNum(x ).
Let us begin with a simple example. Assume that we use

the PFA in Figure 2 (a) to restrict the domain of x . Then we
know that when 0 ≤ v0,v1 ≤ 9, then n is a positive integer
value, and otherwise n = −1. So we should first add the
constraint ((0 ≤ v0 ≤ 9) ∧ (0 ≤ v1 ≤ 9)) ∨ (n = −1 ∧ (v0 >

9 ∨v1 > 9)).
For the case that n is a positive integer, the value of n can

be characterized by a constraint (assume character variables
are not assigned ϵ) n = (v0 × 10 + v1) × (1 + 100 + 1002 +

. . . 100#v0−1) = (v0 × 10 +v1) ×
100#v0−1
100−1

. The constraint uses
#v0 to capture the total number of loop traversals. Notice
that the constraint above contains an exponential component
100#v0

100−1
. To solve the satisfiability of this formula, one needs

to solve an exponential constraint.
Let us have a look at another example. If we restrict the

domain of x to the PFA in Figure 2 (c), for the case when n is
positive, we have the relation n = (v0 × 10+v1) × (1+ 100+

1002+ . . . 100#v0−1)×10×100#v3+v2×100
#v3+(v3×10+v4)×

(1+100+1002+ . . . 100#v3−1) = (v0×10+v1)×
100#v0−1

100−1
×10×

100#v3 +v2 × 100#v3 + (v3 × 10 +v4) ×
100#v3−1

100−1
. Observe that

the formula has multiple exponential components, including
100#v0×100#v3

100−1
and 100#v3

100−1
.

It is not difficult to see from the examples above that,
if R(x) is an arbitrary PFA withm loops, the formula that
defines the number n contains at leastm exponential compo-
nents, one for each loop. To the best of our knowledge, the sat-
isfiability problem of integer constraints with a mix of poly-
nomials and exponentials is still open. The problem is diffi-
cult even for the case that variables are real numbers [17, 18].
For example, the algorithm in [24] involves a quantifier elim-
ination procedure which is double-exponential to the length
of the input formula and hence cannot handle large instances.
We therefore do not expect that such constraint can be solved
efficiently. Instead, we will define a special form of the flat
restriction R(x) of x that leads to an easier linear formula.

Efficient String-Number Conversion using PFA. We
will now discuss the special form of R(x), called numeric

PFA, which we choose for string variables appearing in
string-integer constraints and that leads to efficient under-
approximation technique. Besides simple induced linear for-
mulae, we still want single R(x) to cover as many numerals
as possible. We want an łeasy" completeness property, that
is, (1) the space of all numerals can be covered completely by
our special numeric PFAs, (2) these numeric PFAs are gener-
ated easily, and (3) each of them covers a large and practically
significant portion of numerals (so that satisfiable assign-
ments can be often found within the domain restriction of

q0 q1 qm
v1 v2 vm

v0

Figure 3. PFA for string-number conversion constraints

just few of numeric PFAs). Particularly, we will proceed to-
wards a definition of numeric PFA (Am,ψm),m ∈ N which
covers all numerals that encode integers withm digits.
Our first attempt is a PFA without loop, i.e., a straight

line structure
q0 q1 qm

v1 v2 vm . The corresponding
integer constraint does not have exponential components.
However, it does cover all numbers with at mostm-digits.
Consider the example toNum(x ) = 10∧ |x | = 5. The number
10 has only 2-digits, at the first glance, a straight-line PFA

with two transitions, i.e., the PFA
q0 q1 q2

v1 v2 should
be sufficient for the domain restriction of x . If we do so, we
will conclude that the formula is unsatisfiable, because the
length of x cannot be 5 under this domain restriction.

However, the formula is satisfiable when x = ł00010”. Ob-
serve that toNum(ł00010”) = 10 since PFAs accept numerals
with the least significant bit first. The key is that even for
a bounded integer, the corresponding numeral can be of an
unbounded length with arbitrarily many trailing ‘0’s at the
front. All numbers with up tom-digits can be however still
handled without having to solve exponential constraints. It is
enough to equip the initial state of the PFA with a 0-self-loop.

Consequently, the automaton Am of our numeric PFA will
have the following form illustrated in Figure 3. It has a self-
loop on the initial state labeled by the character variable v0,
forced by the constraint

Ψv0
::= v0 = 0

to hold the value 0. This transition ensures that the under-
approximation handles numerals with arbitrary number of
trailing zeros. The self-loop is followed by a chain ofm transi-
tions (qi−1,vi ,qi ), 1 ≤ i ≤ m, leading towards the final state
qm . The chain encodes at mostm meaningful digits (only at

most because the first variables in the sequence can still be
assigned zeros and some variables may be assigned ϵ). Hence
this PFA covers all numerals that encode numbers with at
mostm digits. Although it still has a loop, it will not create
any exponential component defining the value of n because
the loop only represents a sequence of ł0" at the front of x .
Thus, it will not affect the integer value of n = toNum(x ).

Numeric PFA with these restrictions would satisfy our
primary objective, that is, they would induce linear formulae
and would łeasily" and completely cover all numerals. A last
problem still needs to be solved before they can be efficient in
practice. Recall that the character variables can be assigned ϵ .
Therefore, a single chain ofk interesting digits,k ≤ m, can be

by Am represented in
(k
m

)
ways, each corresponding to one

possible interleaving of k digits withm−k epsilons. This may
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lead to a formula of exponential size when defining the value
of n. In order to eliminate this potential blow-up in the size
of the formula, we add toψm an additional constraint that
forces all epsilons to be shifted behind the least significant
digit. This will leave us with only one interleaving. This is
the formula

Ψ
m
shift ::=

∧
1≤i≤m

vi , [[ϵ]] =⇒ vi−1 , [[ϵ]] .

Last, since this restriction is meaningful only when the string
is indeed a numeral, we also define the constraint represent-
ing the strings which are not numerals, the formula

Ψ
m
NaN ::=

∨
i ∈[1,m]

vi > 9

and define the final form of the interpretation restriction
used by Am as

ψm
::= Ψ

m
NaN ∨ (Ψv0

∧ Ψ
m
shift) .

Consequently, we design our domain restrictions R so that
for string variables x that appear within string-integer con-
straints, R(x) is a numeric PFA (Am,ψm),m ∈ N.
Assuming that the domain restriction for x is (Am,ψm),

the value of the integer n can be extracted from a numeral
using the formula

Ψ
m
toInt ::=

∨
1≤k≤m

Ψ
m
last(k)∧(n = v1∗10

k−1
+v2∗10

k−2
+. . .+vk )

where Ψ
m
last(k)

says that the last variable of Am assigned a

non-ϵ value is vk , namely

Ψ
m
last(k) ::= (k =m ∧vk ≥ 0) ∨ (vk ≥ 0 ∧vk+1 = −1) .

Since we also need to distinguish the case when x is not
a number, in which case n should equal −1, the formula
under-approximating ϕs is finally constructed as

flattenR(ϕs ) ::= ΦP(A
m)∧(

(Ψm
NaN ∧ n = −1) ∨ (¬Ψm

NaN ∧ Ψ
m
toInt)

)
The following lemma states correctness of this construction:

Lemma 8.1. [[flattenR(ψs )]]VR∪#VR
= encodeR([[ϕs ]])

9 Implementation and Evaluation

We have implemented our string constraint solving proce-
dure in a tool called Z3-Trau. Z3-Trau is implemented as a
theory solver of the SMT solver Z3 [15]. In this way, we can
concentrate on solving conjunctive constraints and let Z3
handle the other boolean connectives. Secondly, it makes it
possible to solve not only formulae over string constraints
but also combinations of string constraints with other theo-
ries that Z3 supports. Furthermore, this approach allows us
to more effectively handle the arithmetic constraints that are
generated by the under-approximation module and, lastly, it
eliminates the need to have our own parser.

In Z3-Trau, we use the following PFA selection strategy.
We use numeric PFAs for string variables appearing in string-
number conversion and standard PFAs for others. We select
a sizem for numeric PFAs, a number p of their loops, and
the length q of the loops. Initially, we set (m,p,q) = (5, 2,q)

where q is dynamic and obtained from our internal static
analysis. We doublem and increase p and q by one if refine-
ment is required. We set an upper bound for each parameter
and report UNKNOWN if a solution cannot be found within
the bound.
Our over-approximation module also uses heuristics to

derive the constant value of any side of the constraint
n = toNum(x ) to refine the over-approximation. For instance,
assume we can derive that n = 12 from some integer con-
straints. Then we can derive the value of x belongs to the
regular language (0∗12).

The way our theory solver and Z3 interact is almost stan-
dard. When Z3 asks our theory solver a string constraint
satisfiability problem, our solver tries to prove it is SAT or
UNSAT using the procedure discussed in this paper. For
under-approximation, whenever a corresponding linear for-
mula is created, we attach the current value ofm, p, q to the
formula, and then push it to Z3 core. If our theory solver
reports UNKNOWN, Z3 remembers it in a global flag incom-

plete and either tries another solution branch, or the same
solution branch with different value ofm, p, q. If Z3 com-
pletes the search of all solution branches, it reports UNSAT
if the flag incomplete is down, and UNKNOWN otherwise.
We compare Z3-Trau (1e715b7dab)2 with other state-of-

the-art string solvers, namely, CVC4 (version 1.7) [8], Z3 (ver-
sion 4.8.7) [15], andZ3Str3 (version 4.8.7) [47]. For these tools,
the versions we used are the latest release version. Observe
that CVC4 and Z3 are DPLL(T)-based string solvers. We do
not compare with Sloth [21] since it does not support length
constraints, which occur in most of our benchmarks. We also
do not compare with ABC [6] (a model counter for string
constraints), Ostrich [13] and Trau+ [5], because they do not
support many of the string functions in our benchmarks,
especially string-number conversion.

We perform two sets of experiments. In the first set of ex-
periments, we compare Z3-Trau with other tools on existing
benchmarks over basic string constraints. Those benchmarks
do not involve string-number conversion functions. In the
second set of experiments, we compare Z3-Trau with the
other tools on new suites focusing on string-number conver-
sion. Our goals of experiments are the following:

• Z3-Trau performs as good as or better than the other
tools in solving the satisfiability problems of basic
string constraints.

• Z3-Trau performs significantly better than the other
tools in solving the satisfiability problems on string-
number conversion benchmark, and this shows the

2https://github.com/guluchen/z3/tree/1e715b7dab
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efficiency of PFA in general and numeric PFA in par-
ticular.

In the first set of experiments, we use the following bench-
mark examples:

• PyEx [34] comes from running the symbolic executor
PyEx over some Python packages.

• LeetCode comes from running PyEx over a sample
code collected from the LeetCode [25] website, includ-
ing functions that check whether a string is a valid
IPv4 or IPv6 address, sum up two binary numbers,
check whether an input string is an abbreviation of
another input string, and convert a sequence of digits
to a string according to a given mapping.

• StringFuzz [10] is generated by the fuzz testing tool of
the same name.

• cvc4pred and cvc4term are obtained from the CVC4
group [33]. These benchmarks contain a small amount
of string-number conversion constraints (< 5%).

In the second experiment, we compare with tools support-
ing string-number conversion on the benchmarks collected
from the symbolic executor Py-Conbyte3, which has the
supports of string-number conversion. We ran it on several
examples collected from the LeetCode platform and from
Python core libraries, which involve diverse usages of string-
number conversion in Python such as parsing date-time,
verifying and restoring IP addresses from strings, etc. We
also have examples that encode execution paths of some
JavaScript programs (the Luhn algorithm and some array
manipulations).

All experiments were executed on a machine with 4-core
CPU and 16 GiB RAM. The timeout was set to 10s for each
test. We use the results from Z3-Trau, CVC4, and Z3 as the
reference answer for the validation of the correctness of the
results. Occasionally, two of them report inconsistent an-
swers (one SAT and one UNSAT). To decide which solver is
right, we developed a validator. It takes the model I returned
from the solver who reported SAT, assigns I (x) to all vari-
ables x in the test to obtain a modified test, and re-evaluates
the modified test by multiple solvers. If the results from all
solvers are consistent, we mark the test SAT or UNSAT ac-
cording to the results. Otherwise, we manually simplify and
inspect the test until we get a conclusive result.

The results of the experiments are summarized in Table 1,
Table 2, and Table 3. Rows with heading SAT/UNSAT show
numbers of solved formulae. Rows with heading UNKNOWN

or TIMEOUT indicate the number of instances for which the
solver fails to return an answer. ERRORmeans system crashes
due to various reasons (usually out of memory). INCORRECT
shows the number of cases where the tool gives a wrong
answer.

3https://github.com/spencerwuwu/py-conbyte

Table 1. Results of Z3-Trau, CVC4, Z3, and Z3Str3 on Basic
String Constraint benchmarks.

Z3-Trau CVC4 Z3 Z3Str3

PyEx

SAT 21377 20350 18492 3037
UNSAT 3860 3841 3847 3816

UNKNOWN 0 0 0 7
TIMEOUT 184 1230 3082 16872

ERROR 0 0 0 1675
INCORRECT 0 0 0 14

LeetCode

SAT 877 874 881 661
UNSAT 1785 1785 1785 1780

UNKNOWN 0 0 0 122
TIMEOUT 0 7 0 90

ERROR 4 0 0 13
INCORRECT 0 0 0 0

StringFuzz

SAT 515 615 338 505
UNSAT 301 255 198 192

UNKNOWN 0 0 0 4
TIMEOUT 249 195 529 364

ERROR 0 0 0 0
INCORRECT 0 0 0 0

cvc4pred

SAT 13 11 12 8
UNSAT 822 818 808 774

UNKNOWN 0 0 0 4
TIMEOUT 0 6 15 38

ERROR 0 0 0 11
INCORRECT 0 0 0 0

cvc4term

SAT 10 9 7 2
UNSAT 1032 1026 1022 957

UNKNOWN 0 0 0 3
TIMEOUT 3 10 16 58

ERROR 0 0 0 11
INCORRECT 0 0 0 14

Total

SAT 22792 21859 19730 4213
UNSAT 7800 7725 7550 7519

UNKNOWN 0 0 0 140
TIMEOUT 436 1448 3642 17422

ERROR 4 0 0 1710
INCORRECT 0 0 0 28

From Table 1, we can see that the performance of Z3-Trau
is as good as that of the most competitive tools such as CVC4
and Z3 on basic string constraints. In all of the benchmarks,
Z3-Trau ranked either the 1st or the 2nd on the number of
solved (SAT+UNSAT) cases. On the StringFuzz benchmarks
that are SAT, Z3-Trau does not perform as well as the best
performing tool. We however do not consider this crucial
because these benchmarks are just randomly generated for
debugging. On the most important benchmarks, those that
come from program analysis, Z3-Trau is comparable to the
best performing tool.
From Table 2, we can see that Z3-Trau significantly out-

performs all the other tools. The second best tool, Z3, fails
on 50 times more examples.
As an addition experiment, we have encoded the check-

Luhn algorithm introduced in Section 1 for the cases with 2
to 12 loops (digits). We ran these tests with the timeout set
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Table 2. Results of Z3-Trau, CVC4, Z3, and Z3Str3 on String-
Number Conversion benchmark.

Z3-Trau CVC4 Z3 Z3Str3

Leetcode

SAT 2501 1659 1993 239
UNSAT 16394 15604 16124 15288

UNKNOWN 0 0 0 623
TIMEOUT 32 1664 810 2337

ERROR 0 0 0 332
INCORRECT 0 0 0 108

PythonLib

SAT 1922 560 1839 206
UNSAT 724 666 724 642

UNKNOWN 0 0 0 45
TIMEOUT 0 1420 83 1710

ERROR 0 0 0 41
INCORRECT 0 0 0 2

JavaScript

SAT 20 3 16 4
UNSAT 0 0 0 0

UNKNOWN 0 9 0 0
TIMEOUT 0 8 4 10

ERROR 0 0 0 6
INCORRECT 0 0 0 0

Total

SAT 4443 2222 3848 449
UNSAT 17118 16270 16848 15930

UNKNOWN 0 9 0 668
TIMEOUT 32 3092 897 4057

ERROR 0 0 0 379
INCORRECT 0 0 0 110

to 120s. The result is summarized in Table 3. In these tests,
Z3-Trau can solve all problems within 1s while CVC4 only
returns a model for cases of 2 to 5 loops and Z3Str3 could
not solve any of these problems (either TIMEOUT, ERROR,
or UNKNOWN). However, Z3 can still solve 5 out of the 11
problems. The behavior of Z3 is not entirely unexpected. All
the problems are satisfiable and the solver may be lucky to
guess the solution quickly.

Table 3. Comparison of Z3-Trau, CVC4, Z3, and Z3Str3 with
checkLuhn problems of 2 to 12 loops.

# of Loops Z3-Trau CVC4 Z3 Z3Str3

2 SAT(0.27s) SAT(0.17s) SAT(0.11s) ERROR

3 SAT(0.29s) SAT(6.94s) SAT(0.13s) ERROR

4 SAT(0.37s) SAT(4.92s) SAT(0.24s) ERROR

5 SAT(0.39s) SAT(30.86s) SAT(0.13s) ERROR

6 SAT(0.41s) TIMEOUT TIMEOUT UNKNOWN

7 SAT(0.51s) TIMEOUT TIMEOUT ERROR

8 SAT(0.53s) TIMEOUT TIMEOUT ERROR

9 SAT(0.63s) TIMEOUT SAT(0.31s) ERROR

10 SAT(0.69s) TIMEOUT TIMEOUT TIMEOUT

11 SAT(0.71s) TIMEOUT TIMEOUT ERROR

12 SAT(0.74s) TIMEOUT TIMEOUT ERROR

10 Related Works

To the best of our knowledge, the study of solving string
constraint traces back to 1946, when Quine [32] showed that
the first-order theory of string equality constraints (a.k.a.
word equations) is undecidable. Makanin achieves a mile-
stone [28] by showing that the class of quantifier-free string

equality constraints is decidable. Since then, several works,
e.g., [19, 20, 29ś31, 35, 39], consider the decidability and com-
plexity of different subclasses of string equality constraints.
Satisfiability of string constraints is a challenging prob-

lem. The satisfiability of equality constraints combined with
length constraints of the form |x | = |y | is already opened
for more than 20 years [11]. Numerous decidable fragments
were proposed [3, 5, 7, 12, 13, 27]. Among them, the chain-
free fragment [5] used by our over-approximation module is
the largest known decidable fragment, which allows us to
produce more precise over-approximation and hence solve
many UNSAT instances efficiently.
The strong practical motivation led to the rise of several

string constraints solvers that concentrate on solving practi-
cal problem instances. Several tools handle string constraints
assuming a fixed upper bound on the length of strings and
translate them to boolean satisfiability problems [23, 37, 38].
Our method, on the other hand, allows analyzing constraints
without a length limit and still with some completeness guar-
antees, i.e., within the language defined by PFAs.
More recently, DPLL(T)-based string solvers [2, 4, 8, 9,

13, 21, 41, 42, 46] lift the restriction of strings of bounded
length. They usually support a variety of string constraints,
including all basic string constraints, and sometimes also reg-
ular/rational relations. The typical procedure they used for
solving equality constraints is to split them into simpler sub-
cases, in combination with powerful techniques for Boolean
reasoning to curb the resulting exponential search space. In
contrast, our approach uses a completely different search
strategy. We restrict the solution space to some predefined
pattern and step-wisely enrich the pattern in use.
The most relevant work to ours is the FA-based ap-

proach [2] that projects the solution space of variables to a
generalization of flat automata. The main difference is that
our approach works fully symbolically, which is enabled
through using integer variables as characters and hence
PFAs. The use of integer variables as characters allows our
approach to handle string-number constraints efficiently ś
the values and number of occurrences of those variables can
be directly converted to numbers in a linear formula.

In principle, FA-based solvers can be extended to support
string-number conversion too, but PFA are much more effi-
cient. Extending FA-based approach would require multiple
if-then-else statements (e.g., saying that if a transition labeled
‘0’ is taken, then the corresponding number is 0), which in-
troduces a significant amount of additional predicates that
the DPLL engine needs to evaluate. We have confirmed this
in our preliminary experiment.

PASS [26] uses quantified formulae over arrays with sym-
bolic length to encode string constraints, and a specialized
quantifier elimination to solve them. Though it differs from
our approach significantly and handling the quantification
is expensive, PASS is indeed similar in how finite automata
and string-number conversion constraints are translated to
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formulae. Our translation is in general more efficient be-
cause it uses only linear arithmetics. In contrast, PASS trans-
lates string constraints to formulae with quantifier and array
predicates. We did not compare with PASS empirically. The
authors informed us that PASS is no longer maintained and
is not open-source.
A further direction is automata-based solvers for analyz-

ing string-manipulated programs. ABC [6] and Stranger [44]
soundly over-approximates string constraints using multi-
tape automata [45], and outperforms DPLL(T)-based solvers
when checking single execution traces, according to some
evaluations [22]. People also studied the combination of
automata-based algorithms with with model checking algo-
rithms, in particular, IC3/PDR, for more efficient checking of
the emptiness for automata [21, 43]. However, many kinds of
constraints, including length constraints and word equations,
cannot be entirely handled by automata-based solvers.

11 Conclusion and Future Works

In this paper, we report a novel approach for solving string
constraints with string-number conversion and implemented
it as an open-source tool Z3-Trau. For now, it support basic
string constraints, string-number conversion, and also opera-
tions that can be encoded to them (e.g., contains, prefixOf).
Since Z3-Trau is built inside the SMT solver Z3, we also get
the power of processing formulae in the combination of dif-
ferent theories (e.g., array). Hence our tool can support the
encoding of a wide range of program expressions. There are
several avenues for future works. First, we are planning to in-
tegrate it with the JavaScript symbolic executor cosette [36].
We believe such integration is feasible. We are also planning
to merge Z3-Trau with the main branch of the Z3 solver. For
technical development, we think it would be interesting to
consider the (symbolic) flattening of an even larger set of
string operations, such as the one containing replaceAll

and split.
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