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Abstract

This technical report deals with continuous and hybrid Petri nets state space representation
using coverability graphs and unfoldings. The coverability graph, resp. unfolding are
methods for Petri nets analysis that can represent an infinite state space of an unbounded
Petri net with finite graph, resp. net. These techniques can cope well with the so-called
state space explosion problem. Formalizations of the representations are presented together
with algorithms for their computing and typical examples.
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Chapter 1

Introduction

1.1 Motivation and Goals

Hybrid Petri nets [1] have many modern commercial applications. One of the best examples
is simulation of biological pathways in human cells [2, 3]. Although an extended hybrid
Petri net with time is used in these applications, an autonomous hybrid Petri net is also
worth studying. Such autonomous Petri nets describe the system in a qualitative manner
and we can run useful analysis and verification on them.

Analysis options of autonomous hybrid Petri nets have been discussed with Hassane Alla
the co-author of hybrid Petri nets during several visits to University in Grenoble. Because
of the continuous change of the marking, even bounded hybrid Petri nets have infinite state
space and thus similar set of problems with reachability arises as for unbounded discrete
Petri nets [4]. There exists several techniques to represent infinite state space with finite
graphs or nets for discrete Petri nets. Notably coverability graphs [5] and unfoldings [6].
These methods use abstraction and aggregation of markings. Each of them bring its own
way of view on the state space. Both approaches can make analysis of the hybrid Petri
nets easier.

The overall goals are to adapt the coverability graphs and unfoldings from the discrete
Petri nets to the continuous and hybrid Petri nets, to define the notation of the coverability
graph for hybrid Petri nets, develop an algorithm for their computation and create some
examples, and to define the notation of the unfoldings of hybrid Petri nets, develop an
algorithm for their computation and again create some examples.

Finally to compare the two approaches with listing advantages and drawbacks on typical
examples, case analysis and verification options.

1.2 Related Work

Authors of hybrid Petri nets present several examples of coverability graphs for continuous
and hybrid Petri nets in their book [1] and paper [7]. But the authors present it without
any formalization or any formal algorithm only as an illustration that such representation
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is possible.
More detailed information about related work regarding coverability graphs and un-

folding of discrete Petri nets is described in the next chapter 3.

1.3 Structure of the Report

The report is organized into 5 chapters as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.

2. Background and State-of-the-Art : Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art.

3. Overview of Our Approach: Presents our work on formalization, algorithms and
examples of coverability graphs and unfoldings for continuous and hybrid Petri nets.

4. Comparison of Results : Compares the two approaches, lists advantages and draw-
backs on examples.

5. Conclusions : Summarizes the results of our research, suggests topics for further
research, and concludes the report.
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Chapter 2

Background and State-of-the-Art

2.1 Discrete Petri nets

Petri nets are a mathematical and graphical tool for modeling concurrent, parallel and/or
distributed systems. This report assumes that the reader is familiar with the basic theory
of the Petri nets [8, 9].

Discrete Petri net [1] is defined as a 5-tuple RD = (P, T, Pre, Post,M0), where P is
a finite set of places and T is a finite set of transitions. P 6= ∅, T 6= ∅ and P ∩ T = ∅.
Pre : P × T → N is the input incidence matrix. Post : P × T → N is the output incidence
matrix. M0 : P → N is the initial marking. Let p ∈ P, t ∈ T : Pre(p, t) is the weight of the
arc p → t; Post(p, t) is the weight of the arc t → p. If the arc does not exist, the weight
is 0. In a graphical representation of the discrete Petri net places are represented by circles
and transitions are represented by rectangles (see Fig. 2.1).

The discrete marking m ∈ (N)|P | is a vector of natural numbers. A transition t ∈ T
is enabled in a marking m, iff ∀p ∈ •t : m(p) > Pre(p, t). Firing the transition t with a

quantity α ∈ N is denoted as m
αt
→ m′. [t]α represents α ∈ N firings of the transition t

at one go. The new marking m′ = m + α.C(P, t), where C = Post − Pre is a token-flow
matrix. The marking m′ is reachable from the marking m.

A Petri net is bounded if the number of tokens in all places and in all reachable markings
is less than some upper bound. The Petri net is persistent when enabled transitions can
only be disabled by its own firing. For more analysis options see [8].

2.2 Continuous Petri Nets

The concept of the continuous and hybrid Petri nets has been presented by David and Alla
in 1987 [10, 11, 1, 12]. It is a fluidification of the discrete Petri net. Some places can hold
a real valued marking.

Continuous Petri net [1] is defined as a 5-tuple RC = (P, T, Pre, Post,M0), where P
is a finite set of places and T is a finite set of transitions. P 6= ∅, T 6= ∅ and P ∩ T = ∅.
Pre : P × T → Q+ is the input incidence matrix. Post : P × T → Q+ is the output
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Figure 2.1: The bounded discrete Petri net.

incidence matrix. M0 : P → R+ is the initial marking1. Let p ∈ P, t ∈ T : Pre(p, t) is
the weight of the arc p → t; Post(p, t) is the weight of the arc t → p. If the arc does
not exist, the weight is 0. In a graphical representation of the continuous Petri net places
are represented by double circles and transitions are represented by empty rectangles (see
Fig. 2.2).

1.0

T1

P2

P1

T2

Figure 2.2: The bounded continuous Petri net.

The continuous marking m ∈ (R+)|P | is a vector of non-negative real numbers. A tran-
sition t ∈ T is enabled in a marking m, iff ∀p ∈ •t : m(p) > 0. Enabling of the transition
does not depend on the arc weight, it is sufficient that every input place has a non-zero
marking. The enabling degree q of the transition t for the markingm is the maximal amount
that the transition can fire in one go, i.e. q(t,m) = minp∈•t (m(p)/Pre(p, t)). Firing the

transition t with a quantity α < q(t,m), α ∈ R+ is denoted as m
αt
→ m′. [t]α represents

α ∈ R+ firings of the transition t at one go. The new marking m′ = m+ α.C(P, t), where
C = Post−Pre is a token-flow matrix. The marking m′ is reachable from the marking m.

Let m be a marking. The set P of places may be divided into two subsets: P+(m)
the set of places p ∈ P such that m(p) > 0, and the set of places p such that m(p) = 0.

1Notation Q+ corresponds to the non-negative rational numbers and notation R+ corresponds to the
non-negative real numbers (both including zero).
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A continuous macro-marking is the union of all markings m with the same set P+(m)
of marked places. Since each continuous macro-marking is based on the Boolean state of
every place (marked or not marked), the number of continuous macro-markings is less than
or equal to 2n, where n is the number of places.

2.3 Hybrid Petri Nets

Hybrid Petri net [1] is a 6-tuple RH = (P, T, Pre, Post,M0, h), where P is a finite set
of discrete and continuous places, T is a finite set of discrete and continuous transitions.
P 6= ∅, T 6= ∅ and P ∩ T = ∅. Pre : P × T → Q+ or N is the input incidence matrix.
Post : P × T → Q+ or N is the output incidence matrix. Let p ∈ P, t ∈ T : Pre(p, t)
is the weight of the arc p → t; Post(p, t) is the weight of the arc t → p. If the arc does
not exist, the weight is 0. A graphical representation of the hybrid Petri net is shown in
Fig. 3.5. M0 : P → R+ or N is the initial marking. A function h : P ∪ T → {D,C} is
called a hybrid function, that indicates for every node whether it is a discrete node (sets
PD and TD) or a continuous one (sets PC and TC). In the definitions of Pre, Post and
m0, the set N corresponds to the case where p ∈ PD and the set Q+ to the case where
p ∈ PC . For the discrete places p ∈ PD and the continuous transitions t ∈ TC must hold
Pre(p, t) = Post(p, t).

1 . 0

P3

P4

T1

P2P1

T2

T3T4

Figure 2.3: The bounded hybrid Petri net.

The hybrid marking for the hybrid Petri net is a couple m = (mC ,mD), where mC

denotes the continuous macro-marking of the continuous places and mD denotes the mark-
ing of the discrete places. The discrete transition t ∈ TD is enabled in a marking m,
iff ∀p ∈ •t : m(p) ≥ Pre(p, t). The enabling degree q of the discrete transition t for
the marking m is integer q(t,m) = minp∈•t (m(p)/Pre(p, t)). For continuous places
p ∈ •t ∧ p ∈ PC the edge p → t is a treshold for marking in the place p for enabling
the discrete transition t. A continuous transition t ∈ TC is enabled in a marking m, iff
∀p ∈ •t ∧ p ∈ PD : m(p) ≥ Pre(p, t) and ∀p ∈ •t ∧ p ∈ PC : m(p) > 0. The enabling degree
q of the continuous transition t for the marking m is q(t,m) = minp∈•t (m(p)/Pre(p, t)).

The hybrid Petri net in Fig. 2.3 shows a typical example of interaction between discrete
and continuous parts of a hybrid Petri net. The discrete part serves as a ’switch’ for the
continuous part. The place P1 enables or disables the transition T3. There are however
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other ways how the continuous and discrete parts can interact with each other in the hybrid
Petri net. All the possible combinations are described in [1].

2.4 Coverability Graphs

For the discrete Petri nets there exist an algorithm developed by Karp and Miller [13] for
computing a reachability root tree. The reachability graph is obtained by merging all the
vertices of the reachability root tree corresponding to the same marking. The coverability
graph gathers nodes which correspond to the same marking [5] using a symbol ω that
represents arbitrarily many tokens. The state space of the unbounded Petri net is there
presented as a finite graph Gd = (N,E). Nodes N ⊆ (N ∪ ω)|P | in the coverability graph
represent states of a system and edges E ⊆ N × T ×N represent transition firings.

There exist algorithms for checking qualitative properties such as safeness, boundness,
conservativeness, coverability and reachability for the bounded Petri nets from the reacha-
bility graphs. However one cannot check properties such as deadlock, liveness and reacha-
bility for the unbounded Petri nets from the coverability graphs because of the aggregation
of markings and thus the loss of information.

T1

T2

T 3

T 4

T 5

T 3

T 4

(0,1,0,0,1)

(0,1,1,0,0) (0,0,0,1,1)(1,0,0,0,0)

(0,0,1,1,0)

T 3 T 4

Figure 2.4: The coverability graph of the discrete Petri net in Fig. 2.1.

The Fig. 2.4 shows an example of the reachability graph constructed for the bounded
discrete Petri net in Fig. 2.1. All states of the system and all possible transition firings are
clearly visible there.

2.5 Unfoldings

The unfolding [14, 15, 16, 17, 18] is a useful partial-order method for analysis and verifi-
cation of the Petri net properties. The state space of the Petri net is represented by an
acyclic net with a simpler structure than the Petri net.
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A net is a triple N = (P, T, F ), where P is a finite set of places and T is a finite set of
transitions. P 6= ∅, T 6= ∅ and P ∩ T = ∅. F ⊆ (P × T ) ∪ (T × P ) is a flow relation.

An occurrence net is a net O = (B,E,G), where B is a set of occurrence of places,
E is a set of occurrence of transitions. O is acyclic and G is the acyclic flow relation, i.e.
for every x, y ∈ B ∪ E : xG+y ⇒ ¬yG+x, where G+ is a transitive closure of G. Let us
denote x < y, iff xG+y, and x ≤ y, iff x < y or x = y. The relation <, resp. ≤ is a
partial order relation. Nodes x, y ∈ (P ∪ T ) are in a conflict relation, denoted by x#y,
iff ∃t1, t2 ∈ T : t1 6= t2 ∧

• t1 ∩
• t2 6= ∅ ∧ t1 ≤ x ∧ t2 ≤ y. Nodes x, y ∈ (P ∪ T ) are in a

concurrency relation, denoted by x co y, if neither x < y nor y < x nor x#y. For every
b ∈ B : |•b| ≤ 1. For every x ∈ (B ∪ E) : ¬(x#x), i.e. no element is in conflict with itself.
The set of elements {y ∈ (B ∪ E)|y < x} is finite, i.e. O is finitely preceded. Min(O)
denotes the set of minimal elements of B ∪ E with respect to the relation ≤, i.e. the
elements with an empty preset.

A homomorfism from the occurrence netO to the discrete Petri netRD = (P, T, Pre, Post,M0)
is a mapping p : B ∪ E → P ∪ T such that p(B) ⊆ P and p(E) ⊆ T , i.e. preserves the
nature of nodes. For every e ∈ E : p(•e) =• p(e) ∧ p(e•) = p(e)•, i.e. p preserves the
environment of transitions. The restriction of p to Min(O) is a bijection between Min(O)
and M0.

A branching process of the discrete Petri net RD is a 4-tuple πH = (B,E,G, p) = (O, p),
where O is the labeled occurrence net and p(x) = y denotes labeling element x as element
y.

A branching process π′
D = (O′, p′) is a prefix of πD, denoted by π′

D ⊑ πD, if O
′ =

(B′, E ′, G′) is a subnet of O satisfying Min(O) belongs to O′; if e ∈ E ′ and (b, e) ∈ G or
(e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G then e ∈ E ′; p′ is the restriction of p
to B′ ∪ E ′. For every RD there exists a unique (up to isomorphism) maximal (w.r.t. ⊑)
branching process that is called unfolding.

A configuration of the occurrence net O is a set of the transitions occurrences C ⊆ E
such that for all e1, e2 ∈ C : ¬(e1#e2), i.e. C is conflict-free. For every e1 ∈ C : e2 ≤ e1 ⇒
e2 ∈ C, i.e. C is causally closed. A local configuration [e] for the transition occurrence
e ∈ E is a set [e] = {e′ ∈ E|e′ ≤ e}.

A set of places occurrences D ⊆ B is called a co-set, iff for all distinct d1, d2 ∈ D :
d1 co d2. A cut is the maximal (w.r.t. set inclusion) co-set. For every d1, d2 ∈ D, if
p(d1) = p(d2) then d1 = d2. Let C be the finite configuration of the branching process πD.
Then Cut(C) = (Min(O)∪C•)\•C is a cut. A set Mark(C) = p(Cut(C)) is the reachable
marking of the discrete Petri net RD.

An adequate order ⊳ is a strict well-founded partial order on the local configurations
such that for two transitions occurrences e1, e2 ∈ E : [e1] ⊂ [e2] ⇒ [e1]⊳ [e2]. The transition
occurrence e1 ∈ E is a cut-off transition induced by ⊳, iff there is a corresponding transition
e2 ∈ E with Mark([e1]) = Mark([e2]) and [e2] ⊳ [e1]. The order ⊳ is a refined partial order
from [14].

The branching process is complete, iff for every reachable marking M ∈ [M0 > of the
discrete Petri net RD there is the configuration C of πH such that M = Mark(C) and for
every transition t ∈ T enabled in M there is the finite configuration C and the transition
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occurrence e ∈ C such that M = Mark(C), p(e) = t and C ∪ {e} is the configuration.

T1

T2

T 3

P3

P4P2

P5P1 T 4 T 5 P1

P1

T1 P3

P2

T1 P3

P2 T 3
P4

P5T 4

Figure 2.5: The branching process of the discrete Petri net in Fig. 2.1.

T1

T2

T 3

P3

P4P2

P5P1 T 4 T 5 P1

P1

Figure 2.6: The coverability graph of the discrete Petri net in Fig. 2.6.

The Fig. 2.5 shows an example of the branching process constructed for the bounded
discrete Petri net in Fig. 2.1. The branching process represents all reachable states of the
Petri net and can be infinite if the Petri net has a cycle as in this example. However it can
be truncated before it starts to repeat and the resulting unfolding is shown in Fig. 2.6.
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Chapter 3

Overview of Our Approach

3.1 Coverability Graphs

Our approach adapts the coverability graphs from the discrete Petri nets to the continuous
and hybrid Petri nets. Continuous conditions in the coverability graphs of the hybrid Petri
net can have associated a symbol representing the macro-marking thus some nonzero real
marking. Discrete conditions in the coverability graphs of the hybrid Petri net can have
associated a symbol ω representing that the corresponding place is unbounded.

We have formalized following notations of the coverability graphs of the continuous and
hybrid Petri nets and developed following algorithms [19, 20] for their computation.

3.1.1 Coverability Graphs of Bounded Continuous Petri Nets

The coverability graphGcb of the bounded continuous Petri netRCB = (P, T, Pre, Post,M0)
is a pair GCB = (N,E). The set N ⊆ (R+ ∪ {m1, . . . ,m|P |})

|P | is the set of
states, where mi, i = 1 . . . |P | is a substitute symbol that represents non-zero mark-
ing in the continuous place pi. The elements of N are the macro-markings. The set
E ⊆ N × T × ((R+ \ {0}) ∪ {m1, . . . ,m|P |}) × N is the set of edges labeled with a fired
transition and its degree. The degree can be substituted with the symbol mi. Firing a
transition without specifying the firing quantity means that it was fired with less quantity
than the maximal enabling degree.

The algorithm 1 constructs the coverability graph for the bounded continuous Petri
net. A function AddNewNode() adds a new node for the given marking and flags it as
unprocessed. A function GetEnabledTransitions() returns a set of enabled transitions
for the macro-marking represented by the given node. A function GetEnablingDegrees()

returns a set of enabling degrees that are valid for the given transition and node. It returns
values of a maximal enabling degree and a half of the maximal enabling degree. A function
GetNode() returns an existing node for the given marking. A function FireTransition()

returns a new macro-marking after firing the given transition with the given degree in the
macro-marking represented by the given node. The new macro-marking m is created as
follows. If a marking in the place pi is a boundary value (including zero) then the marking
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m(pi) is set to this value. Else the marking m(pi) is set to the substitute symbol mi. The
substitute symbol mi for the place pi need not to propagate to the following marking.
Basically, new nodes are created when a marking of a place becomes zero, or when an
unmarked place becomes marked.

Algorithm 1: The coverability graph for the bounded continuous Petri nets.

Input: The bounded continuous Petri net RCB = (P, T, Pre, Post,M0)
Output: The coverability graph GCB = (N,E)
Method:
begin

AddNewNode(M0);
while exists a node n ∈ N such that n is unprocessed do

Flags the node n as processed;
F =GetEnabledTransitions(n);
for each transition t ∈ F do

Q =GetEnablingDegrees(n, t);
for each degree q ∈ Q do

m′ =FireTransition(n, t, q);
if a node with m′ does not exist in N then

AddNewNode(m′);
end

n′ =GetNode(m′);
if an edge (n, t, q, n′) does not exist in E then

AddNewEdge(n, t, q, n′);
end

end

end

end

end

1.0

T1

P2

P1

T2

Figure 3.1: The bounded continuous Petri net.
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Figure 3.2: The coverability graph of the continuous Petri net in Fig.3.1.

An example of the coverability graph created by the algorithm 1 for the bounded
continuous Petri net in Figure 3.1 is in Figure 3.2. The net has two places, therefore it can
has a maximum of 4 macro-markings. Reachable macro-markings are (1, 0), (m1,m2) and
(0, 1).

3.1.2 Coverability Graphs of Unbounded Continuous Petri Nets

The coverability graph of the unbounded continuous Petri net is a pair GCU = (N,E),
where N ⊆ (R+ ∪ {ω} ∪ {m1, . . . ,m|P |})

|P |. The set E is the same as for GCB. The
symbol ω represents an arbitrarily large number in a place and the marking in a such place
is unbounded.

Algorithm 2: The coverability graphs for the unbounded continuous Petri nets.

Input: The unbounded continuous Petri net RCU = (P, T, Pre, Post,M0)
Output: The coverability graph GCU = (N,E)
Method:
This algorithm is similar to the algorithm 1. The main difference is in the function
FireTransition(), that can return the macro-markings with the symbol ω. The
macro-marking m′′ depends on the previous macro-marking m′ as follows. If the
macro-marking m′′ covers the macro-marking m′ (m′′ > m′) then for places where
m′′(pi) > m′(pi) set m

′′(pi) = ω. The symbol ω in the place pi must propagate to
the succeeding macro-markings in the place pi.

An example of the coverability graph created by the algorithm 2 for the unbounded
continuous Petri net in Figure 3.3 is in Figure 3.4. The system in Figure 3.3 has a self-loop
and the place P2 is unbounded. This is projected to the macro-markings (1, ω, 0), (0, ω, 1)
and (m1, ω,m3) in Figure 3.4.
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Figure 3.3: The unbounded continuous Petri net.

T1 T2
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1

T2

Figure 3.4: The coverability graph of the unbounded continuous Petri net in Fig.3.3.

3.1.3 Coverability Graphs of Bounded Hybrid Petri Nets

The coverability graph of the bounded hybrid Petri net RHB = (P, T, Pre, Post,M0, h)
is a pair GHB = (N,E). The set N ⊆ (R+ ∪ {m1, . . . ,m|PC |})

|PC | × N|PD| is the set of
states, where mi, i = 1 . . . |PC | is a substitute symbol that represents non-zero marking in
the continuous place pi. The elements of N are hybrid markings. The set E ⊆ N × T ×
((Q+ \ {0})∪ {m1, . . . ,m|PC |})×N is the set of edges as in coverability graph GCB of the
continuous hybrid Petri net.

An example of the coverability graph created by the algorithm 3 for the bounded hybrid
Petri net in Figure 3.5 is in Figure 3.6. There is a simple connection between the continuous
and the discrete part in the transition T1. The coverability graph in Figure 3.6 shows the
effect of marking and unmarking of the discrete place P3 by the discrete transitions T3

and T4.
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Algorithm 3: The coverability graph for the bounded hybrid Petri nets.

Input: The bounded hybrid Petri net RHB = (P, T, Pre, Post,M0, h)
Output: The coverability graph GHB = (N,E)
Method:
This algorithm is similar to the algorithm 1. The main difference is that all
functions work with hybrid markings. Moreover the following two functions need
more detailed description. A function GetEnablingDegrees() returns a set of
enabling degrees that are valid for the given transition and node. For the continuous
transitions it returns values of maximal enabling degree and half of the maximal
enabling degree. For the discrete transitions it returns the minimal enabling degree.
A function FireTransition() returns a new hybrid marking after firing the given
transition with the given degree in the hybrid marking represented by the given
node. The new marking mD is created according to the discrete Petri nets. The new
continuous macro-marking mC is created as follows. If a marking in the place pi is a
boundary value (including zero) then the marking mC(pi) is set to this value. Else
the marking mC(pi) is set to the substitute symbol mi. The substitute symbol mi

for the place pi need not to propagate to the following marking.
Basically, new nodes are created when: a marking of a continuous place becomes
zero, or an unmarked continuous place becomes marked, or a discrete transition is
fired, or a change of a marking of a continuous place causes the change of an
enabling degree of a discrete transition. Since the number of the continuous
macro-markings is finite, the algorithm terminates when all the discrete markings
and all the continuous macro-markings are explored.

1.0
P3 P4T1

P2

P1

T2

T3

T4

Figure 3.5: The bounded hybrid Petri net.

3.1.4 Coverability Graphs of Unbounded Hybrid Petri Nets

The coverability graph of the unbounded hybrid Petri net is a pair GHU = (N,E), where
the set N ⊆ (R+ ∪ {ω} ∪ {m1, . . . ,m|PC |})

|PC | × (N∪ ω)|PD|. The set E is the same as for
GHB. The symbol ω represents an arbitrarily large number in a place and the marking in
a such place is unbounded.

An example of the coverability graph created by the algorithm 4 for the unbounded
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Figure 3.6: The coverability graph of the bounded hybrid Petri net in Fig.3.5.

Algorithm 4: The coverability graph for the unbounded hybrid Petri nets.

Input: The unbounded hybrid Petri net RHU = (P, T, Pre, Post,M0, h)
Output: The coverability graph GHU = (N,E)
Method:
This algorithm is similar to the algorithm 3. The main difference is in the function
FireTransition(), that can return continuous macro-markings and discrete
macro-markings with the symbol ω. The new macro-marking m′′ depends on the
previous macro-marking m′ as follows. If the macro-marking m′′ covers the
macro-marking m′ (m′′ > m′) then for places where m′′(pi) > m′(pi) set m

′′(pi) = ω.
The symbol ω in the place pi must propagate to the succeeding macro-markings in
the place pi.
Since the number of the continuous macro-markings and the number of discrete
macro-markings is finite, the algorithm terminates when all the discrete
macro-markings and all the continuous macro-markings are explored.

hybrid Petri net in Figure 3.7 is in Figure 3.8. The system in Figure 3.7 has self-loops in
the continuous place P1 and in the discrete place P3. These places are unbounded. This is
projected to the macro-markings in Figure 3.8 via symbol ω.

1.0

T1
P2 P1

T3

T2

P5

P3P4

Figure 3.7: The unbounded hybrid Petri net.
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Figure 3.8: The coverability graph of the unbounded hybrid Petri net in Fig.3.7.
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3.2 Unfoldings

Our approach combines the macro markings from the coverability graph for the continuous
Petri nets [1, 7] with the idea of the coverability unfolding for the unbounded discrete Petri
nets [6]. Continuous conditions in the unfolding can have associated a symbol representing
the macro-marking thus some nonzero real marking. Discrete conditions in the unfolding
can have associated a symbol ω representing that the corresponding place is unbounded.

We have formalized following notations [21] of the unfolding of the continuous and
hybrid Petri nets and developed following algorithms [19] for their computation.

3.2.1 Unfoldings of Bounded Hybrid Petri Nets

The notation of the net N = (P, T, F ) and the occurrence net O = (B,E,G) is described
in chapter 2 section 2.5.

A homomorfism from the occurrence net O to the bounded hybrid Petri net RHB =
(P, T, Pre, Post,M0, h) is a mapping p : B∪E → P ∪T such that p(B) ⊆ P and p(E) ⊆ T ,
i.e. preserves the nature of nodes. For every e ∈ E : p(•e) =• p(e) ∧ p(e•) = p(e)•, i.e.
p preserves the environment of transitions. The restriction of p to Min(O) is a bijection
between Min(O) and M0.

A hybrid branching process of the bounded hybrid Petri net RHB is a 5-tuple πHB =
(B,E,G, p, d) = (O, p, d), where O is the labelled occurrence net and p(x) = y denotes
labelling element x as element y. A mapping d : E → {m1, . . . ,m|P |}∪{0} labels transitions
occurrences with symbol mi indicating maximal firing degree or with 0 indicating arbitrary
lower degree (that will not be depicted). The type of the node determines its graphical
representation. Every node e ∈ E : p(e) ∈ TC is represented by double rectangle and every
node b ∈ B : p(b) ∈ PC is represented by double circle with the name of the corresponding
marking.

A hybrid branching process π′
HB = (O′, p′, d′) is a prefix of πHB, denoted by π′

HB ⊑ πHB,
if O′ = (B′, E ′, G′) is a subnet of O satisfyingMin(O) belongs to O′; if e ∈ E ′ and (b, e) ∈ G
or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G then e ∈ E ′; p′ is the restriction of p
to B′ ∪ E ′. For every RHB there exists a unique (up to isomorphism) maximal (w.r.t. ⊑)
branching process that is called unfolding.

The notation of the configuration C ⊆ E, the local configuration [e], the co-set D ⊆ B
and cut is described in chapter 2 section 2.5.

Let C be the finite configuration of the hybrid branching process πHB. Then Cut(C) =
(Min(O) ∪ C•) \•C is a cut. A set Mark(C) = p(Cut(C)) is the reachable hybrid macro
marking of the bounded hybrid Petri net RHB.

The notation of the adequate order ⊳ is described in chapter 2 section 2.5. For the
hybrid branching process πHB and every e1, e2 ∈ E : p(e1) ∈ TD ∧ p(e2) ∈ TC ⇒ [e1] ⊳ [e2].
For every e1, e2 ∈ E : d(e1) 6= 0 ∧ d(e2) = 0 ⇒ [e1] ⊳ [e2].

The hybrid branching process is complete, iff for every reachable hybrid macro marking
M ∈ [M0 > of the bounded hybrid Petri net RHB there is the configuration C of πHB

such that M = Mark(C) and for every transition t ∈ T enabled in M there is the finite
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configuration C and the transition occurrence e ∈ C such that M = Mark(C), p(e) = t
and C ∪ {e} is the configuration.

Algorithm 5: The finite prefix of the unfolding for the bounded hybrid Petri net.

Input: The bounded hybrid Petri net RHB = (P, T, Pre, Post,M0, h)
Output: The finite prefix pref = (O, p, d) of the unfolding
begin

InitializePrefix(pref);
pe = PossibleExtensions(pref);
cutoff = ∅;
while pe 6= ∅ do

e = MinimalExtension(pe);
if [e ] ∩ cutoff = ∅ then

Extend(pref, e);
pe = PossibleExtensions(pref);
if IsCutoff(e) then cutoff = cutoff ∪ {e };

else
pe = pe \ {e };

end

end

end

The algorithm 5 is a modified algorithm presented in [16]. It constructs the fi-
nite and complete prefix of the unfolding of the bounded hybrid Petri net. A function
InitializePrefix() initializes the prefix pref with instances of the places from M0. A
function PossibleExtensions() finds the set of possible extensions of the branching pro-
cess pref using possible transitions firings for the hybrid Petri net, including transitions
firings with the maximal degree. The decision version of this function is NP-complete in
the size of the prefix pref. A function MinimalExtension() chooses the transition occur-
rence with minimal local configuration with respect to the order ⊳ from the set of possible
extensions. A function Extend() appends new instance of the transition occurrence and
new instances of the output places of the transition. A function IsCutoff() determines
whether the transition occurrence is a cut-off transition. Algorithm is finite because the
number of macro markings in the bounded hybrid Petri net is finite and it transforms all
transitions occurrences into cut-off transitions [15].

1.0

T1 P2P1

Figure 3.9: The bounded continuous Petri net.
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Figure 3.10: The finite prefix of the unfolding of the bounded continous Petri net from
Fig. 3.9.
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Figure 3.11: The bounded hybrid Petri net.

An example of the finite prefix of the unfolding created by the algorithm 5 for the
bounded continuous Petri net in Fig. 3.9 is in Fig. 3.10. All reachable continuous macro
markings are represented by cuts.

An example of the finite prefix of the unfolding created by the algorithm 5 for the
bounded hybrid Petri net in Fig. 3.11 is in Fig. 3.12.

3.2.2 Unfoldings of Unbounded Hybrid Petri Nets

A hybrid branching process of the unbounded hybrid Petri net RHU is a 6-tuple πHU =
(B,E,G, p, d, w) = (O, p, d, w), where O, p, d are defined in the same way as in the previous
section 3.2.1. A mapping w : B → {ω, 1} labels discrete places occurrences with symbol ω
indicating an unbounded discrete place or with 1 otherwise (that will not be depicted).

A hybrid branching process π′
HU = (O′, p′, d′, w′) is a prefix of πHU , denoted by π′

HU ⊑
πHU , if O

′ = (B′, E ′, G′) is a subnet of O satisfying Min(O) belongs to O′; if e ∈ E ′

and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G then e ∈ E ′; p′ is
the restriction of p to B′ ∪ E ′. For every RHU there exists a unique (up to isomorphism)
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maximal (w.r.t. ⊑) branching process that is called unfolding.
For the hybrid branching process πHU and every e1, e2 ∈ E : p(e1) ∈ TD∧p(e2) ∈ TC ⇒

[e1] ⊳ [e2]. For every e1, e2 ∈ E : d(e1) 6= 0 ∧ d(e2) = 0 ⇒ [e1] ⊳ [e2].
The hybrid branching process is complete, iff for every reachable hybrid macro marking

M ∈ [M0 > of the unbounded hybrid Petri net RHU there is the configuration C of πHU

such that M = Mark(C) and for every transition t ∈ T enabled in M there is the finite
configuration C and the transition occurrence e ∈ C such that M = Mark(C), p(e) = t
and C ∪ {e} is the configuration.

Algorithm 6: The finite prefix of the unfolding for the unbounded hybrid Petri net.

Input: The unbounded hybrid Petri net RHU = (P, T, Pre, Post,M0, h)
Output: The finite prefix pref = (O, p, d, w) of the unfolding
Method:
This algorithm is similar to the algorithm 5. The main difference is in the function
Extend() which detects an unbounded discrete place by comparing the new and the
previous discrete state and thus can return a discrete macro-markings with the
symbol ω. The label of the unbounded discrete place is propagated further once
denoted.
The algorithm is finite because the number of continuous, resp. discrete macro
markings in the continuous, resp. discrete part of the hybrid Petri net is finite and
it transforms all transitions occurrences into cut-off transitions [15].

An example of the finite prefix of the unfolding created by the algorithm 6 for the
unbounded continuous Petri net in Fig. 3.13 is in Fig. 3.15. All reachable continuous
macro markings are represented by cuts.

The image in Fig. 3.14 shows very simple, yet typical example from the application
domain of the hybrid Petri nets, where the discrete part enables or disables the continuous
transitions. An example of the complete and finite prefix of the unfolding created by the
algorithm 6 for the unbounded hybrid Petri net in Fig. 3.14 is in Fig. 3.16. The image
shows only the most interesting part of the whole prefix because of size limitations. It can
be seen how the unbounded discrete place is detected and propagated further.
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Figure 3.12: The finite prefix of the unfolding of the bounded hybrid Petri net from
Fig. 3.11.
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Figure 3.13: The unbounded continuous Petri net.

1.0

P3

P4

T1

P2P1

T2

T3T4

P5

P6

Figure 3.14: The unbounded hybrid Petri net.
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Figure 3.15: The prefix of the unfolding of the unbounded continuous Petri net from
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Figure 3.16: The main segment of the finite prefix of the unfolding of the unbounded hybrid
Petri net from Fig. 3.14. The whole prefix is not depicted because of size limitations.
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Chapter 4

Comparison of Results

The developed algorithms construct the finite net, resp. graph of the continuous and hybrid
Petri nets. The algorithms are finite because the number of continuous, resp. discrete
macro markings in the continuous, resp. discrete part of the hybrid Petri net is finite. The
decision version of the main function is NP-complete.

Each node in the coverability graph represents directly the macro hybrid marking so
the whole state space is easier to see. All possible transitions firings between states are
explicitly displayed. One can identify deadlocks by finding a node which does not have
any outgoing edge.

The unfoldings represents states by cuts which are harder to imagine. On the other
hand one can easy see which transitions are sequential, parallel and in conflict. Analysis
of the partial order between the transitions occurrences and checking on persistency by
analysing the conflicts between the transitions occurrences in the unfoldings is simpler due
to absence of cycles.

There exist algorithms for checking qualitative properties such as safeness, boundness,
conservativeness and coverability for the hybrid Petri nets from the unfoldings and the
coverability graphs. However some information regarding reachability is lost due to the
abstraction in the continuous and discrete macro markings in both approaches. The un-
foldings and the coverability graphs are over-approximations. Different Petri nets can have
the same unfolding, resp. coverability graph. The hybrid Petri net is bounded if and only
if the corresponding unfolding, resp. coverability graph does not contain any omega mark-
ings. A transition is dead if and only if it does not appear in the corresponding unfolding,
resp. coverability graph.

Both approaches can make analysis of the hybrid Petri nets easier. Each of them bring
its own view on the state space. The main limit of both approaches is that they may
generate huge graphs, resp. nets.
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4.1 Example of Scalability

The unfoldings can be smaller than the coverability graphs for the same Petri net especially
when the Petri net has a lot of concurrency. Adding independent parallel transitions to a
continuous Petri net as shown in Fig.4.1 and Fig.4.4 grows the unfoldings linearly as shown
in Fig.4.3 and Fig.4.6 as opposed to growing the coverability graphs as shown Fig.4.2 and
Fig.4.2.
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Figure 4.1: The bounded continuous Petri net with one transition.
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Figure 4.2: The coverability graph of the continuous Petri net in Fig.4.1.
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Figure 4.3: The unfoldings of the continuous Petri net in Fig.4.1.
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Figure 4.4: The bounded continuous Petri net with two transitions.
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Figure 4.5: The coverability graph of the continuous Petri net in Fig.4.4.

4.2 Example of Hybrid Interaction

Possible discrete transitions firings in Fig.4.7 effectively create a separate continuous cov-
erability sub graph in the resulting coverability graph as shown in Fig.4.8. The influence of
the discrete part really works as a ’switch’ between two basic behaviors of the continuous
part in this example.
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Figure 4.6: The unfoldings of the continuous Petri net in Fig.4.4.
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Figure 4.7: The bounded hybrid Petri net.
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Figure 4.8: The coverability graph of the hybrid Petri net in Fig.4.7.
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Figure 4.9: The unfoldings of the continuous Petri net in Fig.4.7.
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Chapter 5

Conclusions

5.1 Summary

We have presented the formalization of coverability graphs, resp. unfoldings for the hybrid
Petri nets together with algorithms for their computation and typical examples.

The coverability graphs and the unfoldings are over-approximations. Some information
regarding reachability is lost due to the abstraction in the continuous and discrete macro
markings. Nevertheless, both approaches can make analysis of the hybrid Petri nets easier.
There exist algorithms for checking qualitative properties such as safeness, boundness,
conservativeness and coverability for the hybrid Petri nets from the unfoldings and the
coverability graphs. Each of them bring its own view on the state space. Each node in the
coverability graph represents directly the macro hybrid marking so the whole state space
is easier to see. The unfoldings represents states by cuts which are harder to imagine.
The main limit of both approaches is that they may generate huge graphs, resp. nets.
Possible firings of independent parallel transitions can grow the unfoldings linearly and the
coverability graphs exponentially.

Analysing and verification of countinuous and hybrid Petri nets are one of newly emerg-
ing areas in the Petri nets world. We think that this work can serve as a base for additional
research in this field.

5.2 Future Work

In the future we plan to implement algorithms for computing coverability graphs and
unfoldings for the hybrid Petri nets. And gather some experimental results for a larger
hybrid Petri nets.
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