Forensic Science International: Digital Investigation 35 (2020) 301019

journal homepage: www.elsevier.com/locate/fsidi

Contents lists available at ScienceDirect L

Forensic Science
International:
Digital Investigation

Forensic Science International: Digital Investigation

Netfox detective: A novel open-source network forensics analysis tool

Jan Pluskal *”, Frank Breitinger °, Ondfej Rysavy *

Check for
updates

2 Brno University of Technology, Faculty of Information Technology, Bozetéchova 2, Brno, Czech Republic
b Hilti Chair for Data and Application Security Institute of Information Systems, University of Liechtenstein, Fiirst-Franz-Josef-Strasse, 9490, Vaduz,

Liechtenstein

ARTICLE INFO ABSTRACT

Article history:

Received 21 January 2020

Received in revised form

16 June 2020

Accepted 18 June 2020

Available online 17 September 2020

Network forensics is a major sub-discipline of digital forensics which becomes more and more important
in an age where everything is connected. In order to cope with the amounts of data and other challenges
within networks, practitioners require powerful tools that support them. In this paper, we highlight a
novel open-source network forensic tool named — Netfox Detective — that outperforms existing tools
such as Wireshark or NetworkMiner in certain areas. For instance, it provides a heuristically based engine

for traffic processing that can be easily extended. Using robust parsers (we are not solely relying on the

Keywords:

Network forensics

Protocol analysis

Web forensics

Network forensic analysis tool
Lawful interception

discussed.

RFC description but use heuristics), our application tolerates malformed or missing conversation seg-
ments. Besides outlining the tool's architecture and basic processing concepts, we also explain how it can
be extended. Lastly, a comparison with other similar tools is presented as well as a real-world scenario is

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Network forensics aims to understand/reconstruct events from
network communication, which often requires expert knowledge
(interpreting the low-level network protocols in order to see the big
picture) (Casey, 2004). To eliminate some of the complexity,
adequate tools are essential (Garfinkel, 2010; Harichandran et al.,
2016). Specifically, tools should support investigators by summa-
rizing, clustering and highlighting relevant information (Beebe,
2009), e.g., provide contents of transmitted files, extract user cre-
dentials or perform analysis and visualize the data in an easily
understandable form. While there are many different network
forensic analysis tools (Pilli et al., 2010) out there (details discussed
in the upcoming sections), their functionalities, capabilities, and
usability are not keeping up with traditional forensics toolkits
(Casey, 2004) such as EnCase, 2020 or The Sleuth Kit (TSK) &
Autopsy, 2020.

Thematic classification: While network forensics and cloud fo-
rensics are related, the latter one is usually more complex, e.g., it
may involve Software Defined Networking (SDN (McKeown et al.,
2008)) which comes with additional evidence such as Logfiles
from the SDN controller, compute nodes or cloud controller

* Corresponding author.

(Spiekermann et al., 2017). These networks also use state-of-the-art
networking technology (100—400 Gbps) that cannot be monitored
without hardware acceleration (typically FPGA), and even then,
only selected flows can be fully captured (Kekely et al., 2016) and
used for further, detailed examination. Netfox Detective is intended
for network forensic analysis and visualization on a PC and does not
compete with these tools, but uses them to filter and capture data.

Terms and definition: For readers not completely familiar with
the network terminology, we included an overview in Appendix A.

1.1. Analysis of network communication

Two of the most popular tools for Network Security Monitoring
(NSM) are Wireshark and TCPDUMP, 2020, which are commonly
used by network administrators to identify problems or security
incidents (Pilli et al., 2010). Wireshark provides a large number of
protocol parsers, can extract the content of the communication for
several application protocols and offers a detailed view of the
network communication. While it is one of the most powerful tools,
its bottom-up analysis approach means that finding and extracting
evidence often requires (intensive) labor and expert domain
knowledge. Nevertheless, Wireshark is continuously optimized,

E-mail addresses: ipluskal@fit.vutbr.cz (J. Pluskal), Frank.Breitinger@uni.li (F. Breitinger), rysavy@fit.vutbr.cz (O. Rysavy).

https://doi.org/10.1016/j.fsidi.2020.301019
2666-2817/© 2020 Elsevier Ltd. All rights reserved.

mailto:ipluskal@fit.vutbr.cz
mailto:Frank.Breitinger@uni.li
mailto:rysavy@fit.vutbr.cz
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2020.301019&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2020.301019
https://doi.org/10.1016/j.fsidi.2020.301019

2 J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019

and usage of analyzers and LUA plugins eases up the investigation.
Netfox Detective partially addresses this by implementing
advanced features such as heuristical TCP reassembling or L7
conversation tracking or reconstruction of forensic artifacts
extracted from the communication. Furthermore, Wireshark does
not scale well above hundreds of megabytes of source data, and
thus, data preprocessing is necessary for large inputs. TCPDUMP,
2020, on the other hand, has only a command line interface that
allows admins to inspect incoming and outgoing network traffic.

There are also more specialized tools that can extract valuable
forensic information, for instance, ngrep, 2020, ssldump, 2020, or
tepxtract, 2020. These tools were created to solve specific problems
such as searching for a phrase in network communication, decod-
ing encrypted communication if a private key is known, or
extracting transferred files from network communication, respec-
tively. To take advantage of all tools, an investigator is required to
combine them. For repeating tasks, one may write scripts to speed
up the process and thus, reduce the amount of manual labor.

Without question, there are many practitioners who prefer
featureful open-source tools (Beebe, 2009; Farmer and Venema,
2009) although there is a risk that they are poorly documented,
out-of-date, and even abandoned (Garfinkel, 2010).

1.2. Expected properties for network forensic tools

According to Cohen (2008), a network forensic analysis tool
(NFAT) should provide a certain set of general features (listed as
items 1—3 below). We further analyzed the demands and identified
some more specific features yielding the following list of
requirements:

1. Efficient processing of large capture files: Current investigations
deal with a big amount of data that needs to be analyzed. Tools
are required to provide at least partial results quickly.

2. Extraction of high-level information: Network communication
can be analyzed at different levels but for digital investigation
extracting artifacts from data sources is a priority.

3. Validation of results: Applying reliable procedures and the pos-
sibility to validate the integrity of results is a crucial requirement
on all forensic tools including NFATSs.

4. Process non-standard or incomplete traffic: Network communi-
cation should be correctly processed regardless of the accept-
able deviations from the specification.

5. Robust data decapsulation: Even in the presence of IP fragmen-
tation and data stream multiplexing, the tool should be able to
identify and compose unique application level conversations.

6. Support for overlay networks: Network communication may be
encapsulated using tunneling techniques, e.g., Virtual Private
Networks. If possible, detection and extraction are then fol-
lowed by the analysis of the encapsulated messages.

7. Application protocol identification: Services communicating on
non-standard or dynamic ports require advanced methods for
application identification. Without the correctly identified type
of communicating application, it is difficult to extract any high-
level information.

8. Investigation process: The tool should support the top-bottom
investigative process and guide the user. It is essential that
even non-expert personnel can operate NFAT and extract evi-
dence to support their cases.

The presented list is not exhaustive and stems from our expe-
rience in network traffic analysis and evaluation of existing NFATs.
Some requirements are conflicting, for instance, processing of large
data sources and in-depth analysis of conversations to extract high-
level artifacts.

1.3. Network forensic tools

Besides Network Security Monitoring (NSM) tools that are
intended for packet capturing, fingerprinting, or intrusion detec-
tion, there are some network forensic analysis tools (NFAT) spe-
cifically designed to support investigators. These aim to ease
analysis by automating artifacts extraction and providing intuitive
user interfaces. Usually, these tools have a top-down approach
which makes the analysis simpler and saves time. In the following
we briefly summarize the five prominent tools (numbers in
brackets related to Sec. 1.2 and show missing properties):

e Netintercept was one of the first NFATs (Corey et al., 2002). It
accepts PCAP files (no live captures), reassembles TCP flows and
extracts artifacts from protocols running even on non-standard
ports. Note: NetIntercept is closed source and to the best of our
knowledge no longer available for download. Thus, we were
unable to perform a more detailed evaluation.

e PyFlag, 2020 [1, 3, 4, 6, 7, 8] “is a general purpose, open source,
forensic package which merges disk forensics, memory foren-
sics, and network forensics” (Cohen, 2008). By using specialized
scanners, PyFlag can understand several application protocols
and extract the communicated contents. However, according to
Forensics Wiki, the tool is deprecated.’

e XPlico, 2020 [1, 3, 4, 5] is open source NFAT that is preinstalled

on major digital forensics distribution such as DEFT, Security

Onion and even Kali. It understands about 30 application pro-

tocols and can extract the content of emails, Session Initiation

Protocol (SIP) or web communication.

NetworkMiner, 2020 [1, 3, 4, 8] is a passive network sniffer/

packet capturing tool that can detect operating systems, ses-

sions, hostnames, open ports, and more. It also allows extracting
files from about a dozen commonly used application protocols.

In the professional version, NetworkMinor also extracts VoIP

calls, supports Geo IP localization, performs port-independent

protocol identification, OS fingerprinting, and web browser
tracing.

e TCPFlow, 2020 [2, 3, 4, 5, 6, 8] “captures data transmitted as part
of TCP connections (flows), and stores the data in a way that is
convenient for protocol analysis and debugging. Each TCP flow is
stored in its own file. Thus, the typical TCP flow will be stored in
two files, one for each direction. TCPFlow can also process stored
‘tcpdump’ packet flows”. It is important to note that TCPflow
does not recognize IP fragments; therefore, reassembling of
such conversations will be malformed.

While these tools have different strengths, our tool provides
some unique features which are pointed out in Sec. 5.

1.4. Problem description

Although many tools have been developed/exist, several tools
are outdated, abandoned, or do not meet all expected properties
(see Sec. 1.2). Additionally, current tools are not intuitive (require
training), not (easily) expandable or can handle network traffic
captures in the order of magnitude of gigabytes which were re-
quirements/statements from the Lawful Enforcement Agency (LEA)
officers. Last, existing tools are not structured along the investiga-
tive process; commonly there is no case management, the linkage
between investigations, and verification of results which can be
helpful during investigations.

T https://www.forensicswiki.org/wiki/PyFlag#%20 (last accessed 2019-08-17).

https://www.forensicswiki.org/wiki/PyFlag%20

J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019 3

Table 1

Performance of selected operations using the M57 case PCAP files. Machine configuration: CPU i7-4790, 4.00 GHz, 64 GB DDR4, Crucial MX100 SSD, Windows 10. Experiments

were repeated 10-times, measured by time and Perfmon utilities.

Operation Backend ¢ Frontend + Backend + Wireshark! NetworkMiner! tepflow ™
1 Total time 6m 14s,0= 15.23s 9m 36s,0 = 30.12s 8m48s,0= 17.34s 41m 23s,0 = 12443 s 13m 39s,0 = 64.21s
2 Max RAM usage 8.3GB 8.5GB 7.1GB 20GB 243MB
3 Avg CPU usage 76%, 0=8% 66%, c=18 % 12%, 0=3% 15%,0=2% 3% 0=1%
4 Sessions (TCP + UDP) 118,709 118,709 98,084 49,865 93,619
5 TCP - missing 3.9%* 3.9%* 0.6%* N/A N/A
6 DNS - records 238,531 238,531 150,426 183,527 N/A
7 Emails 28 28 N/A 39 N/A
8 FTP 16 16 N/A 1 N/A
9 Complete Web pages 6 6 N/A N/A N/A
10 Speed 101.8 Mbps 66.1 Mbps 72.1 Mbps 15.3 Mbps 46.5 Mbps

(1) To measure comparable results, in-memory database has been used.
(1) The tool was downloaded as a binary release.

(A) The tcpflow 1.4.4 was ran with parameters -r file.pcap -a -Fm to do ALL post-processing and split output in 1 M directories.
(*) Netfox Detective computes TCP loss based on lost segment size (see Eq. (2)). For Wireshark, we computed it by applying the tcp.analysis.lost_segment filter and then utilized
Eq. (1). This does not mean that the tool lost the data but they were not present in the capture, i.e., the capturing probe lost them.

1.5. Notes on legal requirements

Possible real-world usage of Netfox Detective, as well as other
NFAT tools, needs to be under the frame of legal requirements and
restrictions. Then conditions of the legal use of NFAT tools cannot
be stated world-wide. EU countries and even states of a single
country, e.g., the USA or Germany, have different laws about col-
lecting digital traces related to user activities (see ENISA (2019),
section 2.6). Network forensics necessary requires to gather IP ad-
dresses, packet captures, or log files that may contain all kinds of
private data, including passwords, usernames, credit card numbers,
etc. Specific laws regarding online services, protection of critical
infrastructures, and cybercrime or computer crime may apply to
the practice of digital investigation. Commonly they limit what data
can be acquired or the way in which data can be processed. The
presented tool is only technical equipment able to process captured
communication. Same as in the case for other NFAT, the tool is able
to extract various artifacts from network communication and it is
required that investigators have to abide by the law, especially since
matters may be taken to court. Often knowing what law applies to
the situation may be challenging and the advice of trained legal
experts is needed.

1.6. Contribution and paper structure

This paper provides Netfox Detective; a novel, easy-to-use,
powerful network forensic platform for top-down investigations.
Our tool covers examination, analysis, and investigation phases of
the forensic model as defined by Pilli et al. (2010). In detail, we
provide the following contributions:

1. Introduction of investigation profiles that contain all necessary
data for sharing the case by just copying the investigation folder
— Sec 3.3.

2. The new method of TCP stream reassembling based on heuris-
tics (method itself was previously published (Matousek et al.,
2015), but the tool contains an improved version of it) — Sec
3.4 and Appendix E.

3. Improved identification of application-level sessions within TCP
streams; the system can identify more application sessions
compared to other tools (see Table 1) — Sec 3.4, Appendix E.

4. Seamless analysis across boundaries of multiple capture files
that ensures correct processing of long-running conversations
(i.e., overlapping conversations are processed correctly) — Sec
3.4. To the best of our knowledge, no NFAT or NSM tool currently
has this functionality which is crucial for LEA forensic

investigation. Data sources in form of PCAP files are typically
split due to time or space constraints.

5. Support for analysis of traffic encapsulated in GSE protocol; to
the best our knowledge, Netfox Detective is the only open-
source NFAT that supports GSE — Sec 5.3.

6. Novel approach for web page reconstruction; in comparison to
other tools, we do not only extract objects from HTTP commu-
nication, but we also reconstruct the page entirely (rewriting
sources of all intercepted objects like CSS, pictures, video
streams, etc.). Pages are stored as a MAFF, 2020 archive
including snapshots that show how the page changed over time.
The JavaScript is interpreted, and particular API calls are mocked
to be injected with intercepted ones, like REST API calls — Sec
6.2. The reconstruction of a web-page requires analysis and
correlation of multiple L7 conversations, because a page usually
references (includes) data from multiple domains.

Note, the system has a modular architecture where processing
engine, data-access component, and visualization subsystem can
be used separately. The function related to packet capture file
processing, namely, file parsing, conversation tracking, application
protocol identification, application data extraction, and analysis can
also be used as a standalone console tool and integrated to auto-
mated investigation procedures and combined with other existing
tools.

The source code? is released on GitHub and under the Apache
Licence 2.0. Additional information can be found on Netfox
Detective's YouTube channel: https://goo.gl/fKM8Vs.

The remainder of this paper is organized as follows: Sec. 2 de-
scribes the system architecture, illustrates the frontend, and ex-
plains possibilities on how to extend Netfox Detective. Sec. 5
highlights some of the unique features of our tool as well as con-
tains a comparison with other prominent network forensics/secu-
rity tools. The last section concludes the paper.

2. Netfox Detective

Netfox Detective is a network forensic tool that was developed
to support digital forensic practitioners to analyze network cap-
tures and to extract evidence from packet traces quickly. The
development started off as PoC (Pluskal et al., 2015) with slower
processing pipeline and storage, a limited set of application pro-
tocol support, and capabilities in general. It allows to correctly

2 https://github.com/nesfit/NetfoxDetective.

https://goo.gl/fKM8Vs

4 J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019

Frontend
[- I I
Appldent H SipFraud
Analyzers Views
AN ~
—
sSQL
Database
v
Packet Capture L7 Tracker
Processor L4 Tracker
3
Snoopers L3 Tracker
Backend

Packet Capture
Source

Fig. 1. The overview of Netfox Detective Architecture.

identify network conversations, parse common Internet protocols,
and extract metadata as well as content from the end-to-end
communication. Additionally, it is possible to extend the tool
with new functionality through a well-documented API.

The tool is a Windows application relying on the.NET Platform
and is available as an installation package that performs necessary
deployment steps. Our implementation exploits many advantages
of this platform like the rich graphical user interface provided by
Windows Presentation Foundation (WPF), short development
times due to a high abstraction language (C#), and availability of
many libraries provided through NuGet packages. Furthermore, the
implementation utilizes the Task Parallel Library (TPL) for parallel
processing.

The software consists of over 140,000 lines of code® organized in
about 110 projects. While it currently does not support live analysis,
it accepts a variety of different network capture formats such as
libPcap, 2020, Pcap-NG, 2020, and Network Monitor (MNM)
format.

Fig.1 describes the architecture, which is composed of two main
components:

Frontend is primarily a rich visual user interface (GUI, see Fig. 2)
that is built on top of the backend and contains analysis capabilities
(Sharafaldin et al., 2019). Analyzers are frontend interfaces that
allow adding new functionality. Details are outlined in Sec. 3.2.

Backend is a network traffic processing engine that performs:
capture file processing, protocol parsing, traffic analysis, and met-
adata extraction. It is independent of the frontend (GUI) and comes
with its own CLI which allows to integrate it in automated pro-
cessing pipelines or to use it as a single-purpose tool. Snoopers are
backend interfaces that allow adding new functionality. Details are
outlined in Sec. 3.4.

2.1. Analyzers vs. snoopers

The tool can be extended through the implementation of
snoopers or analyzers. Analyzers have more advanced functionality
and different purpose than snoopers. The Analyzer API provides
access to data storage as well as the user interface. An analyzer can
be bound either to application or investigation scope. Thus, it is
possible to integrate highly specialized analyzers for specific cases.

3 Calculated by Visual Studio (code metrics) on the complete implementation;
excludes white spaces, comments, usings, and third-party libraries.

Analyzers can create investigations, add capture files, or run any
operation supported by Netfox Detective or access any data.

On the other hand, snoopers can access information from the
processing pipeline through the database (metadata storage).
Snoopers can extract objects from the source data but may also
utilize other data such as flow records, log files, etc. Snoopers are
intended to parse the application conversation protocols (L7, listed
below) and extract data such as files, videos, or HTTP headers. More
details about analyzers and snoopers are provided in Appendix C
and Appendix B, respectively.

Note, Netfox Detective is too complex to explain every detail in
this paper, and thus, we focus on some important design decisions
in the next section. We plan on releasing more information/details
over the years.

3. Design decisions

While we made many decisions along the way, the following
subsections discuss the most important ones: GUI design, investi-
gative process workflow, and packet processing pipeline.

3.1. No live captures

Netfox Detective does not support live captures but accepts
several input formats, which had several reasons. First, lawful
interception deployment contains one or more capturing probes
that store data on drives locally, or on remote storage (Invea, 2020).
Secondly, the analysis is often performed on more powerful
equipment rather than the capturing probe. Third, this was not a
requirement by LEA.

3.2. GUI design

The GUI follows the principles of Master/Detail screen layout
(Microsoft Corporation, 2017) supported by the navigator panels as
shown in Fig. 2. This organization is ideal for creating an efficient
user experience (Scott and Neil, 2009) when the user needs to
navigate between linked items (Beebe, 2009). The user interface
provides a high degree of customization, utilizing a grid layout of
dockable views. The application has three main areas, namely, left-
hand side, upper right and lower right, that host basic visual
components:

o Investigation Explorer is the main navigation panel of the appli-

cation. It organizes Captures, Logs, Detected Events and Expor-

ted objects (see the left blue box in Fig. 2). More details about the
structure are given in Fig. 3, and discussed in the Investigation

Explorer paragraph.

Conversation View provides a list of all tracked conversations in

source capture files (see left red box).

Conversation Detail provides information for the selected con-

versation. The presented content may contain links for addi-

tional data and detailed information on the target object (see
right red box).

e Detail View, e.g., Export Detail, provides additional information
for specific object types. The content uses links to navigate via
multiple views (see the black box at the bottom).

e Conversation Explorer contains a list of conversations that were

associated with investigated objects, e.g., conversation or export

object (see right blue box).

Output Window contains a list of events generated during the

processing. These events may be informative, warnings or errors

raised during source data processing (see the green box, only
partially shown).

J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019

N

DETECTIVE INVESTIGATION VIEW ~ ANALYZERS HELP

Worksg Investig Convel- alol X

AR =

PR Captures

." SSL/TLS
Cypher key file: Ad

B fo_chatpcapng .” Application protocol extraction

= aex

rn Logs

W8 Detected Events * Details

4 'mm Exports
(don't use application tags)

DNS (0)

Facebook (1) Show results d
« HTTP (1) DNS

FTP (0)

B Facebook 765374730

iOS Hangouts (0)

Apply export on all conversations

BR
) L2}
+ 4= conversation taxonomy reassen 192.168.010:0 - 3
Transport Layer: P V]
Application Layer: D¢
Client Host Addres” A 2.168.0.10:0 Se
<o

Malformed Frames:- ¥ .

Extracted Bytes:

_ Facebook detail o

repEp@pEREDREODEERRER

100007717846239

IcQ (0) Key

IMAP (0) 6/9/2018 12:57:10 PY Targetld 100007717846239
6/9/2018 12:57:14 PM

MAFF (0) Message Lorenff ipsum dolor ¢

. 6/9/2018 12:57:14 PM

i0S Messenger (0) 6/9/2018 12:57:25 PM Sender 7653794730

MQTT (0) 6/9/2018 12:57:32 PM Receiver 10004f717846239

POP (0) 6/9/2018 12:57:32 PM Text Lorenflipsum dolor ¢

RTP (0) 6/9/2018 12:57:32 PM FbTimeStamp 1430§B5728592 -

Running tasks : 0

Fig. 2. A screenshot of the Ul design of Netfox Detective with highlighted dockable locations. Each pane can be moved and docked to any dockable location inside the Netfox
Detective window, or drag & dropped outside the window to materialize a new one with the same dockable properties. This way, an investigator split the application across

multiple screens.

%USERPROFILEY,
l_ Netfox Detective Workspaces
<Workspace_name>
, Investigations
<Investigation_name>
, Database
, Exports
. Logs
| Settings
, Sources

. Temp

, <Investigation_name>.nfi

, <Workspace name>.nfw

Fig. 3. The structure of an investigation folder. All workspaces are stored under the
user's profile folder. Each workspace and each investigation has its name — suffixed
with GUID for uniqueness. Each investigation contains a database, exports (extracted
data from traffic), logs, settings, sources (copies of source data, e.g., PCAPs), and temp
(for temporary data generated by snoopers and analyzers). Metadata about the
workspace and investigation is stored in *.nfw, *.nfi files, respectively.

3.3. Investigative process workflow

The application was designed according to already well-
established concepts known from Integrated Development Environ-
ments that programmers use to organize complex software designs
(Microsoft Corporation, 2017). With respect to digital forensics, we
consider an Investigation to be an equivalent to a project; In-
vestigations are combined into a Workspace that is equivalent to a
Solution. An investigator can choose on which Investigation(s) s/he
wants to work on and add data in the form of PCAP files or logs. Data
is processed, and all gathered information is stored in an Inves-
tigation's scope; nothing is shared beyond that. In case several

PCAPs are added (e.g., cause they have been split previously), across
analysis is conducted (they will be treated as one PCAP internally
for tracking and reconstruction of events).While data is never
shared between investigations, we allow opening multiple in-
vestigations (in separate docked panes) which allow comparing
data from multiple sources.

3.4. Packet processing pipeline

To master the challenges of parsing and to polish all information
gathered, it consists of several interconnected implementation
blocks which compose a packet processing pipeline. The pipeline
(lower right-hand side of Fig. 1) performs (i) packet file loading and
processing, (ii) conversation tracking, (iii) application recognition
and (iv) extracted (meta)data storing. Thus, the processing pipeline
handles the identification of protocols for each packet, performs
defragmentation, and does stream reassembly for TCP communi-
cation (L7 Tracker). A detailed view is provided in Fig. 4. Note, the
snoopers allow to extend the backend and will be discussed in Sec.
Appendix C.

Packet file loading and processing. (i.e., components Packet Cap-
ture Source, Packet Capture Processor, L3-L7 Trackers, and Appl-
dent): Source packet capture files are processed by the
corresponding packet file loader depending on their file type. The
processing of the frames is sequentially where each loaded frame is
dissected into the low-level protocols to identify its key properties,
such as a physical address, network address, or ports. The dissected
packet is forwarded to the next component (i.e., L3 Tracker) which
performs further processing.

Conversation Tracking. Conversation tracking is a critical
component of the system as it examines each dissected packet and
associates it with the corresponding conversation.* A conversation
is considered as the basic data object for further analysis. The
system identifies conversations at different network layers:

4 Note, conversations are also called bi-flows in some literature.

6 J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019

Frame

Controller
L3Conv L4Conv L7Conv
GUI FrameworkAPI Capture Appldent DbContext
Tracker Tracker Tracker
Processor
Add) | |
— Foreach Frame | !
T i L | |
rocess i i
Store New L3 Conversation————p»

~Process Frame

—Store New L4 Conversation-P
i-Process Frame», i
i i Recognize L7>

Conversation \—store L7—p»
Store Frame————|

Done

Fig. 4. Abstract capture file processing scheme with a sequential passage. Data dependencies between models are omitted. The ultimate goal is to identify and collect application
level conversations. In order to accomplish this, communication at low levels need to be properly identified, messages parsed, relevant data extracted, and packet composed. This is

achieved by conversation trackers.

e Packets sharing the same source and destination addresses
belong to the same network layer conversation (L3). Every pair
of devices shares a single L3 conversation.

Packets with the same network source and destination ad-
dresses, transport layer source and destination ports and a
specific transport protocol belong to the same transport layer
conversation (L4). At this layer, the conversation mostly corre-
sponds to a pair of TCP streams or UDP data exchanges.

Lastly, application layer conversations (L7) are identified using
various TCP heuristics we have developed previously (Matousek
etal., 2015) and improved for this article. The difference is in the
handling of corner cases in TCP reassembling, namely the
computation with seq. numbers, order of processing of colliding
TCP sequences, and remaining sequences without introductory,
or conclusive TCP flags, for details, compare Appendix E
2.e.(ii—iii), 2.h, 4, 5 and original paper. The heuristics solve the
problem when dealing with incomplete data or multiple ses-
sions that are merged into a single transport layer conversation.
L7 conversations reflect a single session between a client and a
server application.

Correct identification of conversations from source packets is a
challenging task as several issues may arise, e.g., out of sequence
packets, missing packets, fragmented packets, or missing termi-
nation packets. To succeed, we use several heuristics to identify and
collect as many conversations as possible, even in corrupted or
incomplete data sources. Additionally, the tool addresses the need
for fast processing by using available processor cores, implement-
ing concurrent conversations processing.

Metadata Storage (database). Extracted information, e.g., con-
versations at different layers, application layer data units, and other
relevant information, is stored in a SQL database. The bulk insert
method is used to obtain better performance. Thus integrity is not
guaranteed until all data is inserted. The user interface is aware of
this and handles temporally incomplete data correctly. The data-
base is accessed through persistence providers that allow to easily
add support for different databases.”

3.5. Security considerations

Netfox Detective is intended for a single-user environment, i.e.,
it runs on an investigator's desktop. Therefore, the system does not
include user management, authentication, or authorization. The
designated way to share investigation between multiple in-
vestigators is to export/import the workspace. This decision allows
to enable the more extensive use of our tool by investigators that
prefer disconnected systems to protect sensitive data against

5 Currently, the tool supports Microsoft SQL and in-memory data storage.

misuse. Netfox Detective, therefore, does not require a certification
process to be usable inside LEA.

4. Testing

Given the complexity of our application, testing was (is) an
essential part throughout the development process, where we
followed a Test-Driven Development (TDD) methodology. TDD re-
quires writing tests first, then production code that passes the tests
and lastly to refactor the code to improve its structure. We utilized
unit tests, which then also ensures integration/regression testing
and ensures the correctness of new versions. Because our focus is
very specific (network data parsing and analysis), mocking the data
would be tedious (Osherove, 2015). Therefore, we omit the unit
tests in favor of integration/system tests that use data loaded from
PCAP files processed (in-time of the test) by our processing
pipeline.

To develop and test modules (snoopers/analyzers), we started
by collecting testing data first, where we either downloaded
available PCAPs or created our ground of truth utilizing our private
networks. In the latter case, we then filtered the captured data
using Wireshark, which ensured that we only deal with one
application message, action, or scenario at a time. If Wireshark
supported the application protocol, we compared both results (ours
and Wireshark's).

In the beginning, we also used Microsoft Network Monitor, 2020
(MNM), which allowed us to develop parsers written in Network
Parsing Language (NPL). In other words, we created parsers for two
different frameworks and compared results. Given that MNM is
outdated, and this is not the most reliable method for testing, we
abandoned MNM.

After carving basic events from the protocol messages worked
correctly (single packet), we created more complex scenarios (e.g.,
a login scenario which has multiple packets) and manually verified
the results. Lastly, we created a comprehensive dataset and
extracted key data (e.g., the summary of extracted events) which
we then used as benchmark data for new version testing to prevent
regression bugs. Currently, Netfox Detective contains 1000+ tests
that are automatically executed whenever new code is committed
and run approximately 46min. In case that a regression bug is
found, the merge is denied until the bug is fixed.

5. Evaluation

The rest of this section discusses the efficiency (see Sec. 5.1)
followed by a summary of carving capabilities. In Sec. 5.3 we
compare Netfox Detective to other exiting tools before we provide a
real-world example. The last section explains the sec:web; a very
unique feature of our application.

J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019 7

5.1. Efficiency assessment

Although Netfox Detective is an offline analysis tool, runtime/
memory footprint are essential aspects. Thus, this section discusses
the runtime efficiency in comparison with Wireshark and Net-
workMiner. To measure the efficiency, we used the M57,2020 M57-
Patent scenario® PCAP files which consist of several PCAP files with
atotal size of 4.8GB and 5,707, 845 frames (we combined them into
a single PCAP). Note, given that each tool performs very different
tasks, this is only a rough comparison.

The results are provided in Table 1. As can be seen, Netfox
Framework is slightly faster than Wireshark despite the TCP reas-
sembling of all sessions. Note, when opening the case the 2nd time,
all data is extracted from the database which is completed in a
matter of seconds. However, we require more memory footprint
(RAM). Netfox Detective is slightly slower than Netfox Framework
as it visualizes the information. NetworkMiner is about 4—7 times
slower than the other tools. The average CPU usage is not reaching
100% with Netfox Framework and Netfox Detective because of the
thread synchronization, I/O operations, Garbage Collection, and
back pressure in the processing pipeline that balances overall
performance and resource utilization. Overall, the Mbps per tool
vary between 15 and 100.

Additional efficiency indicators are given in Table 2, where we
focus on rows 12 and 13 (processing speed and parallel processing;
remaining rows are discussed in Sec. 5.3). As shown, Netfox De-
tective allows parallel processing, which should make it faster than
the deprecated PyFlag. On the other hand, Cohen (2008) points out
that PyFlag is not intended for high-speed. Concerning XPlico, more
research is needed as it also processes data in parallel, and we did
not find information on processing speed.

5.2. Event carving capabilities

The next important aspect for forensics is event carving, i.e.,
restoring particular events such as an FTP Login, a DNS query or
sending emails from a comprehensive stream. This section pri-
marily focuses on NetworkMiner (NM) and Netfox Framework and
their capabilities; Wireshark does not incorporate advanced
forensic features such as emails or web page reconstruction as it is
intended for Network Security Monitoring (Sira, 2003; Pilli et al.,
2010).

For comparison, we decided to focus on detected sessions, TCP
reassembling, and DNS records where the results are shown in
Table 1. These properties strongly depend on how a tool was
implemented. Higher numbers reflect finer granularity (this does
not mean that higher (or lower) numbers are better).

Sessions: the number of TCP and UDP sessions recognized by
each tool. This feature strongly depended on the mechanism
handling missing fragments, see Appendix E. Ithere is no packet
loss; the tools should report the same number of TCP sessions; UDP
sessions can differ in case the tool uses an inactivity timeout
threshold to split UDP sessions (the UDP protocol does not carry
any signaling information that can be used to determine the end of
a session).

TCP missing: signifies how much information is lost and cannot
be recovered, e.g., capturing problems, packet loss, or storage is-
sues. All issues are related to actions that occurred before pro-
cessing of the capture file, i.e., they are not caused by Netfox
Detective. There are different ways to calculate the loss as shown in
Eq. (1) or Eq. (2):

5 https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario%20 (last
accessed 2019-08-17).

lost_packets / all_packets[%] (1)

lost_bytes / all_bytes[%] (2)

Netfox Detective uses the Eq. (2) as we believe that if a sequence
of packets is lost, their count is unknown and can be approximated
using a heuristic based approach on MTU or previously observed
segment sizes. However, we had to utilize Eq. (1) as Wireshark does
not explicitly count lost_bytes.

DNS records: the number of events carved from DNS traffic.
Netfox Detective extracts much more events compared to NM that
only considers DNS response packets (Mockapetris, 1987b) and
ignores query packets (Mockapetris, 1987a). NM also ignores some
other record types such as PTR, SRV or MX that may carry valuable
forensic information, e.g., a mapping of IP address to the domain
name (PTR), a definition of the service location (the hostname and
port number (SRV)), or domain names of mailing servers (MX). This
additional information may be useful in case of DNS spoofing at-
tacks/investigations (Huber et al., 2010). Lastly, NM only shows the
first record from an answer section. In contrast, Netfox Framework
processes all, i.e., all records from Question, Answer, Authority,
Additional from both packet types (not only response).

Emails and errors: reflects the number of extracted emails. NM
identifies more emails as Netfox Framework currently only con-
siders emails sent through the SMTP protocol; NM also processes
emails sent through webmail.”

FTP: the number of events identified in the FTP session. While
NM extracts only transferred files, Netfox Detective and Wireshark
show other related (meta-)information about the FTP sessions such
as the login or list-command.

Web pages: the number of reconstructed web pages using our
module. In total, 182 HTTP objects were found which created six
MAFF Archives containing full offline web page snapshots including
CSS and other downloaded objects. For additional details we refer
to Sec. 6.2.

In summary: each of the tools has its strengths and weaknesses,
and one has to choose the best tool for the job. For instance, Netfox
Detective has focused on carving capabilities from conversations
containing missing data.

5.3. Comparison to existing tools

This section compares Netfox Detective against other applica-
tions concerning capabilities, functionality, and features. A sum-
marized overview with is provided in Table 2 and is discussed in the
upcoming paragraphs.

In its current version, Netfox Detective does not allow live data
capture or PCAP-over-IP and thus is not as flexible as NetworkMiner,
2020 or XPlico, 2020. However, it supports various capture file
types. Note, this was a design decision: we work under the premise
that data is gathered on capturing probes and uploaded for analysis
after the capture ends (or parts of the ongoing capture are
provided).

In terms of support for encapsulation protocols, NetworkMinor
has a wide variety of supported protocols. However, to the best of
our knowledge, Netfox Detective, and Wireshark are currently the
only applications that support Generic Stream Encapsulation (GSE).
In comparison to other protocols, GSE frequently uses multiple
encapsulations, whereas other protocols usually do not. That re-
quires a significant change in the tool's architecture.

7 This was a scenario we have not considered. We will update our module in the
near future.

https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario%20

8 J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019

Table 2

Netfox Detective in comparison to major open-source network forensic tools. The provided information was gathered from official sources provided by the tool authors. N/A
indicates that we could not find any details regarding the particular feature. We deliberately do not add any information that is not stated by authors, such as processing speed.

Tool Netfox Detective NetworkMiner XPlico PyFlag
Feature

1 Live data capture NO YES YES NO

2 PCAP-over-IP NO YES YES NO

3 Supported file libPcap, Pcap-NG, MNM libPcap, Pcap-NG libPcap libPcap
types

4 IPv6 YES YES YES NO

5 Encapsulation GRE, 802.1Q, GSE GRE, 802.1Q, PPPoE, LLMNR, L2TP, VLAN, PPP NO
protocols VXLAN, OpenFlow, SOCKS,

MPLS and EoMPLS
6 Application SPID, NBAR, ESPI, Bayessian, Random Forests SPID, PIPI PIPI NO

Protocol
Identification
7 Supported HTTP, SSL/TLS, MAFF. XMPP, YMSG, OSCAR, Facebook Messenger, FTP, TFTP, HTTP, SMB, SMB2, HTTP, POP3, SMTP, IMAP, SIP, DNS,
application Hangouts, Twitter, XChat, IMAP, POP3, SMTP, Gmail, Yahoo, RTP, SIP, ~ SMTP, POP3, IMAP, YouTube RTP, SDP, FTP, DNS, IRC, IPP, HTTP,
protocols Minecraft, Warcraft, Facebook, Stratum, DNS, FTP, SPDY, MQTT PJL, MMS, SLL MSN,
Gmail
8 Applications YES NO NO NO
Identification
9 OS Fingerprinting YES (using typical applications) YES NO NO
10 Credentials Facebook, IMAP, SMTP, POP3 SMTP, HTTP Digest NO NO
Extraction Authentication
11 Incomplete or TCP data loss, IPv4 fragmentation N/A NO NO
malformed
communication
12 Processing speed 100 Mbps 11.92—18.49 Mbps N/A N/A
13 Parallel YES NO YES NO
processing
14 Advanced YES NO YES NO

analytical views
15 Persistent
storage
16 Querying/
filtering

MSSQL, in-memory

3-rd party tools on SQL DB

CSV/Excel/XML/CASE/JSON-LD SQLite, MySQL or PostgreSQL VFS

keyword search 3-rd party tools on SQLDB YES

Rows 6—8 deal with application and their protocols. While
Netfox Detective uses a variety of different algorithms to identify
the protocol, NetworkMiner and XPlico rely on SPID and PIPL
Furthermore, Netfox Detective tries to identify applications as well
as application protocols, e.g., HTTPS-Firefox, HTTPS-Chrome
(Pluskal et al., 2018). However, further testing is required to make a
qualified decision which tool works the most reliable. Concerning
supported application protocols, our tool supports a wide variety of
different ones, including some unique protocols like Facebook
Messenger, Hangouts, Twitter, or Warcraft. Note, since those are
implemented using snoopers, there will be more in the future.

OS fingerprint (row 9) is supported by NetworkMiner and Net-
fox Detective. While we rely on the Appldent analyzer, NM uses
statistical based SPID algorithm (Hjelmvik and John, 2009).

In case that user credentials are observed in a communication,
Netfox Detective, and NetworkMiner allow to extract them where
the two tools focus on different protocols. Another major feature is
the handling of malformed, incomplete network traffic. This is
based on our previous work (Matousek et al., 2015) where we
showed that the risks of undesired association of the unrelated
conversation fragments yielding twisted evidence. We could not
find information for NetworkMiner; however, as shown in Table 1,
NetworkMiner identifies significantly fewer sessions (maybe due to
combining unrelated conversations). Advanced analytical views
address visualization capabilities where Netfox Detective is very
flexible due to the Analyzer API (see Sec. B), which ensures that the
tool can be extended with pluggable modules. In terms of XPlico,
we were unable to find detailed information; besides a reference to
a PHP Framework named cake-php.®

8 http://wiki.xplico.org/doku.php?id = interface (last accessed 2019-08-17).

Row 16 addresses the querying/filtering capabilities of the cor-
responding tools. NetworkMiner, 2020, Wireshark, 2020 and
PyFlag, 2020 include basic query functionality (e.g., keyword
searches), XPlico and Netfox Detective require third-party tools
(e.g., one may query the database using analytical third-party ap-
plications or write a new snooper). If support for hitherto appli-
cation protocol is required, the advanced investigator can create a
new snooper module that will be dynamically be loaded without a
need of recompilation of the Netfox Detective. In comparison to
Wireshark, creation of a new snooper is straightforward imperative
programming based on an enriched API of a data stream that
handles several types of application protocol behaviors, like
request-response, asynchronous message exchange, etc., that helps
to handle missing/not-captured data.

To sum it up: While there are aspects where other applications
like NetworkMiner are superior, Netfox Detective has a lot of
unique functionality/features and is under active development —
new features can be expected. Especially the number of supported
application protocols, the incomplete or malformed communica-
tion handling make and the expandability, make it a great forensics
tool. Additionally, we believe that one of the major difference is
usability and the amount of expertise needed (especially compared
with Wireshark).

6. Example features

This section presents two of the many advanced features of
Netfox Detective and have been chosen as they make Netfox De-
tective unique. These features have been tested in real deployments
and helped LEA investigators to solve cases. Given their complexity,
we also provide brief video summaries at the beginning of the
corresponding sections. More videos about its capabilities can be

http://wiki.xplico.org/doku.php?id=interface%20

J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019 9

Workspace manager _Investigation manager [lat Rt i)
A Etd SIP fraud analyzer

Investigation explorer

Conversation explorer

Invites 6200
Callers 6200
Callees 6200

Calls per caller6200

Suspicious IPs 93. HEL176 Attack scheme

Settings Nemea messages

Caller Callee

g ————Invite
100GE Extraction \9

6200
IP Add —

A2 6__404 Not found
IPFL; Dete oepe
A ection .

[————Invite

N —
S
i ——100 Trying
Collector NEMEA
¢——200 OK—|
Hard drive Delay buffer
v
SIP fraud prefix trie
7
o7
o7
9
07
7
97
9 131 1@ 6551 7900 9
2 031 [Ege21@ 655 1 500 0 9

Fig. 5. This figure describes SIP Fraud Analyzer. The view is an interactive animation that reflects the actual state of the deployed 100GE hardware-accelerated network card with the
IPFIX collector and the NEMEA system that detects network incidents based on IPFIX records. SIP Fraud is visualized on the upper right side with a count currently analyzed
messages, i.e., 6200. At the bottom, a tree-like structure visualizes a prefix tree that is an interpretation of the attack. The root node in an interconnection between the same roots of
telephone number attacked from different IP addresses. The path from a leaf node to the root aggregate node represents a prefix combined with a PSTN number that was tried to be

called. Sensitive information, as a part of called number and IP addresses, was omitted.

found on Netfox Detective's YouTube channel.’

6.1. An example: SIP fraud analysis

This section reviews Netfox Detective in use based on a simu-
lated SIP (Session Initiation Protocol) Fraud case. The SIP Fraud
attack exploits a misconfiguration of the SIP server where the
attacker tries to guess a secret prefix that is used to initiate a call
from a VoIP network to PSTN (public switched telephone network).
If the attacker finds the correct prefix, the Gateway (Callee) replies
with a 200 OK SIP message. The attacker then uses the discovered
prefix to initiate a call on a premium number. The costs of the call
are charged to the owner and will profit the attacker. A visual
summary can be found here: http://y2u.be/P2W9uANYKyl.

To tackle the challenge, we developed the SIP Fraud Analyzer
that can perform a postmortem analysis of possible SIP fraud at-
tacks in given PCAPs. The exact procedure is best explained by
Fig. 5. The upper part is an interactive animation that reflects the
actual state of the system (commodity server with hardware-
accelerated network card), the IPFIX collector and NEMEA system
(Cejka et al.,, 2016) (note, this is not part of Netfox Detective but
external equipment/software). In a nutshell, the hardware (left-
hand side) captures information and forwards it to NEMEA. Once an
attack (or false-positive thereof) is identified (Jansky et al., 2017),
NEMEA notifies the appliance, which then captures all evidence
(generates a PCAP) and stores it on the hard drive. This file then
serves as input for Netfox Detective.

9 https://goo.gl/fKM8Vs

Knowing the workflow, we now focus on the analyzer and its
responsibilities. First, NEMEA can notify Netfox Detective about its
current state which allows us to update the view (e.g., the red arrow
pointing from NEMEA to FPGA). Thus, an investigator can see (live)
the current processing. Second, NEMEA can notify Netfox Detective
when capturing is completed and trigger the analyzer to download
and visualize the PCAP (the bottom pane in the figure).

Fig. 5 shows the SIP Fraud Analyzer main view that visualizes
the attack pattern. The evidence has the form of prefix guessing
activity represented by several SIP INVITE messages that differ by
the prefix of the callee number (here it is the number 031 ...
@65518.... and a lot of seemingly random prefixes which reflect the
attacker guessing them). In other words, if the analyzer shows a
graph like this, one knows an attack occurred; if we find 200 OK
message, we know that the attack was successful.

The system was tested/developed with a confidential dataset
from the National Research and Education Network (NREN). During
the experimental deployment of this system, we were able to
successfully extract evidence, and based on that we informed vic-
tims about their misconfiguration in SIP's PBX."°

6.2. Reconstruction of web pages

Another feature of the Netfox Detective is web page recon-
struction which can be viewed here: http://y2u.be/CPO2rhe5Xs8.
First, the SnooperHTTP extracts all HTTP objects and stores the

10 PBX — Private branch exchange used to relay VoIP communication to the PSTN
— public switched telephone network.

http://y2u.be/P2W9uANYKyI
http://y2u.be/CPO2rhe5Xs8

10 J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019

contents on disk. Second, SnooperMAFF iterates through the HTTP
objects to identify all HTML documents. Subsequent analysis of
these documents yields all linked objects, e.g., CSS files, JavaScript
scripts, media streams, and so on. Lastly, all references to web re-
sources are rewritten (e.g., <a href = “http:// ... [photo.png” will be
replaced by <a href = “./photo.png”), and then the HTML docu-
ments including all resources are packed into Mozilla Archive
Format (MAFF) archive.

The self-contained MAFF archive!' contains all data that is
related to each web page that was viewed. Experimentally, in case
of the dynamic web that loads data continuously, we try to create
multiple so-called snapshots that approximate how the web page
may have looked. The snapshot is created with each significant
change to the web page. The investigator is warned that this is
experimental approximation and not an accurate replica. We do
this approximation by interpreting JavaScript scripts and supplying
it with resources previously extracted. Hence, we can reconstruct
some dynamic pages like webmails, chats, or video streaming ser-
vices. These approximations are stored inside the MAFF archive as
additional tabs.

Note, web page reconstruction is only possible if the session is
established using plain HTTP. Otherwise, it requires the investigator
to get into the middle of the communication using a MitM proxy
like SSLSplit, 2020 that can capture unencrypted traffic or store SSL/
TLS session keys (Rescorla, 2018).

7. Conclusions

The amount of data sent over networks increases daily, and so
does the number of devices connected to it. Additionally, analyzing
the data becomes more complex due to encryption, the large
number of different protocols or tunneling. As a consequence,
forensic investigators are overwhelmed with data (possible evi-
dence), and traditional workflows are outdated (i.e., manually
combing several specialized tools like SSLSplit, 2020, TShark, 2020,
or Wireshark, 2020). To cope with these challenges, it requires
automated, extendable tools that support practitioners by sum-
marizing data and providing visualization, which allows easy
comprehension of the information (Beebe, 2009).

In this article, we presented Netfox Detective which is a
comprehensive open-source network forensic analysis tool (NFAT)
available under the Apache 2.0 License. By design, our application
can be expanded by implementing new modules; backend modules
are called snoopers and frontend modules (which allow more
complexity) are named analyzers. To enable researchers to create
new modules, we have a well-documented API including several
examples. The GUI follows the principles of a Master/Detail screen
layout and uses dockable views, which makes it intuitive and easy-
to-use. We achieve better performance than comparable tools
because of the parallel pipeline processing. As a side note: it was
used by CESNET'? for SIP Fraud Detection as mentioned in Sec. 6.1.

The evaluation and comparison with existing tools show that
Netfox Detective has a good efficiency as it makes use of all cores.
Additionally, it has some unique features, that cannot be found in
any other NFAT, e.g., a large number of supported application pro-
tocols as listed in Table 2, support for GSE tunneling, or heuristic
extraction from malformed data.

For the future, we plan on expanding Netfox Detective by

' Note, Mozilla discontinued MAFF support in newer Firefox versions. We advise
using SeaMonkey with MAFF plugin https://addons.thunderbird.net/en-us/
seamonkey/addon/mozilla-archive-format/.

12 CESNET is a developer and operator of national e-infrastructure for science,
research, development, and education in Czech Republic.

creating new modules (features), e.g., finding similarities using
approximate matching (Breitinger et al., 2014). We also plan on
changing the mechanisms for data processing to allow computation
on clusters. In terms of interoperability, we intend to add exporting
capabilities into standard formats, e.g., Advanced Forensic Format
(Cohen et al., 2009) or CybOX (Casey et al., 2015). Lastly, we want to
create training sessions and material which will allow practitioners
to become familiar with our tool.

Acknowledgement

This article has been supported by the Ministry of Education,
Youth and Sports from the National Program of Sustainability (NPU
II) project IT4Innovations excellence in science (no. LQ1602).

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.fsidi.2020.301019.

Appendix A. Terminology and definition

There are several definitions in the community regarding flow,
conversation, etc. For this work, we used the Microsoft Network
Monitor (MNM) terminology'® which is very close to the well
established terminology used by Kurose and Ross (2016).

Frame is a data link layer (L2) protocol data unit.

Packet is an internet layer (L3) protocol data unit.

Datagram is a transport layer (L4) protocol data unit.

Protocol/application message is a application layer (L7) proto-
col data unit (PDU). A message is a collection of one or more L7
PDUs.

L3 flow is a sequence of packets having the same source and
destination IP addresses. It represents an uni-directional transmission
of packets between two network nodes.

L3 conversation is a pair of L3 flows with mutually transposed
source and destination [P addresses. It represents bi-directional
transmission between two network nodes.

L4 flow is a sequence of packets with the same source and desti-
nation IP addresses and ports, and an L4 protocol number. It represents
uni-directional communication between processes, e.g., data sent by
an HTTP client to an HTIP server, possibly in several L4 half sessions.
An L4 flow consists of one or more L7 flows.

L4 conversation is a pair of L4 flows with mutually transposed
L3 and 14 identifiers (src/dst IP addresses and src/dst ports). It
represents bi-directional communication between processes, e.g.,
requests and responses between an HTTP client and server. The L4
conversation may contain several L4 sessions (L7 conversations)
between the same network nodes using the identical src/dst ports
and the L4 protocol.

L7 flow is a part of the L4 flow that represents a transport session,
e.g., one UDP or TCP session. For TCP, an L7 flow is bounded by its initial
SYN packet and its closing FIN or RST packet. For UDP, an L7 flow
corresponds to an L4 flow. One L4 flow may include several L7 flows
that are logically independent, e.g., several TCP sessions (HTTP re-
quests) with the same src/dst ports and IP addresses may compose one
L4 flow. A TCP L7 flow also includes starting SYN and ACK packets
without any L7 payload, if present.

L7 PDU represents an approximation of an application message,
e.g., HTTP request. L7 PDU is a logical object that contains an L7
payload of one or more packets belonging to the same L7 flow. It is

13 The terminology was determined by study of MNM manual, and blog — https://
blogs.technet.microsoft.com/netmon/(last accessed 2019-08-17).

https://doi.org/10.1016/j.fsidi.2020.301019
https://addons.thunderbird.net/en-us/seamonkey/addon/mozilla-archive-format/
https://addons.thunderbird.net/en-us/seamonkey/addon/mozilla-archive-format/
https://blogs.technet.microsoft.com/netmon/
https://blogs.technet.microsoft.com/netmon/

J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019 1

created using TCP reassembling. L7 PDU objects are processed by
application parsers called L7 Snoopers. In a case of UDP, an L7 PDU
is created for every L4 payload, i.e., there is an 1:1 relation between
UDP payload and application message.

L7 conversation is a pair of L7 flows. It represents logical appli-
cation data that are subjected to the forensic analysis. L7 flows are
interconnected to the conversation according to SYN and SYN + ACK
sequence numbers in TCP. An L7 conversation includes meta data such
as timestamps of the first and last PDU — selected from both directions
whichever is prior and posterior, number of frames of L7 conversation,
collection of virtual frames representing missing (expected) frames,
type of encryption, cipher keys (for TLS decryption), collection of
probable application tags (types of L7 protocol, e.g., HTTP, SMTP, etc.).

L7 Snooper is an application data analyzer (application parser,
dissector). Snooper reads L7 PDUs from L7 conversations and per-
forms L7 processing, analysis, and visualization. L7 snoopers can
co-operate with each other, e.g., SIP snooper co-operates with RTP
snooper, WebMail snoopers with HTTP snooper, etc.

L7 Analyzer is a less strict abstraction, module that encapsulates
predefined behavior that applies to processed data or directly controls
data processing. L7 Analyzers have full access to Netfox Detective
platform and can change, extend any functionality used for processing
or analysis.

srcPort] <—> dstPort2

information about the running processes. Note, the training data
was annotated with the application process instead of the appli-
cation protocol. On the other hand, our backend engine was
extended to extract the process information for learning purposes.
The feature vector characterizing the application protocol was
specified according to the work by Moore et al. (2013), and
customized for L7 conversation-based approach instead of packet-
based.

The classification mode of the analyzer is used for annotating
conversation with recognized protocols and applications. It is not
an easy task, and the precision varies for the classification methods
and the target set of applications. For more details see Pluskal et al.
(2018) who demonstrated that it is possible to distinguish between
communications traces of OneDrive, Skype, iTunes, Spotify, Steam
and pTorrent clients, although all of them use HTTPS.

Usually, traffic classification is a black box (e.g., in security
software/hardware like IDS/IPS) and depends on the model. How-
ever, for practitioners, it may be helpful to get more insight and
therefore Appldent can provide additional computed results in a
visual manner. In other words, we implemented views allowing the
comparison of the classification results of different methods, clas-
sifier performance analysis, and hyper-parameter tuning.

srcPortl —> dstPort2 HTTP Request

SYN+ACK <—>FI

L4 conversation }—)I L7 conversation |

o
N S

srcPort2 —> dstPortl HTTP Response
{L7 flow] L7 PDU

srcIP1 <—> dstIP2

srcPort3 <—> dstPort4

UDP session srcPort3 —> dstPort4 SIP INVITE

L3 conversation

Capture file

~[L4 conversation | ———=|L7 conversation

} L7 flow L7 PDU

srcIP3 <—> dstIP4

srcPort5 <—> dstPort6
L4 conversation

SIP ACK

L7 conversation

srcPort4 —> dstPort3

L3 conversation

Capture file

SYN+ACK <—> FIN

L7 conversation

Fig. A.6. Figure describes relations between encapsulations on various levels of networking stack reflected by object hierarchy serving as containers. Data is segregated into a
particular container based on common identifiers described in Section Appendix A. One L3 Conversation can contain frames from multiple capture files and have a relation one to

many with L4 Conversations. The rest of graph is read similarly.
Appendix B. Analyzers (Frontend Modules)

Analyzers extend Netfox Detective with more advanced func-
tionality that cannot be implemented as snoopers. The Analyzer API
provides access to data storage as well as the user interface. An
analyzer can be bound either to application or investigation scope.
Thus, it is possible to integrate highly specialized analyzers for
specific cases. In order to grasp the concept of analyzers, we discuss
their capabilities based on the Appldent — an application identifi-
cation analyzer. Appldent assigns an application protocol (or even
network application) to every flow in the source data. The goal of
the analyzer is to recognize applications (e.g., Google Drive, iTunes,
or OneDrive) in network traffic instead of just the application layer
protocol used (e.g., HTTPS).

The analyzer is implemented using machine-learning
(Christodorescu et al., 2015) and statistical methods, in particular,
Bayesian belief network, Random Forests, and Enhanced Statistical
Probability Identification, to make the decision. Because supervised
learning methods are used, there are two running modes:

The learning mode is used to build the models which required
annotated data. To generate the data, we produced local network
traffic and captured the communication using Microsoft Network
Monitor, which automatically enriches the capture with

Appendix C. Snoopers (Backend Modules)

The backend supports modules, called snoopers, that can access
information from the processing pipeline through the database
(metadata storage). Snoopers extract objects from the source data
but may also utilize other data such as regular log files. Therefore,
snoopers parse the application conversation protocols (L7, listed
below) and extract data such as files, videos, or HTTP headers.
These extracted objects are then either stored in the database or
pushed to the Investigation Explorer (grouped by a protocol) or can
be accessed from the special Export Overview pane where they are
grouped by event type, e.g., emails, images, chat messages. The
following protocols for metadata and/or content extraction are
supported:

e Common internet protocols: DNS, SPDY, and SSL/TLS.

e Selected application protocols: HTTP(S), IMAP, POP3, SMTP, and
FTP.

e Email services: Gmail, Yahoo, and other webmails.

e Instant messaging: XMPP, YMSG, OSCAR, Facebook Messenger,
Hangouts, and XChat.

4 In detail, MNM creates a Process Info table that stores information on the socket
and the process that created it.

12

Social networks and gaming: Twitter, Facebook, Minecraft, and
Warcraft.

Bitcoin communication: Stratum.

Voice over IP systems: RTP and SIP.

Internet of Things communication: MQTT.

If the communication is not encrypted (or the server's private
key is provided, and the server's configuration allows it), the
snoopers can extract the communication content, e.g., transmitted
files. For secured communication, only traffic metadata is available.

In order to create new snoopers, there are three abstract classes
that need to be inherited:

SnooperBase can be seen as the extractor that will handle the
identification of objects. The registration of a new snooper and its
integration is automated as long as the snooper's DLL resides in the
root directory of the application. Details about the snooperBase are
provided at the end of this subsection.

SnooperExportObjectBase stores the actual objects. For
instance, an application protocol parser will dissect the commu-
nication and create instances of domain objects. Those objects
might also implement various interfaces like IChatMessage, ICall,
IEMail, IPhotoMessage, etc. to automatically integrate exported
objects in generic views.

SnooperExportBase encapsulates (meta-)information about
the export process. For instance, the source of an L7 conversation.
Additionally, it contains all extracted objects SnooperExport- Ob-
ject Base.

SnooperBase. To create a new snooper, a new class that inherits
from the abstract class SnooperBase including the class members,

J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019

such as Name, Description, KnownApplicationPorts, CreateSno-
oper Export, and ProcessConversation, needs to be implemented.
Additionally, the class defines multiple abstract methods that
represent callback functions executed during conversation pro-
cessing. An example is given in Appendix D. The functionality has to
be implemented in the following methods:

On Conversation Processing Begin — any relevant activity for
creating a new object to be populated by the module.

On Conversation Processing End — any required processing
before the new object is stored in the database.

On Before Protocol Parsing and On After Protocol Parsing — takes
care of the internal state of an object and handles exceptional
cases that are assigned to ‘parsing state’.

On Before Data Exporting and On After Data Exporting — takes
care of the internal state of an object and handles exceptional
cases that are assigned to information ‘extraction state’.

Each snooper is executed on-demand, on the selected PCAP or a
collection of them, according to the tool configuration. While
modules can use the information provided by other modules, their
basic use case is to implement extraction capabilities for applica-
tion protocols. For more complex analysis, we use analyzers.

Appendix D. Abstract code for an Example Protocol snooper
creation

public class SnooperExample : SnooperBase {
public override string Name => "Example Protocol";

{ throw new NotImplementedException(); }

protected override void ProcessConversation()
{

// we need a stream to read from

// now we can create a reader for the stream
var reader

do
{

this.0OnBeforeProtocolParsing();
// parse the protocol
if (!message.Valid){

//TODO report error

continue;

}
this.OnAfterProtocolParsing();

this.0OnBeforeDataExporting();

var exportedObject

this.OnAfterDataExporting();
} while (reader.NewMessage());

protected override SnooperExportBase CreateSnooperExport ()

public override string Description => "Description of Example Protocol";
public override int[] KnownApplicationPorts => newl[] { 42 };

var stream = new PDUStreamBasedProvider (this.CurrentConversation,
EfcPDUProviderType.Breaked) ;

new PDUStreamReader (stream, Encoding.GetEncoding(437), true);

// reader will spawn messages, cycle through them

var message = new ExampleProtocolParseMsg(reader);

// TODO some additional integrity checks perhaps

new SnooperExportedDataObjectExampleProtocol
(this.SnooperExport){...};
this.SnooperExport.AddExportObject (exportedObject) ;

J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019 13

Appendix E. Simplified reassembling algorithm implemented
in Netfox Detective.

1. Select L4 flows and sort packets using their sequence numbers.

2. Process each L4 flow accordingly:

(a) Start following iteration with a SYN packet, i.e., P;.

(b) Increment Seg;, i.e., Seq;+ = 1.

(c) Create a new L7 Flow to be a collection of L7 PDUs for following algorithm.
Set Pipir = P;.

(d) Create a new L7 PDU if does not exist or if a previous L7 PDU was closed. (e) If
Seq; +Seq;_1 + |Pi_1]| (the expected packet is missing, check timestamps TS
and sequence numbers Seq as follows:

i. If TS; — TS;_1 < MaxTime and Seq; — Seq;_; < MaxLost then a virtual packet will
be created to replace the missing packet.

ii. If TS; — TS; 1 > MaxTime and Seq; — Seq; 1 < MaxLost then there is an
overlapping of TCP sessions because i packet, i.e., this packet, belongs to a
different L7 flow. Skip this packet and proceed with the next one.

iii. If Seq; — Seq;_1 > MaxLost then there are too many missing data. The flow
cannot be fully restored. Close it and proceed with next SYN packet.

(f) If Seq; == Seq; 1 + |P;_1| the P; packet is expected, i.e., P; contains following
data segment, add it into the L7 PDU created in 2 d.

(g) If FIN/RST/PSH flag is found or |P| = = MaxPayload, close the L7 PDU.

(h) If P,y = = Py, break iteration.

(i) Increment i, i.e., i+ = 1 and GOTO 2d.

3. If there remains any SYN packet in the current L4 flow, GOTO 2a

4. If the L4 flow contains any unprocessed packet, i.e., captured communication
is incomplete and heuristic methods (2e) have to be applied.

5. Select packet P; that has maximal Seq; — Seq;_; and GOTO 2c

6. Combine opposite L7 flows into an L7 conversation using corresponding SYN
and ACK numbers.

P; — represents the packet on the i-th index

|P;|] — represents a payload size obtained from the packet header
Seq; — represents sequence number of packet on i-th index
P;,i — stores the reference to the packet that the reassembling
algorithm started with

TS; — represents time stamp of the packet on the i-th index
MaxTime — variable, empirically set to 600 s

MaxLost — variable, empirically set to 3800 B

MaxPayload — variable, empirically set to maximal expected
MTU

References

Beebe, N., 2009. Digital forensic research: the good, the bad and the unaddressed.
In: IFIP International Conference on Digital Forensics. Springer, pp. 17—36.
Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., White, D., 2014. Approximate
Matching: Definition and Terminology. Special Publication 800-168. National
Institute of Standards and Technologies. https://doi.org/10.6028/NIST.SP.800-

168.

Casey, E., 2004. Network traffic as a source of evidence: tool strengths, weaknesses,
and future needs. Digit. Invest. 1, 28—43.

Casey, E., Back, G., Barnum, S., 2015. Leveraging cybox™ to standardize represen-
tation and exchange of digital forensic information. Digit. Invest. 12, S102—S110.

Cejka, T, Bartos, V., Svepes, M., Rosa, Z., Kubatova, H., 2016. Nemea: a framework for
network traffic analysis. In: Network and Service Management (CNSM), 2016
12th International Conference on. IEEE, pp. 195—201.

Christodorescu, M., Hu, X, Schales, D.L, Sailer, R, Stoecklin, M.P., Wang, T.,
White, A.M., 2015. Identification and classification of web traffic inside
encrypted network tunnels. US Patent 9 (106), 536.

Cohen, M., Garfinkel, S., Schatz, B., 2009. Extending the advanced forensic format to
accommodate multiple data sources, logical evidence, arbitrary information
and forensic workflow. Digit. Invest. 6, S57—S68.

Cohen, M.L, 2008. PyFlag - an advanced network forensic framework. Digit. Invest.
5, 112—120.

Corey, V., Peterman, C., Shearin, S., Greenberg, M.S., Van Bokkelen, J., 2002. Network
forensics analysis. IEEE Internet Comput. 6, 60—66.

EnCase, 2020 (cited January 2020). https://www.guidancesoftware.com/encase-
forensic.

ENISA, 2019. Introduction to network forensics (cited January 2020). https://www.
enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-

material/documents/introduction-to-network-forensics-handbook.pdf.

Farmer, D., Venema, W., 2009. Forensic Discovery, first ed. Addison-Wesley
Professional.

Garfinkel, S.L., 2010. Digital forensics research: the next 10 years. Digit. Invest. 7,
S64—-S73.

Harichandran, V.S., Breitinger, F., Baggili, I., Marrington, A., 2016. A cyber forensics
needs analysis survey: revisiting the domain's needs a decade later. Comput.
Secur. 57, 1-13.

Hjelmvik, E., John, W., 2009. Statistical protocol identification with spid: pre-
liminary results. In: Swedish National Computer Networking Workshop,
pp. 399—410.

Huber, M., Mulazzani, M., Weippl, E., 2010. Who on earth is “mr. cypher”: auto-
mated friend injection attacks on social networking sites. In: Rannenberg, K.,
Varadharajan, V., Weber, C. (Eds.), Security and Privacy — Silver Linings in the
Cloud. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 80—89.

Invea, 2020 (cited January 2020). https://www.invealawfulinterception.com.

Jansky, T., Cejka, T., Bartos, V., 2017. Hunting sip authentication attacks efficiently.
In: Tuncer, D., Koch, R., Badonnel, R, Stiller, B. (Eds.), Security of Networks and
Services in an All-Connected World. Springer International Publishing, Cham,
pp. 125—130.

Kekely, L., Kucera, J., Pus, V., Kofenek, J., Vasilakos, A.V., 2016. Software defined
monitoring of application protocols. I[EEE Trans. Comput. 65, 615—626.

Kurose,].F,, Ross, KW., 2016. Computer Networking: a Top-Down Approach, vol. 7.
Addison Wesley, Boston.

libPcap, 2020 (cited January 2020). https://www.tcpdump.org/.

M57, 2020 (cited January 2020). https://digitalcorpora.org/corpora/scenarios/m57-
patents-scenario.

Maff, 2020 (cited January 2020). http://maf.mozdev.org/maff-specification.html.

Matousek, P., Pluskal, J., Rysavy, O., Vesely, V., Kmet, M., Karpisek, F,, Vymlatil, M.,
2015. Advanced techniques for reconstruction of incomplete network data.
lecture notes of the institute for computer sciences. Soc. Info. Telecommun. Eng.
69—84, 2015.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,].,
Shenker, S., Turner, J., 2008. Openflow: enabling innovation in campus net-
works. Comput. Commun. Rev. 38, 69—74.

Microsoft Corporation, 2017. Master/details - windows uwp applications (cited
January 2020). https://docs.microsoft.com/en-us/windows/uwp/design/
controls-and-patterns/master-details.

Microsoft Network Monitor, 2020 (cited January 2020). https://blogs.technet.
microsoft.com/netmon/.

Mockapetris, P., 1987a. RFC 1034 Domain Names - Concepts and Facilities.

Mockapetris, P, 1987b. RFC 1035 Domain Names - Implementation and
Specification.

Moore, A., Zuev, D., Crogan, M., 2013. Discriminators for Use in Flow-Based Clas-
sification. Qween Mary University of London. Technical Report.

NetworkMiner, 2020 (cited January 2020). https://www.netresec.com/?
page=NetworkMiner.

ngrep, 2020 (cited January 2020). https://github.com/jpr5/ngrep.

Osherove, R., 2015. The Art of Unit Testing. MITP-Verlags GmbH & Co. KG.

Pcap-Ng, 2020 (cited January 2020). https://github.com/pcapng/pcapng/.

Pilli, E.S., Joshi, R.C,, Niyogi, R., 2010. Network forensic frameworks: survey and
research challenges. Digit. Invest. 7, 14—27.

Pluskal, J., Lichtner, O., Rysavy, 0., 2018. Traffic classification and application iden-
tification in network forensics. In: Peterson, G., Shenoi, S. (Eds.), Advances in
Digital Forensics XIV. Springer International Publishing, Cham, pp. 161-181.

Pluskal, J., Matousek, P., Rysavy, O., Kmet, M., Vesely, V., Karpisek, F, Vymlatil, M.,
2015. Netfox detective: a tool for advanced network forensics analysis. Pro-
ceedings of Security and Protection of Information (SPI) 2015. University of
Defence in Brno, pp. 147—163.

PyFlag, 2020 (cited January 2020). https://github.com/py4n6/pyflag.

Rescorla, E., 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC,
p. 8446.

Scott, B., Neil, T., 2009. Designing Web Interfaces: Principles and Patterns for Rich
Interactions. O'Reilly Media, Inc.

Sharafaldin, 1., Lashkari, A.H., Ghorbani, A.A., 2019. An Evaluation Framework for
Network Security Visualizations. Computers & Security.

Sira, R., 2003. Network forensics analysis tools: an overview of an emerging tech-
nology. GSEC 1, 1-10 version.

Spiekermann, D., Keller, J., Eggendorfer, T., 2017. Network forensic investigation in
openflow networks with forcon. Digit. Invest. 20, S66—S74. DFRWS 2017
Europe.

ssldump, 2020 (cited January 2020). http://ssldump.sourceforge.net.

SSLSplit, 2020 (cited January 2020). https://www.roe.ch/SSLsplit.

TCPDUMP, 2020 (cited January 2020). https://www.tcpdump.org/.

TCPFlow, 2020 (cited January 2020). https://github.com/simsong/tcpflow.

tepxtract, 2020 (cited January 2020). http://tcpxtract.sourceforge.net/.

The Sleuth Kit (TSK) & Autopsy, 2020 (cited January 2020). https://www.sleuthkit.
org/.

TShark, 2020 (cited January 2020). https://www.wireshark.org/docs/man-pages/
tshark.html.

Wireshark, 2020 (cited January 2020). https://www.wireshark.org/.

XPlico, 2020 (cited January 2020). https://www.xplico.org/.

http://refhub.elsevier.com/S2666-2817(20)30087-1/sref1
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref1
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref1
https://doi.org/10.6028/NIST.SP.800-168
https://doi.org/10.6028/NIST.SP.800-168
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref3
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref3
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref3
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref4
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref4
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref4
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref5
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref5
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref5
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref5
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref6
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref6
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref6
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref7
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref7
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref7
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref7
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref8
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref8
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref8
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref9
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref9
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref9
https://www.guidancesoftware.com/encase-forensic
https://www.guidancesoftware.com/encase-forensic
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/introduction-to-network-forensics-handbook.pdf
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/introduction-to-network-forensics-handbook.pdf
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/introduction-to-network-forensics-handbook.pdf
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref12
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref12
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref13
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref13
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref13
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref14
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref14
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref14
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref14
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref15
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref15
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref15
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref15
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref16
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref16
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref16
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref16
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref16
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref16
https://www.invealawfulinterception.com
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref18
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref18
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref18
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref18
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref18
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref18
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref18
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref19
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref19
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref19
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref19
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref19
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref19
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref20
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref20
https://www.tcpdump.org/
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://maf.mozdev.org/maff-specification.html
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref24
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref25
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref25
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref25
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref25
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/master-details
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/master-details
https://blogs.technet.microsoft.com/netmon/
https://blogs.technet.microsoft.com/netmon/
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref28
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref29
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref29
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref30
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref30
https://www.netresec.com/?page=NetworkMiner
https://www.netresec.com/?page=NetworkMiner
https://www.netresec.com/?page=NetworkMiner
https://github.com/jpr5/ngrep
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref33
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref33
https://github.com/pcapng/pcapng/
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref35
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref35
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref35
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref36
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref36
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref36
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref36
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref37
https://github.com/py4n6/pyflag
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref39
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref39
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref40
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref40
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref41
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref41
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref41
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref42
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref42
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref42
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref43
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref43
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref43
http://refhub.elsevier.com/S2666-2817(20)30087-1/sref43
http://ssldump.sourceforge.net
https://www.roe.ch/SSLsplit
https://www.tcpdump.org/
https://github.com/simsong/tcpflow
http://tcpxtract.sourceforge.net/
https://www.sleuthkit.org/
https://www.sleuthkit.org/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/
https://www.xplico.org/

	Netfox detective: A novel open-source network forensics analysis tool
	1. Introduction
	1.1. Analysis of network communication
	1.2. Expected properties for network forensic tools
	1.3. Network forensic tools
	1.4. Problem description
	1.5. Notes on legal requirements
	1.6. Contribution and paper structure

	2. Netfox Detective
	2.1. Analyzers vs. snoopers

	3. Design decisions
	3.1. No live captures
	3.2. GUI design
	3.3. Investigative process workflow
	3.4. Packet processing pipeline
	3.5. Security considerations

	4. Testing
	5. Evaluation
	5.1. Efficiency assessment
	5.2. Event carving capabilities
	5.3. Comparison to existing tools

	6. Example features
	6.1. An example: SIP fraud analysis
	6.2. Reconstruction of web pages

	7. Conclusions
	Acknowledgement
	Appendix A. Supplementary data
	Appendix A. Terminology and definition
	Appendix B. Analyzers (Frontend Modules)
	Appendix C. Snoopers (Backend Modules)
	Appendix D. Abstract code for an Example Protocol snooper creation
	Appendix E. Simplified reassembling algorithm implemented in Netfox Detective.
	References

