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Abstract
A generic register automaton is a finite automaton equipped with variables (which may be
viewed as counters or, more generally, registers) ranging over infinite data domains. A trace of
a generic register automaton is an alternating sequence of alphabet symbols and values taken
by the variables during an execution of the automaton. The problem addressed in this paper is
the inclusion between the sets of traces (data languages) recognized by such automata. Since
the problem is undecidable in general, we give a semi-algorithm based on a combination of
abstraction refinement and antichains, which is proved to be sound and complete, but whose
termination is not guaranteed. Moreover, we further enhance the proposed algorithm by
exploiting a concept of data simulations, i.e., simulation relations aware of the data associated
with the words. We have implemented our technique in a prototype tool and show promising
results on multiple non-trivial examples.
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1 Introduction

Many results in formal languages and automata theory rely on the assumption that the alpha-
bet over which languages are defined is finite. The finite alphabet hypothesis is crucial for
the existence of determinization, complementation and decidability of language inclusion
problems for the language acceptor class under consideration. However, this assumption
prevents the use of automata as models of real-time systems or infinite-state programs. In
general, traditional attempts to generalize classical finite-state automata to infinite alphabets,
such as timed automata [2] or finite-memory register automata [26] face the complement
closure problem: there exists automata for which the complement language cannot be rec-
ognized by automata in the same class. This prevents encoding language inclusion problems
L(A) ⊆ L(B) as the emptiness of the language L(A) ∩ L(B), because the complement
L(B) of the language L(B) cannot be computed within the class of A and B. Moreover,
the language inclusion problem is proved to be undecidable, in general, for timed [2] and
finite-memory [26] automata, unless severe restrictions are applied.

In this paper, we consider a generalization of finite-state automata, by adding finitelymany
variables that range over an infinite data domain and whose values are part of the language
of the automaton. We address the trace inclusion problem between (i) a network of generic
register automata1 A = 〈A1, . . . , AN 〉 that communicate via a set of input events �A and
a set of shared variables xA, ranging over an infinite data domain, and (ii) a generic register
automaton B whose set of variables xB is a subset of xA and whose set of input events is
�B. Here, by a trace, we understand an alternating sequence of valuations of the variables
from the set xB and input events from the set �A ∩�B , starting and ending with a valuation.
Typically, the automata network A models the implementation of a concurrent system and
B is a specification of the set of good behaviors of the system. Then, a positive answer to
the above inclusion problem means that the behavior of the implementation conforms to the
specification, which is a natural verification problem.

Consider, for instance, the network 〈A1, . . . , AN 〉 of generic register automata equipped
with the integer-valued variables x and v shown in Fig. 1–left. The automata synchronize
on the init symbol and interleave their a1,...,N actions. Each automaton Ai increases the
shared variable x and writes its identifier i into the shared variable v as long as the value
of x is in the interval [(i − 1)�, i� − 1], and it is inactive outside this interval, where
� ≥ 1 is an unbounded parameter of the network. A possible specification for this network
might require that each firing sequence is of the form init a∗1,...,N a2a∗2,...,N . . . ai a∗i for some
1 ≤ i ≤ N , and that v is increased only on the first occurrence of the events a2, . . . , ai , in
this order. This condition is encoded by the automaton B (Fig. 1–right). Observe that only
the v variable is shared between the network 〈A1, . . . , AN 〉 and the specification automaton
B—we say that v is observable in this case. An example of a trace, for � = 2 and N ≥ 3,
is: (v = 0) init (v = 1) a1 (v = 1) a1 (v = 1) a2 (v = 2) a2 (v = 2) a3 (v = 3). Our
problem is to check that this, and all other traces of the network, are included in the language
of the specification automaton, called the observer. The trace inclusion problem has multiple
applications, e.g.:

– Decision procedures for logics describing array structures within imperative programs
[18,19] that use a translation of array formulae to integer counter automata which encode
the set of arraymodels of a formula. The expressiveness of such logics is currently limited
by the undecidability of the emptiness (reachability) problem for counter automata. If

1 Generic register automata were called data automata in our preliminary work [24]. We have decided to
change the name in order to avoid confusion with some other formalisms.
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Fig. 1 An instance of the trace inclusion problem

we give up on decidability, we can reduce an entailment between two array formulae to
the trace inclusion of two integer counter automata, and use the method presented in this
paper as a semi-decision procedure. To corroborate this claim, we have applied our trace
inclusion method to several verification conditions for programs with unbounded arrays
of integers [8].

– Timed automata and regular specifications of timed languages [2] can be both represented
by finite automata extended with real-valued variables [16]. The verification problem
boils down to the trace inclusion of two real-valued generic register automata.2 In this
context, our method has been tested on several timed verification problems, including
communication protocols and boolean circuits [34].

When developing a method for checking the inclusion between trace languages of
automata extended with variables ranging over infinite data domains, the first problem is
the lack of determinization and/or complementation results. In fact, certain classes of infinite
state systems, such as finite-memory (register) [26] or timed automata [2], cannot be deter-
minized and are provably not closed under complement. This is the case due to the fact that
the values of the variables (registers, clocks) in such models of automata are not observable
in the recognized language, that is determined by a series of internal computations.

However, if we allow the values of all variables of a generic register automaton to be
part of its trace language, we obtain a determinization result, which generalizes the classical
subset construction by taking into account the data valuations. Building on this first result,
we define the complement of a trace language as an effectively computable generic register
automaton. Thus, we can reduce the trace inclusion problem to the emptiness of a generic
register product automaton L(A × B) = ∅, just as in the finite alphabet case. However, the
reduction of the trace inclusion to the emptiness problem crucially relies on the fact that the
variables xB of the right-hand side generic register automaton B (the one being determinized)
are also controlled by the left-hand side automaton A, in other words, that B has no hidden
variables. It is still an open problem whether and in which circumstances this reduction can
be achieved in the presence of hidden variables.

The language emptiness problem for generic register automata is, in general, undecid-
able [30]. Nevertheless, several semi-algorithms and tools for this problem, better known as
the reachability problem, have been developed [3,17,22,27]. Among those, the technique of
lazy predicate abstraction [22] combinedwith counterexample-driven refinement using inter-
polants [27] has been shown to be particularly successful in proving emptiness of infinite-state
systems. Moreover, this technique shares similar aspects with antichain-based algorithms
for language inclusion in the case of a finite alphabet [1,35]. An important similarity is that
both techniques use partial orders over the set of symbolic states, to prune the search space,
by storing only incomparable such states. In other words, the successors of a covered state
(in the sense of the partial order) are never explored, because any counterexample that could
potentially arise from that state, can also be discovered by expanding the state that covers it.

2 Note that the presented trace inclusionmethod can be usedwith any data domain supported by the underlying
SMT solver including integers or reals.
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Even if the trace inclusionproblemcanbe reduced, under someconditions, to the emptiness
of a counter automaton for which practical semi-algorithms exist, building the entire product
counter automaton before checking its emptiness is usually not feasible. This is because the
size of the product automaton is exponentially larger than the sum of the sizes of A and B,
even when the trace alphabet is finite. Having, moreover, an infinite alphabet adds to the size
of the product automaton, obtained by a generalization of the classical subset construction,
used for determinization, in the finite alphabet case. Altogether, this prevents us from directly
applying state-of-the-art methods and tool for checking emptiness of counter automata, or
equivalently, nondeterministic integer programs, such as constrained Horn clause solvers [5].

To tackle this problem, we developed a semi-algorithm that builds the product automaton
on-the-fly, while checking its emptiness. We achieve practical efficiency by combining the
principle of antichain-based language inclusion algorithms [1,35] with the interpolant-based
abstraction refinement semi-algorithm [27], via a general notion of language-based subsump-
tion relation. This semi-algorithm has been first presented in our work [24]. Compared with
that work, this paper includes more details and also proofs of the results.

Moreover, here we introduce a notion of data simulations, i.e., simulation relations on
generic register automata, inspired by [29], and provide an algorithm to compute them.
Further, we show how data simulations can be integrated into our trace inclusion semi-
algorithm in order to improve its performance as done previously in the context of classical
finite-alphabet automata [1].

We have implemented the trace inclusion semi-algorithm as well as its combination with
data simulations in a prototype tool INCLUDER3 and carried out a number of experiments,
involving hardware, real-time systems, and array logic problems. The advantage of having
a trace inclusion semi-algorithm is that we can write small automata-like specifications of
the sets of good traces, instead of using, generally more complex, specifications of sets of
erroneous behaviors.

1.1 An overview of the approach

We introduce the reader to our trace inclusionmethod bymeans of an example. Let us consider
the network of generic register automata 〈A1, A2〉 and the generic register automaton B from
Fig. 1. We prove that, for any value of �, any trace of the network 〈A1, A2〉, obtained
as an interleaving of the actions of A1 and A2, is also a trace of the observer B. To this
end, our procedure will fire increasingly longer sequences of input events, in search for a
counterexample trace. We keep a set of predicates associated with each state (〈q1, q2〉, P) of
the product automaton where qi is a state of Ai and P is a set of states of B. These predicates4

are formulae that define over-approximations of the data values reached simultaneously by
the network, when Ai is in the state qi , and by the observer B, in every state from P .

The first input event is init, on which A1 and A2 synchronize, moving together from the
initial state 〈q10 , q20 〉 to 〈q11 , q21 〉. In response, B can choose to either (i) move from {p0} to
{p1}, matching the only transition rule from p0, or (ii) does not match the transition rule and
move to the empty set.5

3 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/.
4 Note that there is not a fixed set of predefined predicates. New predicates are discovered during refinement
phase.
5 This option covers the case of data values allowed by the network 〈A1, A2〉 that are not covered by a data
constraint of any B-transition.
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Fig. 2 A sample run of the proposed semi-algorithm

In the first case, the values of v match the relation of the rule p0
init,v′=1−−−−→ p1, while in

the second case, these values match the negated relation ¬(v′ = 1). The second case is
impossible because the action of the network requires x ′ = 0 ∧ v′ = 1. The only successor
state is thus (〈q11 , q21 〉, {p1}) in Fig. 2a. Since no predicates are initially available at this
state, the best over-approximation of the set of reachable data valuations is the universal set,
denoted as 
.

The second input event is a1, on which A1 moves from q11 back to itself, while A2 makes
an idle step because no transitionwith a1 is enabled from q21 . Again, B has the choice between
moving from {p1} either to ∅ or {p1}. Let us consider the first case, in which the successor
state is (〈q11 , q21 〉,∅,
). Since q11 and q21 are final states of A1 and A2, respectively, and no
final state of B is present in ∅, we say that the state is accepting. If the accepting state (in
dashed boxes in Fig. 2) is reachable according to the transition constraints along the input
sequence init.a1, we have found a counterexample trace that is in the language of 〈A1, A2〉
but not in the language of B.

To verify the reachability of the accepting state, we check the satisfiability of the path
formula corresponding to the composition of the transition constraints θ1 ≡ x ′ = 0∧ v′ = 1
(init) and θ2 ≡ 0 ≤ x < �∧ x ′ = x + 1∧ v′ = 1∧¬(v′ = v) (a1) in Fig. 2a. The formula
θ1 ∧ θ2 is unsatisfiable, and the proof of infeasibility provides the interpolant 〈v = 1〉. This
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formula is an explanation for the infeasibility of the path because it is implied by the constraint
θ1 and it is unsatisfiable in conjunctionwith the constraint θ2. By associating the newpredicate
v = 1 with the state (〈q11 , q21 〉, {p1}), we ensure that the same spurious path will never be
explored again.

We delete the spurious counterexample and recompute the states along the input sequence
init.a1 with the new predicate. In this case, (〈q11 , q21 〉,∅) is unreachable, and the outcome is
(〈q11 , q21 〉, {p1}, v = 1). However, this state was first encountered after the sequence init, so
there is no need to store a second occurrence of this state in the tree. We say that the node
init.a1 is subsumed by init, and indicate this by a dashed arrow in Fig. 2b.

We continue with a2 from the state (〈q11 , q21 〉, {p1}, v = 1). In this case, A1 makes an idle
step and A2 moves from q21 to itself. In response, B has the choice between moving from
{p1} to either (i) {p1} with the constraint v′ = v, (ii) {p2} with the constraint v′ = v + 1,
(iii) {p1, p2} with the constraint v′ = v ∧ v′ = v + 1 (this constraint is unsatisfiable, hence
this case is discarded), (iv) ∅ for data values that satisfy ¬(v′ = v) ∧ ¬(v′ = v + 1).

Cases (i) and (iv) are also discarded because the value of v after init is constrained to 1 and
A2 further imposes the constraint v′ = 2. All together, v = 1∧v′ = 2∧v′ = v is unsatisfiable
within Case (i) and v = 1 ∧ v′ = 2 ∧ ¬(v′ = v) ∧ ¬(v′ = v + 1) is unsatisfiable within
Case (iv). Hence, the only a2-successor of (〈q11 , q21 〉, {p1}, v = 1) is (〈q11 , q21 〉, {p2},
), in
Fig. 2b.

By firing the event a1 from this state, we reach (〈q11 , q21 〉,∅, v = 1), which is, again,
accepting.We checkwhether the path init.a2.a1 is feasible, which turns out not to be the case.
For efficiency reasons, we find the shortest suffix of this path that can be proved infeasible. It
turns out that the sequence a2.a1 is infeasible starting from the state (〈q11 , q21 〉, {p1}, v = 1),
which is called the pivot. This proof of infeasibility yields the interpolant 〈v = 1,� < x〉,
and a new predicate� < x is associated with (〈q11 , q21 〉, {p2}). The refinement phase rebuilds
only the subtree rooted at the pivot state, in Fig. 2b.

The procedure then builds the tree in Fig. 2c starting from the pivot node and finds the
accepting state (〈q11 , q21 〉,∅,� < x) as the result of firing the sequence init.a2.a2. This path
is spurious, and the new predicate v = 2 is associated with the location (〈q11 , q21 〉, {p2}). The
pivot node is the same as in Fig. 2b, and, by recomputing the subtree rooted at this node with
the new predicates, we obtain the tree in Fig. 2d, in which all frontier nodes are subsumed by
their predecessors. Thus, no new event needs to be fired, and the procedure can stop reporting
that the trace inclusion holds.

1.2 Related work

Extending automata to deal with infinite alphabets is the purpose of the seminal work of
Kaminski and Francez [26], who introduce finite-memory automata that accept languages
over infinite alphabets using a finite set of registers that can be overwritten and compared
for equality with the input. In addition, our model of generic register automata is parametric
in the theory of the data used and allows comparisons between adjacent elements in the
input stream. For instance, generic register automata can easily specify increasing sequences
of integers, which is out of the scope of finite-memory automata. Moreover, the language
inclusion problem is undecidable for finite-memory automata, if the right-hand side has more
than 2 registers, while decidability is proved for at most 2 registers.

The trace inclusion problem has also been addressed in the context of timed automata
[32]. Although the problem L(A) ⊆ L(B) is undecidable in general [2], decidability is
recovered when the B automaton has at most one clock, or the only constant appearing in the
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clock constraints is zero. These are essentially the only known decidable cases of language
inclusion for timed automata.

The study of data automata [6,14] usually deals with the complexity of decision problems
in logics describing data languages for simple theories, typically infinite data domains with
equality. Here, we focus on undecidable language inclusion problems between data automata
controlled by generic first-order theories, by providing a semi-algorithm that proves to be
effective, in practice.

Data words have also been considered in the context of symbolic visibly pushdown
automata (SVPA) [13]. Language inclusion is decidable for SVPAs with transition guards
from a decidable theory because SVPAs are closed under complement and the emptiness can
be reduced to a finite number of queries expressible in the underlying theory. Decidability
comes here at the cost of reducing the expressivity and forbidding comparisons between adja-
cent positions in the input—here only comparisons between matching call/return positions
of the input nested words are allowed.

Although trace inclusion cannot be reduced to the emptiness problem of automata from
the same class in linear time, due to the exponential blowup caused by determinization, this
is possible if one considers an alternating automaton model, such as the one introduced in
[25]. This work generalizes from the trace inclusion problems considered in this paper, by
considering unrestricted alternation. As an advantage, one can complement in linear time
without the need for determinization. On the negative side, however, the emptiness check for
alternating automata with variables is heavier than in our case because it relies on the ability
of the SMT solver to answer queries in a combined theory of data and booleans. Due to this
reason, on some test cases, the semi-algorithm [25] performs slower than the trace inclusion
semi-algorithm presented here.

Several works on model checking infinite-state systems against CTL [4] and CTL* [11]
specifications are related to our problem as they check inclusion between the set of compu-
tation trees of an infinite-state system and the set of trees defined by a branching temporal
logic specification. First, the verification of existential CTL formulae [4] is reduced to solving
forall-exists quantified Horn clauses by applying counterexample guided refinement to dis-
cover witnesses for existentially quantified variables. It is however not clear whether and how
Horn clause solvers could be used for trace inclusion, which is a typical linear-time property,
that requires an unbounded number of computation branches to synchronize on the same
input word. To a very limited extent, for alphabets consisting of one symbol, one can encode
the (non-)emptiness of alternating automata as the existence of solutions of a system of Horn
clauses [10, Sect. 7.2.3]. However this encoding fails for alphabets of size two or more,
let alone for infinite data alphabets. Moreover, we have not encountered a polynomial-time
encoding of trace inclusion as a system of Horn clauses in the existing literature.6

Finally, the work [11] on CTL* verification of infinite systems is based on partial symbolic
determinization, using prophecy variables to summarize the future program execution. For
finite alphabets, automata are a strictly more expressive formalism than temporal logics.7

Such a comparison is, however, non-trivial for languages over infinite alphabets. However,
in practice, we found the generic register automata considered in this paper to be a natural
tool for specifying verification conditions of array programs [8,18,19] and regular properties
of timed languages [2].

6 Our reduction to the emptiness of product automata is at least exponential.
7 For (in)finite words, the class of LTL-definable languages coincides with the star-free languages, which are
a strict subclass of (ω-)regular languages.
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1.3 Organization of the paper

The rest of the paper is organized as follows: Sect. 2 describes preliminaries. Section 3
discusses closure properties of the considered class of generic register automata. Section 4
describes the trace inclusion semi-algorithm. Section 5 presents a concept of simulation rela-
tions on register automata and their integration into the proposed trace inclusion algorithm.
Section 6 is an overview of our experimental evaluation, and, finally, Sect. 7 concludes the
paper.

2 Preliminary definitions

Let N denote the set of non-negative integers including zero. For any k, � ∈ N, k ≤ �, we
write [k, �] for the set {k, k + 1, . . . , �}. We write ⊥ and 
 for the boolean constants false
and true, respectively. Given a possibly infinite data domain D, we denote by Form(D) =
〈D, f1, . . . , fm〉 the set of syntactically correct first-order formulae with function symbols
f1, . . . , fm . A variable x is said to be free in a formula φ, denoted as φ(x), iff it does not
occur under the scope of a quantifier.

Let x = {x1, . . . , xn} be a finite set of variables. A valuation ν : x → D is an assignment
of the variables in x with values from D. We denote by Dx the set of such valuations. For
a formula φ(x), we denote by ν |� φ the fact that substituting in φ each variable x ∈ x by
ν(x) yields a valid formula in the first-order theory of Form(D). In this case, ν is said to be
a model of φ. A formula is said to be satisfiable iff it has a model. For a formula φ(x, x′)
where x′ = {

x ′ | x ∈ x
}
and two valuations ν, ν′ ∈ Dx, we denote by (ν, ν′) |� φ the fact

that the formula obtained from φ by substituting each x with ν(x) and each x ′ with ν′(x ′) is
valid in the first-order theory of Form(D).

2.1 Generic register automata

Generic register automata8 (GRA) are extensions of non-deterministic finite automata with
variables ranging over an infinite data domain D with the first-order theory of Form(D).
Formally, a GRA is a tuple A = 〈D, �, x, Q, ι, F,�〉, where:
– � is a finite alphabet of input events and � ∈ � is a special padding symbol,
– x = {x1, . . . , xn} is a set of variables,
– Q is a finite set of states, ι ∈ Q is an initial state, F ⊆ Q are final states, and

– � is a set of rules of the form q
σ,φ(x,x′)−−−−→ q ′ where σ ∈ � is an alphabet symbol and

φ(x, x′) is a formula in Form(D).

A configuration of A is a pair (q, ν) ∈ Q × Dx. We say that a configuration (q ′, ν′) is

a successor of (q, ν) if and only if there exists a rule q
σ,φ−→ q ′ ∈ � and (ν, ν′) |� φ. We

denote the successor relation by (q, ν)
σ,φ−→ A(q ′, ν′), and we omit writing φ and A when no

confusion may arise. We denote by succA(q, ν) = {(q ′, ν′) | ∃σ ∈ � : (q, ν)
σ−→ A(q ′, ν′)}

the set of successors of a configuration (q, ν).
For any n ≥ 0, a trace is a finite sequence w = (ν0, σ0), . . . , (νn−1, σn−1), (νn,�) of

pairs (νi , σi ) taken from the infinite alphabet Dx × � [if n = 0, the trace is just (ν0,�)].

A run of A over the trace w is a sequence of configurations π : (q0, ν0)
σ0−→ (q1, ν1)

σ1−→
8 Called data automata in [24].
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· · · σn−1−−→ (qn, νn) [for n = 0, the run is (q0, ν0) only], where q0 = ι. We say that the run π

is accepting if and only if qn ∈ F , in which case A accepts w. The language of A, denoted
L(A), is the set of traces accepted by A.

2.2 Generic register automata networks

A generic register automata network (GRAN) is a non-empty tuple A = 〈A1, . . . , AN 〉 of
generic register automata Ai = 〈D, �i , xi , Qi , ιi , Fi ,�i 〉, i ∈ [1, N ] whose sets of states
are pairwise disjoint. A GRAN is a succint representation of an exponentially larger GRA
Ae = 〈D, �A, xA, QA, ιA, FA,�A〉, called the expansion of A, where:

– �A = �1 ∪ . . . ∪�N and xA = x1 ∪ . . . ∪ xN ,
– QA = Q1 × · · · × QN , ιA = 〈ι1, . . . , ιN 〉 and FA = F1 × · · · × FN ,
– 〈q1, . . . , qN 〉 σ,ϕ−→ 〈q ′1, . . . , q ′N 〉 if and only if there exists a set of indices I ⊆ [1, N ]

such that (i) for all i ∈ I , qi
σ,ϕi−−→ q ′i ∈ �i , (ii) for all i /∈ I , qi = q ′i , and (iii)

ϕ ≡ ∧
i∈I ϕi ∧ ∧

j /∈I τ j , where I = {i ∈ [1, N ] | qi
σ,ϕi−−→ q ′i ∈ �i for some ϕi }

is the set of GRA that can move from qi to q ′i while reading the input symbol σ , and
τ j ≡ ∧

x∈x j \(⋃i∈I xi) x
′ = x propagates the values of the local variables in A j that are

not updated by {Ai }i∈I .
Intuitively, all automata that can read an input symbol synchronize their actions on that
symbol whereas the rest of the automata make an idle step and copy the values of their local
variables which are not updated by the active automata. The language of the GRAN A is
defined as the language of its expansion GRA, i.e., L(A) = L(Ae).

2.3 Trace inclusion

Let A be a GRAN and Ae = 〈D, �, xA, QA, ιA, FA,�A〉 be its expansion. For a set of
variables y ⊆ xA, we denote by ν↓y the restriction of a valuation ν ∈ DxA to the variables
in y. For a trace w = (ν0, σ0), . . . , (νn,�) ∈ (DxA × �A)∗, we denote by w↓y the trace
(ν0↓y, σ0), . . . , (νn−1↓y, σn−1), (νn↓y,�) ∈ (Dy × �)∗. We lift this notion to sets of words
in the natural way, by defining L(A)↓y =

{
w↓y | w ∈ L(A)

}
.

We are now ready to define the trace inclusion problem on which we focus in this paper.
Given aGRANA as before and aGRA B = 〈D, �, xB , QB , ιB , FB ,�B〉 such that xB ⊆ xA,
the trace inclusion problem asks whether L(A)↓xB ⊆ L(B)? The right-hand side GRA B is
called observer, and the variables in xB are called observable variables.

3 Boolean closure properties of generic register automata

We show first that generic register automata are closed under the boolean operations of
union, intersection and complement and that they are amenable to determinization. Clearly,
the emptiness problem is, in general, undecidable, due to the result of Minsky on 2-counter
machines with integer variables, increment, decrement and zero test [30].

Let A = 〈D, �, x, Q, ι, F,�〉 be a GRA for the rest of this section. A is said to be
deterministic if and only if, for each trace w ∈ L(A), A has at most one run over w. The first
result of this section is that, interestingly, any GRA can be determinized while preserving its
language. The determinization procedure is a generalization of the classical subset construc-
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tion for Rabin-Scott word automata on finite alphabets. The reason why determinization is
possible for automata over an infinite data alphabetDx×� is that the successive values taken
by each variable x ∈ x are tracked by the language L(A) ⊆ (Dx ×�)∗. This assumption is
crucial: a typical example of automata over an infinite alphabet, that cannot be determinized,
are timed automata [2], where only the elapsed time is reflected in the language, and not the
values of the variables (clocks).

Formally, the deterministic GRA accepting the language L(A) is defined as Ad =
〈D, �, x, Qd , ιd , Fd ,�d 〉, where Qd = 2Q , ιd = {ι}, Fd = {P ⊆ Q | P ∩ F �= ∅} and �d

is the set of rules P
σ,θ−→ P ′ such that the formula:

θ(x, x′) =
∧

p′∈P ′

∨

p
σ,ψ−→p′∈�

p∈P

ψ ∧
∧

p′∈Q\P ′

∧

p
σ,ϕ−→p′∈�

p∈P

¬ϕ

is satisfiable.9 The main difference with the classical subset construction for Rabin-Scott
automata is that here we consider all sets P ′ of states that have a predecessor in P , not just
the maximal such set. This refined subset construction takes into account not just the alphabet
symbols in �, but also the valuations of the variables in x. Observe, moreover, that Ad can
be built for any first-order theory of Form(D) that is closed under conjunction, disjunction,
and negation. The following lemma states the main properties of Ad .

Lemma 1 Given aGRA A = 〈D, �, x, Q, ι, F,�〉, (1) for anyw ∈ (Dx ×�)∗ and P ∈ Qd,
Ad has exactly one run on w that starts in P, and (2) L(A) = L(Ad).

Proof (1) Let w = (ν0, σ0), . . . , (νn−1, σn−1), (νn,�) be an arbitrary trace and P ⊆ Q be

a state of Ad . We first build a run π = (P0, ν0)
σ0,θ0−−→ (P1, ν1) · · · σn−1,θn−1−−−−−→ (Pn, νn) of Ad

such that P0 = P , by induction on n ≥ 0. If n = 0, then w = (ν0,�) and π = (P0, ν0) is
trivially a run of Ad over w. For the induction step, let n > 0 and suppose that Ad has a run

(P0, ν0)
σ0,θ0−−→ · · · (Pn−1, νn−1) such that P0 = P . We extend this run to a run over w by

considering:

Pn =
{
p ∈ Q | ∃q ∈ Pn−1 . q

σn−1,φ−−−→ p ∈ � and (νn−1, νn) |� φ

}
,

θn ≡ ∧
p′∈Pn

∨
p

σ,ψ−→p′∈�

p∈Pn−1

ψ ∧ ∧
p′∈Q\Pn

∧
p

σ,ϕ−→p′∈�

p∈Pn−1

¬ϕ.

It is not hard to see that (νn−1, νn) |� θn , thus (P0, ν0)
σ0,θ0−−→ · · · σn ,θn−−→ (Pn, νn) is indeed

a run of Ad over w. To show that π is unique, suppose, by contradiction, that there exists a

different run π ′ = (R0, ν0)
σ0,ω0−−→ (R1, ν1) · · · σn−1,ωn−1−−−−−→ (Rn, νn) such that P0 = R0 = P .

Notice that the relation labeling any transition rule Pi
σi ,θi−−→ Pi+1 is entirely determined

by the sets Pi and Pi+1, so two runs are different iff they differ in at least one state, i.e.,
Pj �= R j for some j ∈ [1, n]. Let i denote the smallest such j and suppose that there exists
p ∈ Pi such that p /∈ Ri (the symmetrical case p ∈ Ri and p /∈ Pi is left to the reader).

By the definition of �d , there exists q ∈ Pi−1 = Ri−1 such that q
σi−1,ψ−−−→ p ∈ �. Since

(νi−1, νi ) |� θi−1 ∧ ωi−1, we obtain that (νi−1, νi ) |� ∨{ψ | q σi−1,ψ−−−→ p ∈ �, q ∈ Pi−1}
9 Note that the empty disjunction is equivalent to ⊥. Hence θ(x, x′) satisfiable implies that for all p′ ∈ P ′

there exists p ∈ P and a rule p
σ,ψ−−→ p′ ∈ �.
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and (νi−1, νi ) |� ∧{¬ψ | q σi−1,ψ−−−→ p ∈ �, q ∈ Pi−1}, contradiction. Thus π is the only
run of Ad over w starting in P .

(2) Let w = (ν0, σ0), . . . , (νn−1, σn−1), (νn,�) be a trace. “⊆” If w ∈ L(A), then A

has a run (q0, ν0)
σ0,φ0−−→ · · · σn−1,φn−1−−−−−→ (qn, νn) such that q0 = ι and qn ∈ F . By Point 1,

Ad has a unique run (P0, ν0)
σ0,θ0−−→ · · · σn−1,θn−1−−−−−→ (Pn, νn) over w. We prove that qi ∈ Pi

by induction on i ∈ [0, n]. For i = 0, we have P0 = {ι} by the definition of Ad . For
the induction step, suppose that i ∈ [1, n] and qi−1 ∈ Pi−1. By contradiction, assume that
qi /∈ Pi . Since (νi−1, νi ) |� θi−1, we obtain (νi−1, νi ) |� ¬φi−1, contradiction. Thus qi ∈ Pi
for all i ∈ [0, n], and qn ∈ Pn , hence Pn ∩ F �= ∅. Then Pn ∈ Fd , and w ∈ L(Ad). “⊇” If

w ∈ L(Ad), then Ad has a (unique) run (P0, ν0)
σ0,θ0−−→ (P1, ν1) · · · σn−1,θn−1−−−−−→ (Pn, νn) over

w such that P0 = {ι} and Pn ∩ F �= ∅. Then there exists pn ∈ Pn ∩ F , and, by the definition

of Ad , there exists pn−1 ∈ Pn−1 such that pn−1
σn−1,ψn−1−−−−−→ pn ∈ � and (νn−1, νn) |� ψn−1.

Continuing this argument backwards, we can find a run (q0, ν0)
σ0,ψ0−−−→ · · · σn−1,ψn−1−−−−−→ (qn, νn)

of A over w such that qi ∈ Pi for all i ∈ [0, n]. Since P0 = {ι} and qn ∈ F , we obtain that
w ∈ L(A). ��

The construction of a deterministic GRA recognizing the language of A is key to defining
a GRA that recognizes the complement of A. Let A = 〈D, �, x, Qd , ιd , Qd \ Fd ,�d 〉. In
other words, A has the same structure as Ad , and the set of final states consists of those subsets
that contain no final state, i.e., {P ⊆ Q | P ∩ F = ∅}. Using Lemma 1, it is not difficult to
show that L(A) = (Dx ×�)∗ \ L(A).

Next, we show closure of GRA under intersection. Let B = 〈D, �, x, Q′, ι′, F ′,�′〉
be a GRA and define A × B = 〈D, �, x, Q × Q′, (ι, ι′), F × F ′,�×〉 where (q, q ′) σ,ϕ−→
(p, p′) ∈ �× if and only if q

σ,φ−→ p ∈ �, q ′ σ,ψ−→ p′ ∈ �′ and ϕ ≡ φ ∧ ψ . It is
easy to show that L(A × B) = L(A) ∩ L(B). GRA are also closed under union since

L(A) ∪ L(B) = L(A × B).
Let us turn now to the trace inclusion problem. The following lemma shows that

this problem can be effectively reduced to an equivalent language emptiness problem.
However, note that this reduction does not work when the trace inclusion problem is gen-
eralized by removing the condition xB ⊆ xA. In other words, if the observer uses local
variables not shared with the network,10 i.e., xB \ xA �= ∅, the generalized trace inclu-
sion problem L(A)↓xA∩xB ⊆ L(B)↓xA∩xB has a negative answer iff there exists a trace
w = (ν0, σ0), . . . , (νn,�) ∈ L(A) such that, for all valuations μ0, . . . , μn ∈ DxB\xA , we
have w′ = (ν0 ↓xA∩xB ∪ μ0, σ0), . . . , (νn ↓xA∩xB ∪ μn,�) /∈ L(B). This kind of quantifier
alternation cannot be easily accommodated within the framework of language emptiness, in
which only one type of (existential) quantifier occurs.

Lemma 2 Given GRA A = 〈D, �, xA, QA, ιA, FA,�A〉 and B =
〈D, �, xB , QB , ιB , FB ,�B〉 such that xB ⊆ xA. Then L(A)↓xB ⊆ L(B) if and only if
L(A × B) = ∅.
Proof WehaveL(A)↓xB ⊆ L(B) iffL(A)↓xB∩L(B) = L(A×B)↓xB = ∅ iffL(A×B) = ∅.

��
The trace inclusion problem is undecidable, which can be shown by reduction from the

language emptiness problem for GRA (take B such that L(B) = ∅). However, the above

10 For timed automata, this is the case since the only shared variable is the time, and the observer may have
local clocks.
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lemma shows that any semi-decision procedure for the language emptiness problem can also
be used to deal with the trace inclusion problem.

4 Abstract, check, and refine for trace inclusion

This section describes our semi-algorithm for checking the trace inclusion between a given
network A and an observer B. Let Ae denote the expansion of A, defined in Sect. 2. In
the light of Lemma 2, the trace inclusion problem L(A)↓xB ⊆ L(B), where the set of
observable variables xB is included in the set of network variables, can be reduced to the
language emptiness problem L(Ae × B) = ∅.

Although language emptiness is in general undecidable for generic register automata [30],
several cost-effective semi-algorithms and tools [3,17,21,27] have been developed, showing
that it is possible, in many practical cases, to provide a yes/no answer to this problem.
However, to apply one of the existing off-the-shelf tools to our problem, one needs to build
the product automaton Ae × B prior to the analysis. Due to the inherent state explosion
caused by the interleaving semantics of the network as well as by the complementation of
the observer, such a solution would not be efficient in practice.

To avoid building the product automaton, our procedure builds on-the-fly an over-
approximation of the (possibly infinite) set of reachable configurations of Ae × B. This
over-approximation is defined using the approach of lazy predicate abstraction [21], com-
bined with counterexample-driven abstraction refinement using interpolants [27]. We store
the explored abstract states in a structure called an antichain tree. In general, antichain-based
algorithms [1,35] store only states which are incomparable wrt a partial order called sub-
sumption. Our method can be thus seen as an extension of the antichain-based language
inclusion algorithms [1,35] to infinite state systems by means of predicate abstraction and
interpolation-based refinement. Since the trace inclusion problem is undecidable in general,
termination of our procedure is not guaranteed; in the following, we shall, however, call our
procedure an algorithm for the sake of brevity.

4.1 Antichain trees

In this section, we define antichain trees, which are the main data structure of the trace
inclusion (semi-)algorithm. Let A = 〈A1, . . . , AN 〉 be a network of automata where Ai =
〈D, �i , xi , Qi , ιi , Fi ,�i 〉, for all i ∈ [1, N ], and let B = 〈D, �, xB , QB , ιB , FB ,�B〉 be an
observer such that xB ⊆ ⋃N

i=1 xi . We also denote by Ae = 〈D, �A, xA, QA, ιA, FA,�A〉
the expansion of the networkA and byAe× B = 〈D, �A, xA, Qp, ιp, F p,�p〉 the product
automaton used for checking language inclusion.

An antichain tree for the networkA and the observer B is a treewhose nodes are labeled by
product states (see Fig. 2 for examples).11 Intuitively, a product state is an over-approximation
of the set of reachable configurations of the product automaton Ae × B that share the same
control state. Formally, a product state for A and B is defined as a tuple s = (q, P,�)

where (i) (q, P) is a state of Ae × B with q = 〈q1, . . . , qN 〉 being a state of the network
expansion Ae and P being a set of states of the observer B, and (ii) �(xA) ∈ Form(D) is
a formula which defines an over-approximation of the set of valuations of the variables xA

11 The formal definition of antichain trees will be given as Definition 1 later in this section.
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that reach the state (q, P) inAe×B. A product state s = (q, P,�) is a finite representation of
a possibly infinite set of configurations ofAe × B, denoted as [[s]] = {(q, P, ν) | ν |� �}.12

To build an over-approximation of the set of reachable states of the product automaton,
we need to compute, for a product state s, an over-approximation of the set of configurations
that can be reached in one step from s. To this end, we define first a finite abstract domain of
product states, based on the notion of predicate map. A predicatemap is a partial function that
associates sets of facts13 about the values of the variables used in the product automaton with
components of a product state. Facts are called predicates and components of a product state
are called substates. Formally, a substate of a state (〈q1, . . . , qN 〉, P) ∈ Qp of the product
automatonAe× B is a pair (〈qi1 , . . . , qik 〉, S) such that (i) 〈qi1 , . . . , qik 〉 is a subsequence of
〈q1, . . . , qN 〉, and (ii) S �= ∅ only if S ∩ P �= ∅.

The reason behind the distribution of predicates over substates is two-fold. First, wewould
like the abstraction to be local, i.e., the predicates needed to define a certain subtree in the
antichain must be associated with the labels of that subtree only. Second, once a predicate
appears in the context of a substate, it should be subsequently reused whenever that same
substate occurs as part of another product state.

We denote the substate relation by (〈qi1 , . . . , qik 〉, S) � (〈q1, . . . , qN 〉, P). The substate
relation requires the automata Ai1 , . . . , Aik of the network A to be in the control states
qi1 , . . . , qik simultaneously, and the observer B to be in at least some state of S provided S �= ∅
(if S = ∅, the state of B is considered to be irrelevant). Let S〈A,B〉 = {r | ∃q ∈ Qp. r � q}
be the set of substates of a state of Ae × B.

A predicate map � : S〈A,B〉 → 2 Form(D) associates each substate (r, S) ∈ Qi1 × . . . ×
Qik × 2QB with a set of formulae π(x) where (i) x = xi1 ∪ . . . ∪ xik ∪ xB if S �= ∅, and (ii)
x = xi1 ∪ . . . ∪ xik if S = ∅.

Notice that a predicate associated with a substate refers only to the local variables of those
network components Ai1 , . . . , Aik and of the observer B that occur in the particular substate.

Example 1 The antichain in Fig. 2d uses the predicate map (〈q11 , q21 〉, {p1}) �→ {v = 1},
(〈q11 , q21 〉, {p2}) �→ {� < x, v = 2}. �

We are now ready to define the abstract semantics of the product automaton Ae × B,
induced by a given predicate map. For convenience, we define first a set Post(s) of concrete
successors of a product state s = (q, P,�) such that (r, S, �) ∈ Post(s) if and only

if (i) the product automaton Ae × B has a rule (q, P)
σ,θ−→ (r, S) ∈ �p and �(xA) ≡

∃x′A. �(x′A) ∧ θ(x′A, xA) is satisfiable.14

Given a predicate map �, the set Post�(s) of abstract successors of a product state s
is defined as follows: (r, S, ��) ∈ Post�(s) if and only if (i) there exists a product state
(r, S, �) ∈ Post(s) and (ii) ��(xA) ≡ ∧

r�(r,S)

∧ {π ∈ �(r) | � → π}. In other words,
the set of data valuations reachable by an abstract successor is the tightest over-approximation

12 Note that the above choice of the product state in the form s = (q, P,�) is not straightforward and resulted
from several previous unsuccessful attempts. For example, if one chooses to associate separate formulae for
the valuations of the variables with q and each of the states in P , which seems to be a quite natural choice,
the construction becomes unsound. Intuitively, when a successor state of such a product state is computed, the
disjunction of the formulae joint with the successors of P may entail the formula joint with the successor of
q. However, that does not mean that all pairs of source/target valuations possible inAe are possible in B too.
More details are provided in “Appendix 1”.
13 A fact is a formula in Form(D).
14 If θ(x′A, xA) is unsatisfiable, then s does not contain a valuation of the variables that would allow one to

do a step following the rule (q, P)
σ,θ−−→ (r, S).
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of the concrete set of reachable valuations, obtained as the conjunction of the available
predicates from the predicate map that over-approximate this set.

Example 2 (Continued from Example 1) Consider the antichain from Fig. 2d. The concrete
successors of s = (〈q11 , q21 〉, {p1}, v = 1) are (〈q11 , q21 〉, {p1}, �1) and (〈q11 , q21 〉, {p2}, �2):

�1 ≡ ∃v′, x ′,�′. v′ = 1 ∧ x = x ′ + 1 ∧ v = 1 ∧ � = �′ ∧ 0 ≤ x ′ < � ∧ v = v′,
�2 ≡ ∃v′, x ′,�′. v′ = 1 ∧ x = x ′ + 1 ∧ v = 2 ∧� = �′ ∧ � ≤ x ′ < 2� ∧ v = v′ + 1.

With predicate map � from Example 1,
Post�(s) = {(〈q11 , q21 〉, {p1}, ��

1), (〈q11 , q21 〉, {p2}, ��
2)}:

(�1 → v = 1) → (�
�
1 ≡ v = 1),

(�2 → v = 2 and �2 → � < x) → (�
�
2 ≡ v = 2 ∧ � < x).

��

Finally, an antichain tree (or, simply antichain) T for A and B is a tree whose nodes
are labeled with product states and whose edges are labeled by input symbols and concrete
transition relations. Let N

∗ be the set of finite sequences of natural numbers that denote the
positions in the tree. For a tree position p ∈ N

∗ and i ∈ N, the position p.i is a child of p.
A set S ⊆ N

∗ is said to be prefix-closed if and only if, for each p ∈ S and each prefix q of
p, we have q ∈ S as well. The root of the tree is denoted by the empty sequence ε.

Definition 1 Formally, an antichain T is a set of pairs 〈s, p〉, where s is a product state and
p ∈ N

∗ is a tree position, such that (1) (2) for each position p ∈ N
∗ there exists at most

one product state s such that 〈s, p〉 ∈ T , (3) the set {p | 〈s, p〉 ∈ T } is prefix-closed, (4)
(root〈A,B〉, ε) ∈ T where root〈A,B〉 = (〈ι1, . . . , ιN 〉, {ιB},
) is the label of the root, and (5)
for each edge (〈s, p〉, 〈t, p.i〉) in T , there exists a predicate map � such that t ∈ Post�(s).
For the latter condition, if s = (q, P,�) and t = (r, S, �), there exists a unique rule

(q, P)
σ,θ−→ (r, S) ∈ �p , and we shall sometimes denote the edge as s

σ,θ−→ t or simply s
θ−→ t

when the tree positions or alphabet symbols are not important.

Each antichain node n = (s, d1 . . . dk) ∈ T is naturally associated with a path from the

root to itself ρ : n0 σ1,θ1−−→ n1
σ2,θ2−−→ · · · σk θk−−→ nk . We denote by ρi the node ni for each

i ∈ [0, k], and by |ρ| = k the length of the path. The path formula associated with ρ is
�(ρ) ≡ ∧k

i=1 θi (x
i−1
A , xiA) where xiA = {

xi | x ∈ xA
}
is a set of indexed variables for each

i ∈ [0, k].

Example 3 Consider the following path ρ : (〈q10 , q20 〉, {p0},
)
init−→ (〈q11 , q21 〉, {p1}, v =

1)
a2−→ (〈q11 , q21 〉, {p2},� < x)

a2−→ (〈q11 , q21 〉,∅,� < x) in the antichain from Fig. 2c. The
path formula of ρ is �(ρ) ≡ θ1 ∧ θ2 ∧ θ3 where:

θ1 ≡ v1 = 1 ∧ x1 = 0 ∧ 0 < �1,

θ2 ≡ v2 = v1 + 1 ∧ �2 = �1 ∧ v2 = 2 ∧ x2 = x1 + 1 ∧ �1 ≤ x1 < 2�1 ∧ ¬(v2 = v1),

θ3 ≡ v3 = 2 ∧�3 = �2 ∧ x3 = x2 + 1 ∧�2 ≤ x2 < 2�2 ∧ ¬(v3 = v2).

��
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4.2 Counterexample-driven abstraction refinement

A counterexample is a path from the root of the antichain to a node which is labeled by
an accepting product state. A product state (q, P,�) is said to be accepting iff (q, P) is
an accepting state of the product automaton Ae × B, i.e., q ∈ FA and P ∩ FB = ∅. A
counterexample is said to be spurious if its path formula is unsatisfiable, i.e., the path does
not correspond to a concrete execution of Ae × B. In this case, we need to (i) remove the
path ρ from the current antichain and (ii) refine the abstract domain in order to exclude the
occurrence of ρ from future state space exploration.

Let ρ : root〈A,B〉 = (q0, P0,�0)
θ1−→ (q1, P1,�1)

θ2−→ · · · θk−→ (qk, Pk,�k) be a spuri-
ous counterexample in the following. For efficiency reasons, we would like to save as much
work as possible and remove only the smallest suffix of ρ which caused the spuriousness.
For some j ∈ [0, k], let � j (ρ) ≡ � j (x0A) ∧ ∧k

i= j θi (x
i− j
A , xi− j+1

A ) be the formula defin-
ing all sequences of data valuations that start in the set � j and proceed along the suffix
(q j , Pj ,� j ) −→ · · · −→ (qk, Pk,�k) of ρ. The pivot of a path ρ is the maximal position
j ∈ [0, k] such that � j (ρ) is unsatisfiable, and −1 if ρ is not spurious.

Example 4 (Continued from Example 3) The path formula �(ρ) ≡ θ1 ∧ θ2 ∧ θ3 from Exam-
ple 3 is unsatisfiable, thus ρ is a spurious counterexample. Moreover, we have unsatisfiable
�1(ρ) ≡ 
∧θ2∧θ3 because of the unsatisfiable subformula v2 = 2∧v3 = 2∧¬(v3 = v2).
Since �2(ρ) is satisfiable, the pivot of ρ is 1. ��

Finally, we describe the refinement of the predicate map, which ensures that a given
spurious counterexample will never be found in a future iteration of the abstract state space
exploration. The refinement is based on the notion of interpolant [27].

Definition 2 Given a formula �(x) and a sequence 〈θ1(x, x′), . . . , θk(x, x′)〉 of formulae,
an interpolant is a sequence of formulae I = 〈I0(x), . . . , Ik(x)〉 where: (1) � → I0, (2)
Ik →⊥, and (3) Ii−1(x) ∧ θi (x, x′) → Ii (x′) for all i ∈ [1, k].
Any given interpolant is a witness for the unsatisfiability of a (suffix) path formula � j (ρ).
Dually, if Craig’s Interpolation Lemma [12] holds for the considered first-order data theory,
any infeasible path formula is guaranteed to have an interpolant. The interpolant can be
computed by means of Satisfiability Modulo Theories (SMT) solvers [9,28].

Example 5 (Continued from Example 4) Let � ≡ 
 (variables initially unconstrained) and
the sequence of formula be 〈θ1, θ2, θ3〉 from Example 3. An interpolant is a sequence I =
〈
, v = 2,⊥〉. ��

Given a spurious counterexample ρ = (q0, P0,�0)
θ1−→ · · · θk−→ (qk, Pk,�k) with pivot

j ≥ 0, an interpolant I = 〈I0, . . . , Ik− j 〉 for the infeasible path formula� j (ρ) can be used to
refine the abstract domain by augmenting the predicate map�. A simple possible refinement
is to add the formula Ii into �((q j+i , Pj+i )) for each 0 ≤ i ≤ (k − j). As an effect of
this refinement, the antichain construction algorithm will avoid every path with the suffix
(q j , Pj ,� j ) −→ · · · −→ (qk, Pk,�k) in a future iteration.

We use an improved version of this simple refinement in order to obtain more reusable
predicates. If Ii = C1

i (y1) ∧ · · · ∧ Cmi
i (ymi ) is a conjunctive normal form (CNF) of the

i th component of the interpolant, we consider the substate (r�
i , S

�
i ) for each C�

i (y�) where
� ∈ [1,mi ]:
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– r�
i = 〈qi1 , . . . , qih 〉 where 1 ≤ i1 < · · · < ih ≤ N is the largest sequence of indices
such that xig ∩ y� �= ∅ for each g ∈ [1, h] and the set xig of variables of the network
component GRA Aig ,

– S�
i = Pi if xB ∩ y� �= ∅, and S�

i = ∅, otherwise.
A predicate map� is said to be compatiblewith a spurious path ρ : s0 θ1−→ · · · θk−→ sk with

pivot j ≥ 0 if s j = (q j , Pj ,� j ) and there is an interpolant I = 〈I0, . . . , Ik− j 〉 of the suffix
〈θ j , . . . , θk〉wrt.� j such that, for each clauseC of some equivalent CNF of Ii , i ∈ [0, k− j],
it holds that C ∈ �(r) for some substate r � si+ j . The following lemma proves that, under
a predicate map compatible with a spurious path ρ, the antichain construction will exclude
further paths that share the suffix of ρ starting with its pivot.

Lemma 3 Let ρ : (q0, P0,�0)
θ0−→ (q1, P1,�1)

θ1−→ · · · θk−1−−→ (qk, Pk,�k) be a spurious
counterexample and � a predicate map compatible with ρ. Then, there is no sequence
of product states (q j , Pj , �0), . . . , (qk, Pk, �k− j ) such that: (1) �0 → � j and (2)
(qi+1, Pi+1, �i− j+1) ∈ Post�((qi , Pi , �i− j )) for all i ∈ [ j, k − 1].
Proof Let j ∈ [0, k] be the pivot of ρ. Since ρ is spurious, there exists an interpolant
I = 〈I0, . . . , Ik− j 〉 for � j and 〈θ j , . . . , θk〉. It is sufficient to prove that �i → Ii for
all i ∈ [0, k − j]. Since Ik− j = ⊥, we obtain �k− j = ⊥, and consequently
(qk− j , Pk− j ,⊥) ∈ Post�((qk− j−1, Pk− j−1, �k− j−1)). By the definition of Post�, we have
(qk− j , Pk− j ,⊥) ∈ Post((qk− j−1, Pk− j−1, �k− j−1)), which contradicts with the definition
of Post. We show that �i → Ii for all i ∈ [0, k − j], by induction on k − j . For the base
case k − j = 0, we have �0 → � j → I0. For the induction step, we assume �i → Ii for
all i ∈ [0, k − j − 1] and prove �k− j → Ik− j . By the induction hypothesis, we have:

�k− j−1(xA) → Ik− j−1(xA) and
�k− j−1(xA) ∧ θk− j−1(xA, x′A) → Ik− j−1(xA) ∧ θk− j−1(xA, x′A) → Ik− j (x′A).

Let C1 ∧ · · · ∧ C� be the CNF of Ik− j . Since � is compatible with ρ, for each clause Ci ,
there exists a substate r � (qk, Pk) such that Ci ∈ �(r). By the definition of Post�, we
obtain that �k− j → Ci for each i ∈ [1, �], hence �k− j → Ik− j . ��

Observe that the refinement induced by interpolation is local since � associates sets of
predicates with substates of the states in Ae × B, and the update impacts only the states
occurring within the suffix of that particular spurious counterexample.

4.3 Subsumption

The main optimization of antichain-based algorithms [1] for checking language inclusion of
automata over finite alphabets is that product states that are subsets of already visited states are
never stored in the antichain. On the other hand, language emptiness semi-algorithms, based
on predicate abstraction [27] use a similar notion to cover newly generated abstract successor
states by those that were visited sooner and that represent larger sets of configurations. In
this case, state coverage does not only increase efficiency but also ensures termination of the
semi-algorithm in many practical cases.

In this section, we generalize the subset relation used in classical antichain algorithms
with the notion of coverage from predicate abstraction, and we define a more general notion
of subsumption for generic register automata. Given a state (q, P) of the product automaton
Ae × B and a valuation ν ∈ DxA , the residual language L(q,P,ν)(Ae × B) is the set of
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traces w accepted by Ae × B from the state (q, P) such that ν is the first valuation which
occurs on w. This notion is then lifted to a product state s = (q, P,�) as follows: Ls(Ae ×
B) = ⋃

(q,P,ν)∈[[s]] L(q,P,ν)(Ae × B) where [[s]] = {(q, P, ν) | ν |� �}—i.e. the set of

configurations of the product automaton Ae × B represented by the given product state s.

Definition 3 Given a GRAN A and a GRA B, a partial order � is a subsumption provided
that, for any two product states s and t , we have s � t only if Ls(Ae × B) ⊆ Lt (Ae × B).

A procedure for checking the emptiness of Ae × B needs not continue the search from
a product state s if it has already visited a product state t that subsumes s. The intuition is that
any counterexample discovered from s can also be discovered from t . The trace inclusion
semi-algorithm described below in Sect. 4.4 works, in principle, with any given subsumption
relation. In practice, our implementation uses the subsumption relation defined by the lemma
below:

Lemma 4 The relation defined such that (q, P,�) �img (r, S, �) ⇐⇒ q = r, P ⊇
S, and � → � is a subsumption.

Proof For any valuation ν ∈ DxA , we have L(q,P,ν)(Ae × B) = L(q,ν)(Ae) ∩ L(P,ν)(B).
Since P ⊇ S, we have L(P,ν)(B) ⊇ L(S,ν)(B), thus L(P,ν)(B) ⊆ L(S,ν)(B). We obtain that
L(q,P,ν)(Ae × B) ⊆ L(r,ν)(Ae)∩L(S,ν)(B) = L(r,S,ν)(Ae × B). Since moreover � → �,
we have that L(q,P,�)(Ae × B) ⊆ L(r,S,�)(Ae × B) ⊆ L(r,S,�)(Ae × B). ��
Example 6 In the antichain from Fig. 2d, (〈q11 , q21 〉, {p1}, v = 1) �img (〈q11 , q21 〉, {p1}, v =
1) because 〈q11 , q21 〉 = 〈q11 , q21 〉, {p1} ⊇ {p1}, and v = 1 → v = 1. ��

The language inclusion algorithm for non-deterministic automata on finite alphabets [1]
uses also a more sophisticated subsumption relation based on a pre-computed simulation
[29] between the states of the automata. We have defined a similar notion of simulation for
generic register automata and an algorithm for computing such simulations. Details concern-
ing data simulations and their integrationwithin the framework of antichain-based abstraction
refinement are described in Sect. 5.

4.4 The trace inclusion semi-algorithm

With the previous definitions, Algorithm 1 describes the procedure for checking trace inclu-
sion. It uses a classical worklist iteration loop (lines 2–30) that builds an antichain tree by
simultaneously unfolding the expansion Ae of the network A and the complement B of the
the observer B, while searching for a counterexample trace w ∈ L(Ae × B). BothAe and B
are built on-the-fly, during the abstract state space exploration.

Within Algorithm 1, the antichain is represented as a set of nodes. Each node is a tuple
〈s, p〉where s is a product state and p is a position in the tree. The processed antichain nodes
are kept in the set Visited, and their abstract successors, not yet processed, are kept in
the set Next. Initially, Visited = ∅ and Next = {〈rootA,B , ε〉}. The algorithm uses a
predicate map �, which is initially empty (line 1).

We keep a set of subsumption edges Subsume ⊆ Visited × (Visited ∪ Next)

with the following meaning: (〈s, p〉, 〈t, q〉) ∈ Subsume for two antichain nodes, where s, t
are product states and p, q ∈ N

∗ are tree positions, if and only if there exists an abstract
successor s′ ∈ Post�(s) such that s′ � t (Definition 3).Observe thatwe do not explicitly store
a subsumed successor of a product state s from the antichain; instead, we add a subsumption

123



154 Formal Methods in System Design (2020) 55:137–170

Algorithm 1 Trace Inclusion Semi-algorithm
input:

1. A GRAN A = 〈A1, . . . , AN 〉 such that Ai = 〈D, �i , xi , Qi , ιi , Fi ,�i 〉 for all i ∈ [1, N ].
2. A GRA B = 〈D, �, xB , QB , ιB , FB , �B 〉 such that xB ⊆ ⋃N

i=1 xi .

output: True if L(A)↓xB ⊆ L(B), otherwise a trace τ ∈ L(A) ↓xB \L(B).

1: � ← ∅, Visited ← ∅, Next ← 〈root〈A,B〉, ε〉, Subsume ← ∅
2: while Next �= ∅ do
3: choose curr ∈ Next and move curr from Next to Visited
4: match curr with 〈s, p〉
5: if s is an accepting product state then
6: let ρ be the path from the root to curr and k be the pivot of ρ

7: if k ≥ 0 then
8: � ← refinePredicateMapByInterpolation(�, ρ, k)
9: rem ← subTree(ρk )
10: for (n,m) ∈ Subsume such that m ∈ rem do
11: move n from Visited to Next
12: remove rem from (Visited,Next,Subsume)

13: add ρk to Next
14: else
15: return extractCounterexample(ρ)

16: else
17: i ← 0
18: for t ∈ Post�(s) do
19: if there exists m = 〈t ′, p′〉 ∈ Visited such that t � t ′ then
20: add (curr,m) to Subsume
21: else
22: rem ← {

n ∈ Next | n = 〈t ′, p′〉 and t ′ � t
}

23: succ ← 〈t, p.i〉
24: i ← i + 1
25: for n ∈ Visited such that n has a successor m ∈ rem do
26: add (n,succ) to Subsume

27: for (n,m) ∈ Subsume such that m ∈ rem do
28: add (n,succ) to Subsume

29: remove rem from (Visited,Next,Subsume)

30: add succ to Next
31: return True

edge between the node labeled with s and the node that subsumes that particular successor.
The algorithm terminates when each abstract successor of a node from Next is subsumed
by some node from Visited.

An iteration of Algorithm 1 starts by choosing a current antichain node curr = 〈s, p〉
from Next and moving it to Visited (line 3). If the product state s is accepting (line 5), we
check the counterexample path ρ, from the root of the antichain to curr, for spuriousness,
by computing its pivot k (see Sect. 4.2). If k ≥ 0, then ρ is a spurious counterexample (line 7),
and the path formula of the suffix of ρ, which starts with position k, is infeasible. In this case,
we compute an interpolant for the suffix and refine the current predicate map � by adding
the predicates from the interpolant to the corresponding substates of the product states from
the suffix (line 8).

The function refinePredicateMapByInterpolation updates the predicate map using
the principle described in Sect. 4.2. Subsequently, we remove (line 12) from the current
antichain the subtree rooted at the pivot nodeρk , i.e., the kth nodeon thepathρ (line 9), and add
ρk to Next in order to trigger a recomputation of this subtree with the new predicate map.
Moreover, all nodes with a successor previously subsumed by a node in the removed subtree
are moved from Visited back to Next in order to reprocess them (line 11).
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On the other hand, if the counterexample ρ is found to be real (k = −1), any valuation

ν ∈ ⋃|ρ|
i=0 D

xiA that satisfies the path formula �(ρ) yields a counterexample trace w ∈
L(A) ↓xB \L(B), obtained by ignoring all variables from xA \ xB (line 15).

If the current node is not accepting, we generate its abstract successors (line 18). In order
to keep in the antichain only nodes that are incomparable wrt the subsumption relation�, we
add a successor t of s to Next (lines 23 and 30) only if it is not subsumed by another product
state from a node m ∈ Visited. Otherwise, we add a subsumption edge (curr,m) to the
set Subsume (line 20). Furthermore, if t is not subsumed by another state in Visited,
we remove from Next all nodes 〈t ′, p′〉 such that t strictly subsumes t ′ (lines 22 and 29)
and add subsumption edges to the node storing t from all nodes with a removed successor
(line 26) or a removed subsumption edge (line 28).

The following theorem states the soundness of our trace inclusion semi-algorithm.

Theorem 1 LetA = 〈A1, . . . , AN 〉 be aGRAN such that Ai = 〈D, �i , xi , Qi , ιi , Fi ,�i 〉 for
all i ∈ [1, N ], and let B = 〈D, �, xB , QB , ιB , FB ,�B〉 be a GRA such that xB ⊆ ⋃N

i=1 xi .
If Algorithm 1 terminates and returns true on input A and B, then L(A)↓xB ⊆ L(B).

The dual question “if there exists a counterexample trace w ∈ L(A) ↓xB \L(B), will
Algorithm 1 discover it?” can also be answered positively, using an implementation that enu-
merates the abstract paths in a systematic way, e.g., by using a breadth-first path exploration.
This can be done using a queue to implement the Next set in Algorithm 1.

4.5 Proof of Theorem 1

Given a networkA = 〈A1, . . . , AN 〉where Ai = 〈D, �i , xi , Qi , ιi , Fi ,�i 〉 for all i ∈ [1, N ]
and an observer B = 〈D, �, xB , QB , ιB , FB ,�B〉, we recall that a configuration of the
product automatonAe × B is a tuple (〈q1, . . . , qN 〉, P, ν) ∈ Q1× · · ·× QN × 2QB ×DxA ,
and a node of the antichain T is a pair 〈s, p〉 where s is a product state for A and B and
p ∈ N

∗ is a tree position. Moreover, root〈A,B〉 = (〈ι1, . . . , ιN 〉, {ιB},
) is the product state
that labels the root of T . In the following, let � = (�,Visited,Next,Subsume) be an
antichain state where � is the predicate map, and Visited, Next, and Subsume are the
sets of antichain nodes handled by Algorithm 1.

We say that � is a closed antichain state if and only if, for all nodes 〈s, p〉 ∈ Visited
and every successor (q, P, ν) ∈ succAe×B([[s]]) of a configuration of the product automaton
Ae × B represented by the product state s, there exists a node 〈t, r〉 ∈ Visited ∪ Next
such that L(q,P,ν)(Ae × B) ⊆ Lt (Ae × B) and one of the following holds:

– r = p.i for some i ∈ N, i.e., 〈t, r〉 is a child of 〈s, p〉 in the antichain T = Visited ∪
Next, or

– (〈s, p〉, 〈t, r〉) ∈ Subsume.

In other words, the current antichain T , defined as the union of the sets Visited and Next,
is in a closed state if the residual language of every successor of a configuration of the product
automatonAe × B that is covered by a visited product state must be included in the residual
language of a product state stored in the antichain, either as a direct successor in the tree or
via a subsumption edge.

For a product state s, we defineDist(s) = min
{|w| | w ∈ Ls(Ae × B)

}
, andDist(s) = ∞

if and only if Ls(Ae × B) = ∅. For a finite non-empty set of antichain nodes S, we define
Dist(S) = min {Dist(s) | 〈s, p〉 ∈ S} with Dist(∅) = ∞.

We now prove several auxiliary lemmas.
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Lemma 5 Given a network A and an observer B, for any product state s of A and B, we
have succAe×B([[s]]) = ⋃

t∈Post(s) [[t]].

Proof Let s = (q, P,�). “⊆” Let (r, S, μ) ∈ succAe×B([[s]]) be a configuration of Ae × B

for which there exists (q, P, ν) ∈ [[s]] such that (q, P, ν)
σ,θ−→ (r, S, μ). Then there exists a

unique rule (q, P)
σ,θ−→ (r, S) ∈ �p such that (ν, μ) |� θ . Moreover, if (q, P, ν) ∈ [[s]], we

have ν |� �. Let t = (r, S, �) ∈ Post(s) where �(xA) ≡ ∃x′A. �(x′A) ∧ θ(x′A, xA). We
have μ |� �, hence (r, S, μ) ∈ [[t]]. “⊇” Let (r, S, μ) ∈ [[t]] for some t ∈ Post(s). Then
we have t = (r, S, �) where �(xA) ≡ ∃x′A. �(x′A) ∧ θ(x′A, xA). Since μ |� �, there

exists ν |� � such that (q, P, ν)
σ,θ−→ (r, S, μ). Hence (q, P, ν) ∈ [[s]], thus (r, S, μ) ∈

succAe×B([[s]]). ��
Lemma 6 Given a networkA, an observer B, and a predicate map�, for any product state s
ofAe× B and any product state t ∈ Post(s), there exists t ′ ∈ Post�(s) such that [[t]] ⊆ [[t ′]].
Proof Let t = (r, S, �) ∈ Post(s). By the definition of Post�, we have t ′ = (r, S, ��) ∈
Post�(s), where � → ��, thus [[t]] ⊆ [[t ′]]. ��
Lemma 7 Given a networkA, an observer B, and a predicate map�, for each product state s
and each configuration (q, P, ν) ∈ succAe×B([[s]]) there exists a product state t ∈ Post�(s)
such that (q, P, ν) ∈ [[t]].
Proof We use the fact that succAe×B([[s]]) = ⋃

t∈Post(s) [[t]] (Lemma 5) and that for each
t ∈ Post(s) there exists t ′ ∈ Post�(s) such that [[t]] ⊆ [[t ′]] (Lemma 6). ��

The proof of soundness of Algorithm 1 relies on the inductive invariants (Inv1) and (Inv2)
from the following lemma.

Lemma 8 The following invariants hold each time line 2 is reached in Algorithm 1:

– (Inv1) � = (�,Visited,Next,Subsume) is closed,
– (Inv2) Dist(root〈A,B〉) < ∞→ Dist(Visited) > Dist(Next).

Proof Initially, when coming to line 2 for the first time, we have Visited = ∅, thus
Dist(Visited) = ∞, and both invariants hold trivially. For the case when coming to line 2
after executing the loop body, we denote by:

�old = (�old,Visitedold,Nextold,Subsumeold) and
�new = (�new,Visitednew,Nextnew,Subsumenew)

the antichain states before and after the execution of the main loop. We assume that both
invariants hold for �old .
(Inv1) Let 〈s, p〉 ∈ Visitednew and (q, P, ν) ∈ succAe×B([[s]]). We distinguish two
cases according to the control path taken inside the main loop: (1) If the test on line 5
is positive, the predicate map is augmented, i.e., �new ⊇ �old (line 8). Let �′ =
(�new,Visitedold,Nextold,Subsumeold) be the next antichain state. Clearly�′ is closed
provided that �old is. Next, let npivot ∈ Visitedold be the pivot of the path to the current
node (line 6) and define the following sets of nodes:

T = subTreenpivot,
S = {n ∈ Visitedold | ∃m ∈ T . (n,m) ∈ Subsumeold}.
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Then we obtain (lines 10–13):

Visitednew = Visitedold \ (S ∪ T ),

Nextnew = ((Nextold ∪ S) \ T ) ∪ {
npivot

}
,

Visitednew ∪ Nextnew = ((Visitedold ∪ Nextold) \ T ) ∪ {
npivot

}
.

Since�′ is closed, there exists a node 〈t, r〉 ∈ Visitedold∪Nextold such thatL(q,P,ν)(Ae×
B) ⊆ Lt (Ae × B) and either r = p.i for some i ∈ N or (〈s, p〉, 〈t, r〉) ∈ Subsumeold . We
distinguish two cases:

(a) 〈t, r〉 /∈ T . Then 〈t, r〉 ∈ Visitednew ∪ Nextnew and, because Subsumenew =
Subsumeold ∩ (Visitednew × (Visitednew ∪ Nextnew)), we obtain that �new is
closed as well.

(b) 〈t, r〉 ∈ T . Then we distinguish two further cases:

(i) If r = p.i for some i ∈ N, since we have assumed that 〈s, p〉 ∈ Visitednew, we
have 〈s, p〉 /∈ T . The only possibility is then 〈t, r〉 = npivot and 〈s, p〉 is the parent
of npivot . In this case, we have 〈t, r〉 ∈ Nextnew.

(ii) If (〈s, p〉, 〈t, r〉) ∈ Subsumeold , then 〈s, p〉 ∈ S, which contradicts the assumption
〈s, p〉 ∈ Visitednew.

(2) Otherwise, the test on line 5 is negative, in which case we have �new = �old and
Visitednew = Visitedold ∪ {curr}. For each (q, P, ν) ∈ succAe×B([[s]]) there
exists t ∈ Post�(s) such that L(q,P,ν)(Ae × B) ⊆ Lt (Ae × B) (by Lemma 7). We
distinguish two cases:

(a) 〈s, p〉 = curr. In this case, either (i) there is 〈t ′, p′〉 ∈ Visitedold such that
t � t ′, and then we also have L(q,P,ν)(Ae × B) ⊆ Lt ′(Ae × B) (Definition 3) and
(〈s, p〉, 〈t ′, p′〉) ∈ Subsumenew (added on line 20), or (ii) (t, p.i) ∈ Nextnew for
some i ∈ N (added on lines 23 and 30).

(b) Otherwise 〈s, p〉 ∈ Visitedold . As �′ is closed, there is 〈u, r〉 ∈ Visitedold ∪
Nextold such that L(q,P,ν)(Ae × B) ⊆ Lu(Ae × B) and either r = p.i for some
i ∈ N or (〈s, p〉, 〈u, r〉) ∈ Subsumeold . We distinguish two sub-cases:
(i) 〈u, r〉 ∈ rem (line 22). Then Lu(Ae × B) ⊆ Lt (Ae × B) (Definition 3),

hence L(q,P,ν)(Ae × B) ⊆ Lt (Ae × B). If r = p.i , then (〈s, p〉, 〈t, r ′〉) ∈
Subsumenew for some r ′ ∈ N

∗ (added on line 26). Else, if (〈s, p〉, 〈u, r〉) ∈
Subsumeold , we have (〈s, p〉, 〈t, r ′〉) ∈ Subsumenew for some r ′ ∈ N

∗ (added
on line 28). In both cases, we obtain that �new is closed.

(ii) 〈u, r〉 /∈ rem. Then 〈u, r〉 ∈ Visitednew∪Nextnew. Since Subsumenew =
Subsumeold ∩ (Visitednew × (Visitednew ∪ Nextnew)), we obtain that
�new is closed.

(Inv2) We distinguish two cases:

1. If Dist(Visitednew) = ∞, it is sufficient to show that Dist(Nextnew) < ∞. Suppose,
by contradiction, that Dist(Nextnew) = ∞, hence Dist(Visitednew ∪ Nextnew) =
∞, and since root〈A,B〉 ∈ Visitednew ∪ Nextnew, we obtain Dist(root〈A,B〉) = ∞,
contradiction.

2. Otherwise,Dist(Visitednew) < ∞ and there exists a node 〈s, p〉 ∈ Visitednew such
that Dist(Visitednew) = Dist(s) < ∞. Let w = (ν0, σ0), (ν1, σ1), . . . , (νn,�) ∈
Ls(Ae × B) be a trace such that Dist(Visitednew) = n. Then there exists a run

(q0, P0, ν0)
σ0−→ (q1, P1, ν1)

σ1−→ · · · σn−1−−→ (qn, Pn, νn) of Ae × B over w such
that (q0, P0, ν0) ∈ [[s]] and (qn, Pn) a final state of Ae × B. Since �new is closed
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due to (Inv1) and (q1, P1, ν1) ∈ succAe×B([[s]]), there exists a node 〈s1, p1〉 ∈
Visitednew ∪ Nextnew such that L(q1,P1,ν1)(Ae × B) ⊆ Ls1(Ae × B). If
〈s1, p1〉 ∈ Nextnew, we obtain that Dist(Nextnew) ≤ n − 1, and we are done.
Otherwise, 〈s1, p1〉 ∈ Visitednew, and we can repeat the same argument induc-
tively, to discover a sequence of nodes 〈s1, p1〉, . . . , 〈sn, pn〉 ∈ Visitednew such that
L(qi ,Pi ,νi )(Ae × B) ⊆ Lsn (Ae × B) for all i ∈ [1, n]. Since (qn, Pn) is a final state of
Ae× B, we have (νn,�) ∈ L(qi ,Pi ,νi )(Ae× B), thus (νn,�) ∈ Lsn (Ae× B), and sn is an
accepting product state. But this contradicts with the fact that accepting product states
are never stored in the antichain. ��
With the above lemmas at hand, we can finally prove Theorem 1:

Proof If Algorithm 1 terminates and reports true, this is because Next = ∅, hence
Dist(Next) = ∞. By Lemma 8 (Inv2), we obtain that Dist(root〈A,B〉) = ∞. Suppose,
by contradiction, that L(A)↓xB � L(B). By Lemma 2, there exists a trace

w = (ν0, σ0)(ν1, σ1) . . . (νn,�) ∈ L(Ae × B).

Thus we have a run of Ae × B over w:

(q0, P0, ν0)
σ0−→ (q1, P1, ν1)

σ1−→ · · · σn−1−−→ (qn, Pn, νn)

where q0 = 〈ι1, . . . , ιN 〉, P0 = {ιB}, qn is final inAe, Pn∩FB = ∅. But, since (q0, P0, ν0) ∈
[[root〈A,B〉]], we have w ∈ Lroot〈A,B〉(Ae × B). Hence, Dist(root〈A,B〉) ≤ n, which is in
contradiction with the fact that Dist(root〈A,B〉) = ∞. Consequently, it must be the case that
L(A)↓xB ⊆ L(B). ��

5 Simulations on generic register automata

In the classical setting of finite state automata over finite alphabets, a simulation [29] is a
relation on the states of an automaton which is invariant with respect to its transition relation.
The simulation-based approach to checking language inclusion between two automata A
and B first computes a simulation relation on the union of the states of A and B, and then
checks whether the pair of initial states is a member of the simulation relation. Note that this
is not a complete decision procedure for language inclusion, because there exist automata
such that L(A) ⊆ L(B), but the initial state of A is not simulated by the initial state of B.
However, a pre-computed simulation relation can be used to speed up the convergence of
the antichain-based method, by weakening (i.e. generalizing) the subsumption relation used
by the antichain construction algorithm [1]. In practice, the experimental evaluation in [1]
shows a significant improvement of running times, when simulations are used.

In the below subsection, we first introduce a concept of data simulations suitable for
GRAs, together with an algorithm that computes useful under-approximations of the largest
data simulation on a given GRA. In the next subsection, we then propose a way of using
data simulations to enhance the convergence of Algorithm 1 between a GRAN and a GRA
in a similar way as classical simulations are integrated with the antichain-based language
inclusion algorithm for automata over finite alphabets [1].

We note that, in the context of classical automata, an approach going beyond the com-
bination of antichains and simulation relations has been proposed [7]. It is based on using
congruence relations instead of antichains. However, their usage in the context of generic
register automata is so far unclear, and we leave it as an interesting subject for future work.
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5.1 Data simulations and their computation

Our notion of data simulations is defined as follows.

Definition 4 A relation R ⊆ Q × Dx × Q is a data simulation for a GRA A =
〈�,D, x, Q, ι, F,�〉 if and only if the following holds for all (q, ν, q ′) ∈ R:

1. q ∈ F �⇒ q ′ ∈ F , and
2. for all σ ∈ � and all (r , ν′) ∈ Q × Dx such that (q, ν)

σ−→ A (r , ν′) there exists r ′ ∈ Q
such that (q ′, ν)

σ−→ A (r ′, ν′) and (r , ν′, r ′) ∈ R.

Observe that, while a classical simulation is a binary relation on states, a data simulation is
a ternary relation that involves also a valuation of the variables. The following lemma shows
that a data simulation preserves the residual languages of GRAs:

Lemma 9 Given a GRA A = 〈�,D, x, Q, ι, F,�〉 and a data simulation R ⊆ Q×Dx× Q
for A, we have L(q,ν)(A) ⊆ L(q ′,ν)(A) for any tuple (q, ν, q ′) ∈ R.

Proof Let (ν0, σ0), . . . , (νn,�) ∈ L(q,ν)(A) be a trace and (q, ν) = (q0, ν0)
σ0−→ · · · σn−1−−→

(qn, νn) be a run of A. By induction on n ≥ 0, it is easy to find a run (q ′, ν) = (q ′0, ν0)
σ0−→

· · · σn−1−−→ (q ′n, νn) of A such that, for all i ∈ [0, n], (qi , νi , q ′i ) ∈ R and moreover, qi ∈
F �⇒ q ′i ∈ F . Thus, (ν0, σ0), . . . , (νn,�) ∈ L(q ′,ν)(A). ��

Let A = 〈�,D, x, Q, ι, F,�〉, where Q = {q1, . . . , qk} for some k > 0, be a GRA for
the rest of this section. The data simulation algorithm (Algorithm 2) given in this section
manipulates sets of valuations fromDx that are definable by first-order formulae in Form(D).
A relation R ⊆ Q × Dx × Q is said to be definable if and only if there exists a matrix
� = [φi j ]ki, j=1 of formulae φi j (x) ∈ Form(D) such that (qi , ν, q j ) ∈ R ⇐⇒ ν |� φi j . For
� ∈ [1, k], we denote by �� the �th row of the matrix �.

Algorithm 2 is a refinement algorithm which handles two matrices of formulae that define
the relations Sim,PrevSim ⊆ Q × Dx × Q. Below, we shall use the same names to denote
the relations and their matrix representations. Intuitively, PrevSim is the previous candidate
for simulation, whereas Sim is an entry-wise stronger relation that refines PrevSim. The

refinement step is performed backwards wrt each transition rule qi
σ,φ−→ q� of the automaton

as follows. The tuple (qi , ν, q j ) is added to the newly created relation Sim if (qi , ν, q j ) ∈
PrevSim and there exist a valuation ν′, a state qm ∈ Q, and a formulaψ such that (ν, ν′) |� φ,

q j
σ,ψ−→ qm , (q�, ν

′, qm) ∈ PrevSim, and (ν, ν′) |� ψ . This update guarantees that, for every

transition (qi , ν)
σ−→ A (q�, ν

′) where (qi , ν, q j ) ∈ Sim, there exists a state qm such that

(q j , ν)
σ−→ A(qm, ν′) and (q�, ν

′, qm) ∈ PrevSim. The algorithm stops when Sim andPrevSim
define the same relation. Moreover, this relation is guaranteed to be a data simulation.

To define the update, we use the following function, where σ ∈ � is an input event,

i, j, � ∈ [1, k] are state indices such that qi
σ,φ−→ q j ∈ � is a transition rule and R is k × k

matrix of formulae:

PreSimσ (i, j, �, R) ≡ ∀x′. φ(x, x′) →
∨

q j
σ,ψ−→qm

ψ(x, x′) ∧ R�m(x′) .

We also define the sets postσ (q) = {q ′ | q σ,φ−→ q ′ ∈ �} and preσ (q) = {q ′ | q ′ σ,φ−→ q ∈ �}.
With this notation, Algorithm 2 describes the procedure that computes a data simulation for
a given data automaton.
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Algorithm 2 Data Simulation Algorithm
input: A generic register automaton A = 〈�,D, x, Q, ι, F,�〉, where Q = {q1, . . . , qk }, and a constant
K > 0.
output: A data simulation R ⊆ Q ×Dx × Q for A.
global vars [Simi j ]ki, j=1, [PrevSimi j ]ki, j=1, [Cnti j ]ki, j=1

1: for i = 1, . . . , k do
2: for j = 1, . . . , k do
3: PrevSimi j ←

4: Cnti j ← K

5: for j = 1, . . . , k do
6: if qi ∈ F and q j /∈ F then
7: Simi j ←⊥
8: else
9: Simi j ←

∧
σ∈�

∧
q�∈postσ (qi )

PreSimσ (i, j, �,PrevSim)

10: while ∃� ∈ [1, k] such that Sim� �≡ PrevSim� do
11: TempSim ← Sim
12: pick � ∈ [1, k] such that Sim� �≡ PrevSim�

13: for σ ∈ � do
14: for qi ∈ preσ (q�) do
15: for j = 1, . . . , k do
16: Simi j ← Simi j ∧ PreSimσ (i, j, �, TempSim)

17: for all j = 1, . . . , k such that Sim� j �≡ PrevSim� j do
18: if Cnt� j = 0 then
19: Sim� j ←⊥
20: else
21: Cnt� j ← Cnt� j − 1

22: PrevSim� ← TempSim�

23: return Sim

Initially, the matrix PrevSim is true everywhere (line 3). The current simulation candidate
Sim is initialized to false for all i, j ∈ [1, k] such that qi ∈ F and q j /∈ F (line 7). Observe
that, in this case, q j cannot simulate qi , by Definition 4 (1). Otherwise, we initialize Simi j to
the strongest pre-simulation with respect to PrevSim (line 9). In the iterative loop (lines 10–
22), the algorithm chooses a state q� for which the current simulation candidate Sim� is not
equivalent to the previous one PrevSim� (line 13) and sharpens the set Simi j with respect to

the transition rule qi
σ,φ−→ q� for all input symbols σ ∈ � and all peer states q j , j ∈ [1, k]

(line 16). The following invariants are key to proving the correctness of Algorithm 2.

Lemma 10 The following invariants hold each time Algorithm 2 reaches line 10:

– (SimInv1) for all i, j ∈ [1, k], the entailment Simi j → PrevSimi j is valid.

– (SimInv2) for allσ ∈ �, all i, j, � ∈ [1, k]andall ν, ν′ ∈ Dx, if ν |� Simi j and (qi , ν)
σ−→

(q�, ν
′) then there exists m ∈ [1, k] such that (q j , ν)

σ−→ (qm, ν′) and ν′ |� PrevSim�m.

Proof Let Sim′ and PrevSim′ denote the global matrices after one iteration of the loop on
lines 10–22.
(SimInv1) When line 10 is reached for the first time, PrevSimi j = 
 for all i, j ∈ [1, k], thus
SimInv1 holds initially. Since Sim is modified on lines 16 or 19 only, we have Sim′

i j → Simi j

for all i, j ∈ [1, k]. Moreover, for each i, j ∈ [1, k] either (i) PrevSim′
i j = TempSimi j =

Simi j (line 22) and Sim′
i j → Simi j → PrevSim′

i j holds, or (ii) PrevSim
′
i j = PrevSimi j (no

update) and Sim′
i j → Simi j → PrevSimi j → PrevSim′

i j holds, by the inductive hypothesis.
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(SimInv2) We show that this invariant holds the first time the control reaches line 10. Let
σ ∈ �, i, j, � ∈ [1, k] and ν, ν′ ∈ Dx such that ν |� Simi j and (qi , ν)

σ−→ (q�, ν
′). Since

ν |� Simi j (thusSimi j �= ⊥) andq� ∈ postσ (qi ),wehave thatν |� PreSimσ (i, j, �,PrevSim)

where qi
σ,φ−→ q� ∈ �. Since (qi , ν)

σ−→ (q�, ν
′), we obtain that (ν, ν′) |� φ(x, x′), and,

consequently, (ν, ν′) |� ψ(x, x′) ∧ PrevSim�m(x′) for some m ∈ [1, k] such that q j
σ,ψ−→

qm ∈ �. Hence, SimInv2 holds when the control first reaches line 10.
For the induction step, let us assume that SimInv2 holds on line 10, and we prove that

it also holds after executing line 22. Let σ ∈ �, i, j, � ∈ [1, k] and ν, ν′ ∈ Dx such that
ν |� Sim′

i j and (qi , ν)
σ−→ (q�, ν

′). We distinguish two cases:

1. If Sim� �≡ PrevSim� on line 10 since qi ∈ preσ (q�), then Sim′
i j was updated on line 16.

Since ν |� Sim′
i j , we obtain ν |� PreSimσ (qi , q j , q�, Sim). Moreover, PrevSim′

� is
updated to TempSim� ≡ Sim� on line 22, hence ν |� PreSimσ (qi , q j , q�,PrevSim′) as
well. Since (qi , ν)

σ−→ (q�, ν
′), we obtain that (ν, ν′) |� ψ(x, x′) ∧ PrevSim′

�m(x′) for
somem ∈ [1, k] such that q j

σ,ψ−→ qm ∈ �, thus (ν, ν′) |� ψ(x, x′) and ν′ |� PrevSim′
�m .

Thus SimInv2 holds for Sim′ and PrevSim′.
2. Otherwise Sim� ≡ PrevSim� on line 10. Moreover, PrevSim′

� ≡ PrevSim� because the
update on line 22 is skipped, and, for all qi ∈ preσ (q�) and all j ∈ [1, k], we have
Sim′

i j ≡ Simi j . Then, by the induction hypothesis, SimInv2 holds for Sim′ and PrevSim′
because it holds for Sim and PrevSim. ��
The algorithm iterates the loop on lines 10–22) until Sim and PrevSim define the same

relation. Since, in general, the data constraints Simi j obtained from different iteration steps
might form an infinitely decreasing sequence, we use the matrix Cnt of integer counters,
initially set to some input value K > 0 (line 4).15 Observe that each entry Cnti j decreases
every time Simi j �≡ PrevSimi j (line 21). When the counter Cnti j reaches zero, we set Simi j

to false (line 19), which guarantees that Simi j ≡ PrevSimi j always in the future. Since the
number of entries in the counter matrix is finite, the algorithm is guaranteed to terminate.
The following theorem summarizes the main result of this section.

Theorem 2 Algorithm 2 terminates on any GRA A = 〈�,D, x, Q, ι, F,�〉, and its output
is a data simulation R ⊆ Q ×Dx × Q for A.

Proof Let Simn and PrevSimn denote the matrices Sim and PrevSim at the nth iteration of
the loop on lines 10–22, for n ≥ 0. Algorithm 2 terminates whenever Simn

i j ≡ PrevSimn
i j

for all i, j ∈ [1, k] (line 10). Suppose, by contradiction, that this never happens, thus there
exist i, j ∈ [1, k] such that Simn

i j �≡ PrevSimn
i j for all n ≥ 0. Then CntKi j = 0 (line 21) and

SimK+1
i j = PrevSimK+2

i j = ⊥ (lines 19 and 22). Since Simn
i j → PrevSimn

i j , by Lemma 10

(SimInv1), we obtain that SimK+2
i j = PrevSimK+2

i j , a contradiction.
To prove that the output of Algorithm 2 is a data simulation for A, we use Lemma 10

(SimInv2) and the fact that, upon termination,we haveSimi j ≡ PrevSimi j , for all i, j ∈ [1, k].
��

5.2 Simulation and subsumption

Finally, we explain how a data simulation relation computed by Algorithm 2 can be used
to optimize the trace inclusion semi-algorithm. Let A = 〈A1, . . . , AN 〉 be a GRAN where

15 Taking a bigger K leads to a more precise Simi j , but, on the other hand, it can significantly increase the
computation time.
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Ai = 〈D, �i , xi , Qi , ιi , Fi ,�i 〉 for all i ∈ [1, N ], and let B = 〈D, �, xB , QB , ιB , FB ,�B〉
be an observer GRA such that xB ⊆ ⋃N

i=1 xi .
The main problem for using data simulations to enhance the convergence of our trace

inclusion semi-algorithm is related to the fact that simulation relations are, in general, not
compositional wrt the interleaving semantics of the network. In other words, if we have
N data simulations Ri ⊆ Qi × Dxi × Qi for i ∈ [1, N ], then their cross-product R ⊆
QA ×DxA × QA defined as:

∀q1, r1 ∈ Q1 . . . ∀qN , rN ∈ QN∀ν

∈ DxA : (〈q1, . . . , qN 〉, ν, 〈r1, . . . , rN 〉) ∈ R ⇐⇒ (qi , ν↓xi , ri ) ∈ Ri

is not necessarily a simulation on the network expansion Ae. The reason for this can be
seen for N = 2. Let σ1, σ2 ∈ �A such that σ1 /∈ �2 and σ2 /∈ �1. The execution of Ae

on the sequence of input symbols σ1σ2 is (〈q1, q2〉, ν)
σ1−→ (〈q ′1, q2〉, ν′)

σ2−→ (〈q ′1, q ′2〉, ν′′).
Suppose that (qi , ν↓xi , ri ) ∈ Ri , for all i = 1, 2. Then there exists r ′1 ∈ Q1 such that

(〈r1, r2〉, ν)
σ1−→ (〈r ′1, r2〉, ν′) and (q ′1, ν′↓x1 , r

′
1) ∈ R1. In order to use the simulation andbuild

the continuation (〈r ′1, r2〉, ν′)
σ2−→ (〈r ′1, r ′2〉, ν′′), we would need that (q2, ν′↓x2 , r2) ∈ R2,

which is not necessarily ensured by the hypothesis (q2, ν↓x2 , r2) ∈ R2.
We propose a partial solution to this problem, based on a restriction concerning the dis-

tribution of the network variables xA = ⋃N
i=1 xi over the components A1, . . . , AN : for each

i ∈ [1, N ], we have xi = xg ∪ x�
i where x

g is a set of global variables and x�
i are the local

variables of Ai . In other words, the only variables shared between more than one component
are the global variables xg , which, moreover, are visible to all components.16 Then the prob-
lem can be bypassed if none of the simulation relations Ri ⊆ Qi ×Dxi × Qi may constrain
the global variables:

Assumption 3 For each i ∈ [1, N ] and each (qi , ν, ri ) ∈ Ri , we also have (qi , ν′, ri ) ∈ Ri

for each ν′ ∈ Dxi such that ν↓x�
i
= ν′↓x�

i
.

Under this assumption, we use pre-computed data simulations Ri ⊆ Qi ×Dxg × Qi and
RB ⊆ QB ×DxB × QB to generalize the basic subsumption relation between product states
(defined by Lemma 4), which may speed up the convergence of Algorithm 1.

Lemma 11 Under Assumption 3, the relation defined as

(〈q1, . . . , qN 〉, P,�) �sim (〈r1, . . . , rN 〉, S, �)

⇐⇒
∀i ∈ [1, N ]∀ν ∈ DxA : ν |� � �⇒ ν |� � and

{
(qi , ν↓xi , ri ) ∈ Ri (1)

∀s ∈ S∃p ∈ P : (s, ν↓xB , p) ∈ RB (2)

is a subsumption relation.

Proof Let s = (〈q1, . . . , qN 〉, P,�) and t = (〈r1, . . . , rN 〉, S, �) be two product states such
that s �sim t . According to Definition 3, we need to prove that Ls(Ae × B) ⊆ Lt (Ae × B).
For that, it is sufficient to prove that, for each ν ∈ DxA such that ν |� �, the following two
points hold:

16 Many realistic systems comply with this restriction, take, for instance, shared-memory multithreading in
Java.
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1. L(〈q1,...,qN 〉,ν)(Ae) ⊆ L(〈r1,...,rN 〉,ν)(Ae), and
2. for all p ∈ S there exists q ∈ P such that L(p,ν↓xB )(B) ⊆ L(q,ν↓xB )(B).

Indeed, assuming that the above statements hold, we have

Ls(Ae × B) = ⋃
ν|��

(
L(〈q1,...,qN 〉,ν)(Ae) ∩⋂

q∈P L(q,ν↓xB )(B)
)

⊆ ⋃
ν|��

(
L(〈r1,...,rN 〉,ν)(Ae) ∩ ⋂

r∈S L(r ,ν↓xB )(B)
)

⊆ ⋃
ν|��

(
L(〈r1,...,rN 〉,ν)(Ae) ∩⋂

r∈S L(r ,ν↓xB )(B)
)

= Lt (Ae × B),

and we are done. Moreover, the second point above is a direct consequence of the second
point of the definition of �sim and Lemma 9. We are left with proving the first point.

To prove the first point, assume that we are given configurations (〈q10 , . . . , qN
0 〉, ν0) and

(〈r10 , . . . , r N0 〉, ν0) of Ae such that ∀i ∈ [1, N ] : (qi0, ν0↓xi , r
i
0) ∈ Ri . We show that if there

is a run (〈q10 , . . . , qN
0 〉, ν0)

σ0−→ · · · σn−1−−→ (〈q1n , . . . , qN
n 〉, νn) for any n ≥ 0, then there is

some run (〈r10 , . . . , r N0 〉, ν0)
σ0−→ · · · σn−1−−→ (〈r1n , . . . , r Nn 〉, νn) where ∀i ∈ [1, N ] : ∀ j ∈

[0, n] : (qij , ν j↓xi , r
i
j ) ∈ Ri ∧ (qij ∈ Fi �⇒ r ij ∈ Fi ), by induction on the lengthn of the run.

The base case for n = 0 follows trivially from the assumption ∀i ∈ [1, N ] : (qi0, ν0↓xi , r
i
0) ∈

Ri and from thefirst point of the definition of data simulations (Def. 4).Now, assuming that the
property holds for runs of length n, we show that it holds for runs of length n+1 too. Take a run

(〈q10 , . . . , qN
0 〉, ν0)

σ0−→ · · · σn−1−−→ (〈q1n , . . . , qN
n 〉, νn) σn−→ (〈q1n+1, . . . , q

N
n+1〉, νn+1). Further,

take a configuration (〈r10 , . . . , r N0 〉, ν0) such that ∀i ∈ [1, N ] : (qi0, ν0↓xi , r
i
0) ∈ Ri . From

the induction hypothesis, we immediately get that there exists a run (〈r10 , . . . , r N0 〉, ν0)
σ0−→

. . .
σn−1−−→ (〈r1n , . . . , r Nn 〉, νn)where∀i ∈ [1, N ] : ∀ j ∈ [0, n] : (qij , ν j↓xi , r

i
j ) ∈ Ri ∧ (qij ∈

Fi �⇒ r ij ∈ Fi ). Next, let I ⊆ [0, N ] be the set of indices of the GRAs that make a

move during the step (〈q1n , . . . , qN
n 〉, νn) σn−→ (〈q1n+1, . . . , q

N
n+1〉, νn+1). For any i ∈ I , from

(qin, νn↓xi , r
i
n) ∈ Ri and (qin, νn↓xi )

σn−→ (qin+1, νn+1↓xi ), we get there there is some r in+1

such that (r in, νn↓xi )
σn−→ (r in+1, νn+1↓xi ), (qin+1, νn+1↓xi , r

i
n+1) ∈ Ri , and qin+1 ∈ Fi →

r in+1 ∈ Fi . Moreover, for any i ∈ [1, N ] \ I , the fact that νn↓xli
= νn+1↓xli

, (qin, νn↓xi , r
i
n) ∈

Ri , qin+1 = qin , r
i
n+1 = r in , and Assumption 3, give us (qin+1, νn+1↓xi , r

i
n+1) ∈ Ri , and,

consequently, qin+1 ∈ Fi → r in+1 ∈ Fi too. ��

6 Experimental results

We have implemented both Algorithm 1 (trace inclusion) and Algorithm 2 (data simulations)
in a prototype tool INCLUDER17 using the MathSat SMT solver [9] for answering the
satisfiability queries and computing the interpolants. The results of the experiments with
trace inclusion are given in Tables 1 and 2. The results of experiments combining trace
inclusion and simulations are given in Table 3. The results were obtained on an Intel i7-4770
CPU @ 3.40GHz machine with 32GB RAM.

17 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/.
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Table 1 Experiments with single-component networks

Example A (|Q|/|�|) B (|Q|/|�|) Vars. Res. Time

Arrays shift 3/3 3/4 5 Ok < 0.1s

Array rotation 1 4/5 4/5 7 Ok 0.1s

Array rotation 2 8/21 6/24 11 Ok 34s

Array split 20/103 6/26 14 Ok 4m32s

HW counter 1 2/3 1/2 2 Ok 0.2s

HW counter 2 6/12 1/2 2 Ok 0.4s

Synchr. LIFO 4/34 2/15 4 Ok 2.5s

ABP-error 14/20 2/6 14 Cex 2s

ABP-correct 14/20 2/6 14 Ok 3s

6.1 Trace inclusion

Table 1 contains experimentswhere the networkA consists of a single component.We applied
the tool on several verification conditions generated from imperative programs with arrays
[8] (Array shift, Array rotation 1+2, Array split) available online [31]. Then, we applied it
on models of hardware circuits (HW Counter 1+2, Synchronous LIFO) [33]. Finally, we
checked two versions (correct and faulty) of the timed Alternating Bit Protocol [36].

Table 2 provides a list of experiments where the network A has N > 1 components.
First, we have the example of Fig. 1 (Running). Next, we have several examples of real-time
verification problems [34]: a controller of a railroad crossing [23] (Train) with T trains,
the Fischer Mutual Exclusion protocol with deadlines � and � (Fischer), and a hardware
communication circuit with K stages, composed of timed NOR gates (Stari). Third, we have
modeled a Producer–Consumer example [15] with a fixed buffer size B. Fourth, we have
experimented with several models of parallel programs that manipulate arrays (Array init,
Array copy, Array join) with window size �.

For the timebeing, our implementation is a proof-of-concept prototype that leaves plenty of
room for optimization (e.g., caching of intermediate computation results) likely to improve
the performance on more complicated examples. Despite that, we found the results from
Tables 1 and 2 rather encouraging.

6.2 Combination of trace inclusion and simulations

Unlike the computation of the most general simulation on a finite-alphabet automaton, which
is possible in polynomial time [20], computing the weakest data simulation on a GRA is,
in general, impossible due to the fact that the data constraints cannot be represented in a
decidable logical domain, such as linear integer arithmetic. For this reason, our algorithm
(Algorithm 2) is sound but incomplete, returning a possibly stronger simulation, in which
the data constraint associated with certain pairs of states is set of⊥. Such simulations can be
computed in reasonable time, but they could be of limited use in speeding up the antichain-
based trace inclusion check.

Our implementation tries to achieve a balance between these opponent goals, as shown
by the results in Table 3. We apply a timeout on each single call of the PreSim function in
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Algorithm 2. Moreover, we may also limit the size of the resulting formula18 for a single call
of the PreSim function. If the timeout or the size limit is exceeded, the result of PreSim
will be safely underapproximated to ⊥ (i.e., no simulation).

The use of simulation-based subsumption has an impact on running times of the trace
inclusion in the examples, where (i) the system contains a nontrivial simulation relation,
which could be discovered by Algorithm 2 with at most K = 2 iterations on each pair of
states and (ii) some product states in the antichain tree are compatible with this simulation
relation. This is clearly visible in the Fischer 2-serial and Fischer 2-branching models where
the synchronization based on the Fischer protocol is used in non-minimalistic scenarios, i.e.,
scenarios not restricted to a single critical section. In particular, Fischer 2-serial is an abstract
model of a system where a process uses the Fischer protocol to access a critical section twice
in a row. Fischer 2-branching is an abstraction of a systemwhere a single process contains two
branches and each of these branches accesses a critical section using the Fischer’s protocol.
The parameters � and � are parameters of the Fischer’s protocol, and N is the number of
parallel processes. Note that if the system contains a counterexample (e.g. Fischer 2-serial
with parameters� = 2,� = 1, N = 3), the simulation-based subsumptionmay also increase
the running time. The reason is that the computation is stopped when an accepting product
state is discovered and the rest of the antichain tree is not constructed. The simulation-
based subsumption makes the whole antichain tree smaller (in terms of nodes), but the
shortest counterexample path may be subsumed by a longer one resulting to a postpone of
a counterexample discovery.

Also note that we managed to compute nontrivial simulations19 for all the examples from
Tables 1 and 2. However, in most of them, the use of the simulation has no impact on the time
of checking the trace inclusion. The main reason is that most of the protocols are modeled
by automata where very limited data simulations exist between pairs of states (i.e., the data
constraints under which the simulation holds are quite strong), and product states in the
antichain tree are incompatible with these simulations (cf. Points 1 and 2 of Lemma 11).

7 Conclusions

We have presented an interpolation-based abstraction refinement method for trace inclusion
between a network of generic register automata and an observer where the variables used
by the observer are a subset of those used by the network. The procedure builds on a new
determinization result for GRAs and combines in a novel way predicate abstraction and
interpolation with antichain-based inclusion checking. The efficiency of the basic method
can be further enhanced by data simulations. The procedure has been successfully applied
to several examples, including verification problems for array programs, real-time systems,
and hardware designs.

For the future, it is interesting to extend the method to data tree automata and apply it to
logics for heaps with data. Also, we foresee an extension of the method to handle infinite
traces. Finally, it is also an open problem how to handle the case when the observer is allowed
to have local variables.

18 The size of a formula is measured in the number of nodes of its MathSAT graph-based representation.
19 A simulation R is trivial iff ∀x, y ∈ Q : x �= y → (x,⊥, y) ∈ R.
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Appendix A: Alternative notions of the product state

Below, we briefly discuss two alternative notions of product states that we originally con-
sidered but dropped them since we were not able to build a sound antichain construction on
them.

The first option we considered was to link predicates with the individual states involved
in a product state. In that case, the predicate map linked particular states of automataAe and
B to sets of formulas as follows: �ind : QAe ∪ QB → 2 Form(D). The product state was then
defined as sind = (〈q,�q〉, P) with q being a state of the automaton Ae, �q ⊆ �ind(q),
and P ⊆ {〈r ,�r 〉 | r ∈ QB and �r ⊆ �ind(r)}. The semantics of the product state
sind = (〈q,�q〉, P) was that whenever the automaton Ae is in the state q with a valuation
ν |� �q of the variables, then the automaton B can be in any state r such that 〈r ,�r 〉 ∈ P
and ν |� �r . A product state sind = (〈q,�q〉, P) was considered accepting iff q ∈ FAe

and there existed ν |� �q such that ν �|� ∨{�r | 〈r ,�r 〉 ∈ P ∧ r ∈ FB}. That implied
existence of a trace accepted by Ae at the state q with the final valuation ν, not covered
by the automaton B. A problem with this product construction is that it cannot be used for
soundly deciding the inclusion problem as shown in the following example: Take the product
state s1 = (〈q1, x ∈ {1, 2}〉, {〈r1, x = 1〉, 〈r2, x = 2〉}) obtained for an automaton Ae with

the rule q1
σ,x ′=x+1−−−−→ q2 and an automaton B with rules r1

σ,x ′>x−−−→ r3 and r2
σ,x ′=x+1∧x>10−−−−−−−−→ r3.

Moreover, let q2 be final inAe and r3 be final in B.When one computes the post of s1, one gets
s2 = (〈q2, x ∈ {2, 3}〉, {〈r3, x > 1〉}), which is not accepting, because all configurations of
Ae (i.e. x ∈ {2, 3}) are covered by configurations of B (i.e. x > 1). However, the automaton

Ae can do a step (q1, x = 2)
σ,x ′=x+1−−−−→ (q2, x = 3), which cannot be followed by B (it

cannot do a step from the configurations (r1, x = 2) or (r2, x = 2)). Hence, an antichain
construction based on this notion of product states could hide a real counterexample and
provide an unsound answer.

In order to avoid the unsoundness of the above solution, we attempted to use predicates
representing relations between successive values of variables within a step leading to a
given product state. In this case, the predicate map was defined as �rel : QAe ∪ QB →
2 Form(D) × 2 Form(D). The product state was then defined as srel = (〈q,�q〉, P) with q being a
state of the automaton Ae, �q ⊆ �rel(q), and P ⊆ {〈r ,�r 〉 | r ∈ QB and �r ⊆ �rel(r)}.
The semantics of the product state srel = (〈q,�q〉, P) was that whenever the last step of
Ae was (_, ν) −→ (q, ν′) such that (ν, ν′) |� �r , then the last step of B could have been
(_, ν) −→ (r , ν′) where 〈r ,�r 〉 ∈ P and (ν, ν′) |� �r . (The source states of the steps were
not reflected in the product states, and hence are represented using the underscore sign.) A
product state was considered final iff q ∈ FAe and there existed a relation (ν, ν′) |� �r such
that (ν, ν′) �|� ∨{�r | 〈s,�r 〉∧r ∈ FB}. The antichain tree could be used for sound checking
of the inclusion in this case. However, a problemwas to find a subsumption relation to soundly
prune the antichain tree. A natural way of defining the subsumption relation following the
approach of [1] is to define the subsumption as follows: (〈q1,�1〉, P1) � (〈q2,�2〉, P2) iff
(i) q1 = q2, (ii) �1 → �2, and (iii) for each 〈r ,�r 〉 ∈ P2 there exists 〈s,�s〉 ∈ P1 such
that r = s and �r → �s . Unfortunately, it turns out that using such a subsumption cannot
be used for sound inclusion checking since comparing formulae representing solely the last
step of the automata can lead to omitting counterexamples to inclusion that depend on longer
traces. Existence of a suitable sound subsumption for this type of product states, which is
needed to ensure termination of the antichain construction, is an open problem.
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