
Monitoring of IoT Devices Using
SNMP

Technical Report, FIT VUT

Petr Matoušek, Patrik Krajč

Technical Report no. FIT-TR-2021-01
Faculty of Information Technology, Brno University of Technology

Last modified: June 22, 2021

2

Contents

1 Introduction 1
1.1 Structure of the Report . 1
1.2 Acknowledgement . 1

2 Topology 2

3 Devices 3
3.1 Xiaomi aqara Gateway and sensors 3

3.1.1 Message format . 3
3.1.2 Communication analysis 4
3.1.3 Communication protocol 4
3.1.4 Sensors . 6

3.2 MQTT broker and sensors . 7

4 Data acquisition 9
4.1 SQLite in home assistant . 9
4.2 MariaDB in home assistant 10

5 SNMP agent 11
5.1 Creating SNMP agent . 11
5.2 Creating SNMP subagents . 13

6 Nagios installation and configuration 16
6.1 Virtual machine . 16
6.2 Nagios installation . 16
6.3 Nagios configuration . 19
6.4 Plugin for SNMP table . 20
6.5 Import SNMP table to Nagios 21
6.6 Monitoring . 22

A Floor plan 26

i

Abstract

Internet of Things is a network composed of various physical devices like
sensors, actuators and smart gadgets connected to a network. IoT devices
are usually implemented with constrained hardware and software possibilities
that prevents full communication over TCP/IP stack. Thus, to monitor IoT
devices, we cannot use standard network monitoring and management tools.

This report summarizes our experiments with IoT monitoring using SNMP
proxy agent that accesses monitoring data by parsing MQTT messages or
reading IoT gateway log files. It also presents MIB templates for IoT MIB
objects that are suitable for monitoring common IoT devices like climate
sensors, smart outlets, etc.

Chapter 1

Introduction

Today, the number of IoT devices is rapidly increasing. Many times, these
devices do not allow you to implement a full TCP stack, and there are
problems in monitoring these devices.

In this document, we will focus on the method of monitoring. We will
look at the SNMP protocol and tools supporting this protocol, such as mib2c,
which will allow us to implement an SNMP agent and how to deploy it in
an IoT network.

1.1 Structure of the Report

1.2 Acknowledgement

This work is supported by Brno University of Technology project “Applica-
tion of AI methods to cyber security and control systems”(2020–2022), no.
FIT-S-20-6293.

1

Chapter 2

Topology

In that chapter we will focus on the devices connected in the IoT network,
and their communication. First of all, I would like to mention that the target
element in communication is the home assistant, which also represents the
MQTT broker.

Devices connected in the network can be divided into three groups. The
first group of devices are devices that communicate directly with the home
assistant over the MQTT protocol.The second group of devices are devices
that do not communicate directly with the home assistant. This group of
devices communicates via wireless communication over the ZigBee protocol
to gateway. In order to be able to establish communication between the
home assistant and this group, we need another device to be able to forward
information from the sensors to the home assistant, and these devices rep-
resent our third group, the mentoined gateway. The picture 2.1 shows how
the sensors are connected to our IoT network. A complete description of the
network is in Annex A.

Figure 2.1: IoT topology

2

Chapter 3

Devices

In this chapter we will focus on devices connected in our IoT network. We
will take a closer look at the method of communication of various types of
devices, the transmitted data and the assignment of a record of devices to
the SNMP MIB database.

3.1 Xiaomi aqara Gateway and sensors

The first device we will focus on is the Xiaomi aqara gateway. We will
imagine its role in the IoT network together with other related sensors, such
as a magnetic and motion sensor.

Xiaomi aqara gateway represent device which one is used to integrate
devices used to communication technology ZigBee. The gateway is the in-
terface between the sensors and the home assistant. Its task is to collect
information from directly connected sensors and distribute it to the home
assistant.

3.1.1 Message format

In our IoT network, xiaomi aqara gateway collect information from magnetic
and motion sensors.

The messages between the gateway are in JSON format and consists of
several items based on which it is able to distinguish which device is in a
specific message.

• cmd - The item contains information about the used method. There
are several methods like read/write_ack method which one is used to
confirm received messages. Write method is used when the home assis-
tant communicates with the gateway and sets some sensor attribute.
Report method is used when some sensor change his state and informs
the home assistant. The last method is used to inform the home as-

3

CHAPTER 3. DEVICES 4

sistant about the current availability of the device. These keep alive
messages use method called heartbeat.

• model - It contains information about what device it is, in this case
it is a gateway, for magnetic sensors is it sensor_magnet.aq2 and for
motion sensors is it sensor_motion.aq2.

• sid - This item is used to identify sensors. It contains the identifier of
the specific sensor under which it is registered on the gateway.

• short_id - It serves as a message counter for specific types of commu-
nications.

• data - This item consist information from sensors transmitted to home
assistent. Item contains all the resources of the sensors. Resources
such as voltage that reports the current battery status, status (open /
closed), illumination and RGB color of light.

3.1.2 Communication analysis

From the communication between the gateway and the home assistant, we
can divide the communication into two types. The first type of communica-
tion directly between the gateway and the home assistant. The second type
of communication between the gateway and the home assistant, with the
difference that information are transmitted from devices that are connected
to a gateway.

In order to distinguish the communication between the gateway and the
home assistant and the communication of a sensor from the ZigBee network,
it is possible to use the model item, because this item contains information
about what type of device transmits information in the data item.

3.1.3 Communication protocol

In the previous chapter, we described the format of the message. In this
section we will show examples of communications. We will show unicast and
multicast communication and in which cases they are used.

Multicast communication uses the address 224.0.0.50, and uses applica-
tion port 4321. This type of communication is used in the following cases:

• Registration - this type of communication starts with a new sensor
connected to the network. The sensor sends a message with one entry,
a command with a value of whois.

• Status Reporting - Sensors send a message to a multicast address by
informing all devices in the group of their current status. The message
format is the same as when forwarding information from sensors, except

CHAPTER 3. DEVICES 5

that the command contains the value of report. From the gateway
side, the communication is a bit different, the gateway sends keep
alive messages that contain the heartbeat command and the data items
contain the ip address of the device.

Registration request:
{

"cmd":"whois"
}

Registration respond:
{

"cmd":"iam",
"ip":"192.168.11.211" ,
"port":"9898,
"model":"gateway"

}

Status reporting:
{

"cmd":"heartbeat",
"model":"gateway",
"sid":"04cf8cb09255",
"short_id":"0",
"token":"58KR9mvOLQ07m4RD",
"data":"{\"ip\":\"192.168.11.211\"}"

}

If we want to limit the number of devices that can access the gateway,
we can create a 16-character string with the Mi home application, which will
be used to authenticate the devices that will want to communicate with the
gateway. If we do not want to affect access to the gateway, we will set this
string to an empty string and allow everyone to access the gateway. The
communication used to authenticate the devices is encrypted using AES -
CBC 128.

An example of unicast communication could be, when a home assistant
requests gateways, all the identifiers of all connected sensors. The request
only contains a command with a value of get_id_list. The gateway must
acknowledge receipt of the request with the get_id_list_ack command, and
specify a sequence of identifiers in the data entry.

Request:
{

"cmd":"get_id_list"
}

CHAPTER 3. DEVICES 6

Respond:
{

"cmd":"get_id_list_ack"
"sid":"04cf8cb09255"
"token":"58KR9mvOLQ07m4RD",
"data":"[\"sid1\",\"sid2\",\"sid3\"]"

}

3.1.4 Sensors

As mentioned above, we will use the entry model to distinguish communi-
cation. For magnetic sensor, this entry takes the value sensor_magnet.aq2
nad motion sensor takes sensor_motion.aq2.

This entry, but does not identify a specific sensor. To be able to uniquely
determine which sensor it is, we need an ID item, which is a unique identifier
of the device connected directly to the gateway.

Once we are able to identify what type of device it is, and uniquely
determine which device it is, we can focus on what information we can get
from these devices. Information from sensors are transmitted in a data entry
that encloses a sequence of entries for a specific sensor.

In addition to forwarding messages from individual sensors, the gateway
informs the home assistant about its availability. This type of keep-alive
message is transmitted with the heart-beat command, and contains only one
entry in the data entry, the IP address of the device.

In the case of magnetic sensor, the data entry contains a sequence of
items:

• Voltage - current device battery status

• Status - current state of the object, closed or open

A motion sensor contains the following items:

• Voltage - current device battery status

• Lux - current luminance value

Information about individual sensors is grouped into SNMP tables. Each
sensor type represents one table. Below are examples of items in the relevant
tables for magnetic sensor and motion sensor.

aqaraGatewayTableEntry ::= SEQUENCE {
gatewayIndex Integer32,
gatewaySID DisplayString,
gatewayModel DisplayString,

CHAPTER 3. DEVICES 7

gatewayShortID DisplayString,
gatewayToken DisplayString,
gatewayipAddr DisplayString

}

magneticSensorAQ2TableEntry ::= SEQUENCE {
magSensorIndex Integer32,
magSensorSID DisplayString,
magSensorModel DisplayString,
magSensorShortID DisplayString,
magSensorCommand DisplayString,
magSensorVoltage Integer32,
magSensorStatus Boolean

}

motionSensorAQ2TableEntry ::= SEQUENCE {
motionSensorIndex Integer32,
motionSensorSID DisplayString,
motionSensorModel DisplayString,
motionSensorShortID DisplayString,
motionSensorCommand DisplayString,
motionSensorVoltage Integer32,
motionSensorLux Integer32

}

3.2 MQTT broker and sensors

Home assistant has an MQTT broker installed. An MQTT broker is a com-
ponent against which individual devices communicating through the MQTT
protocol must register.They can register resources that they want to share
with devices in IoT network, or request some specific resources and the
MQTT broker will provide them.

Devices communicate via the MQTT protocol using the tasmota firmware.
This firmware allows relative flexibility in the configuration of the sensors.
Allows to configure their attributes and select the type of device.

In our network topology there are several kind of devices using MQTT
protocol. Specifically, these are electrical outlets BlitzWolf SHP6, camera
ESP32-cam.

Electrical outlets periodically send two types of messages that contain
information about the current device and resources status. Both types of
messages are a topic within MQTT communication. These are specifically
topics called sensor_name/tele/State and sensor_name/tele/Sensor.

The topic for monitoring device status includes the following items:

CHAPTER 3. DEVICES 8

• Time - actual time

• Uptime - up time of device

• UptimeSec - up time of device in seconds

• Heap - current device heap

• Sleepmode - how the device switches to sleep mode

• Sleep -

• LoadAvg

• MqttCoung -

• Power - describe actual device state

• Wifi - This entry is a sequence of entries that describe the access point
to which it is connected. These are items such as the SSID, BSSId,
Chanel, RSSI, Signal, LinkCount, Downtime

The topic for monitoring device resources includes the following items:

• Time - current time

• Energy - this entry is a sequence of entries, which include information
about resources. The individual items are described below.

• TotalStartTime - date and time the device was added to service

• Total - total energy consumed

• Yesterday - energy consumed for yesterday

• Today - energy consumed for today

• Period

• Power - current consumed power

• ApparentPower

• ReactivePower

• Factor

• Voltage

• Current

As in the previous case, all types of sensors are included in the SNMP tables.
The items stored in the table for electrical outlets are shown below.

Chapter 4

Data acquisition

In this chapter, we’ll show you how to get sensor information from Home
Assistant. We will show two ways, using SQLite, and MariaDB.

The data acquisition scheme is shown in the figure 4.1. The picture shows
the SNMP agent, which we have not yet mentioned, the following chapteris
devoted to the SNMP agent. As can be seen from the picture, we have
a database that contains records that are processed by the SNMP agent.
Thus, the first step in this schema is to allow the SNMP agent to retrieve
information stored in the home assistant database which we’ll show in this
chapter.

Figure 4.1: Data acquisition scheme

4.1 SQLite in home assistant

As we mentioned, a home assistant is involved in our IoT network. Home
assistant is used to collect all information from the IoT network. It stores
this information in a DB called home-assistant_v2.db.

9

CHAPTER 4. DATA ACQUISITION 10

The database consists of three tables, but we will only be interested in
one, the table states. In order to uniquely identify specific devices, I need
to use a composite key, this key consists of the domain and entity identifier
entries. For example, a domain could be a device type, in our case it could
be sensor_magnet.aq2.

In order to provide the agent with the required information, we created
a script that creates a file for each type of sensor with all the items that we
want to query via the SNMP protocol.

This script contains one function called init_resources whose task is to
create a data file for a specific type of sensor. It has three input arguments:

• Domain - represents the sensor type

• Attributes - sensor attributes specified for the SNMP agent

• File path - path with the file name where the data will be saved

Below is an example of creating data for an agent. Specifically, it is a
gate. First we define the domain, because the domain is the type of device,
our domain is the gateway. Next, we need to define what attributes of
the given types of sensors interest us. As you may have noticed, it is also
necessary to define between the attributes whether the attribute is immersed
in a sequence, such as the ip attribute, which is part of the data item. The
last thing we need to define is the output file. Finally, we just call the
init_resources function with arguments.

GATEWAY_DOMAIN=’gateway’
GATEWAY_ATTRIBUTES="cmd model sid short_id token data.ip"
GATEWAY_FILE_PATH="./gateway.conf"
init_resources "$GATEWAY_DOMAIN" "${GATEWAY_ATTRIBUTES}" "${GATEWAY_FILE_PATH}"

4.2 MariaDB in home assistant

In order to obtain data from the home assistant, we can also use the client-
server method using a database engine, in our case it is the MariaDB database.
But first we need to set the way the data is stored.1.

We will use this method when creating an SNMP agent. We can com-
municate directly with the home assistant database, and we do not need a
script to store the data in a file from which we can process the data.

The way we will process the SNMP agent data will be mentioned in the
chapter 5.

1https://www.home-assistant.io/integrations/recorder/

Chapter 5

SNMP agent

In order to be able to use the SNMP protocol, we need to create an agent
on the device that will serve to monitor the required objects. Our objects
represent different types of sensors connected in the IoT network.

In previous chapter, we seen how we are able to obtain information about
sensors from the home assistant database.

In this chapter, we will focus on how to create an agent for each type of
sensor, and how to obtain information for MIB objects for it.

Before we start generating a template for the SNMP agent, we must have
a MIB database created, because the generation of the template is based on
this information. We have to copy our created database to the folder where
all MIBs are stored, an example is shown below. In case the MIB is not
visible, we have to export it, and we can verify the existence of it with the
snmptranslate command, all these commands are shown below.

sudo cp IOT-MIB.txt /usr/local/share/snmp/mibs/
export MIBS=+IOT-MIB
snmptranslate -Tp -IR agentxIOT

5.1 Creating SNMP agent

In that section we will show how we can create an SNMP agent that will
manage the obtained resources. We will create the agent in python, and use
the pyagentx library. The required packages can be obtained by the following
commands on the CentOS operating system.

sudo yum install python
sudo yum install python-pip
pip install --upgrade pip
pip install pyagentx

11

CHAPTER 5. SNMP AGENT 12

We will show the structure of the program. We can divide it into two
parts, the agent and the part that prepares the data for the agent.

We will create a class that will represent an agent, this class is derived
from the pyagentx.Agent class. In this class we need to register SNMP objects
with their IOD and at the class that will process the object data for the
agent. An example of an agent is shown below. The agent registers one
SNMP table for the magnetic sensor. The IOD used is intended for the
experimental SNMP branch. When we view the SNMP MIB translation, we
can notice that the OID matches exactly one table.

+--agentxIOT(999)
|
+--Tables(1)

|
+--magneticSensorTable(1)

|
+--magneticSensorTableEntry(1)

| Index: magneticSensorIndex
|
+-- -R-- Integer32 magneticSensorIndex(1)
+-- -R-- String magneticSensorState(2)
| Textual Convention: DisplayString
| Size: 0..4
+-- -R-- Integer32 magneticSensorOpenSince(3)
+-- -R-- Integer32 magneticSensorBattery(4)
+-- -R-- String magneticSensorFriednlyName(5)
| Textual Convention: DisplayString
| Size: 0..64
+-- -R-- String magneticSensorIdentifier(6)
| Textual Convention: DisplayString
| Size: 0..64
+-- -R-- String magneticSensorLastChanged(7)
| Textual Convention: DisplayString
| Size: 0..64
+-- -R-- String magneticSensorLastUpdate(8)

Textual Convention: DisplayString
Size: 0..64

CHAPTER 5. SNMP AGENT 13

class IoTAgent(pyagentx.Agent):
def setup(self):

self.register(’1.3.6.1.3.999.1.1’, magneticSensorTable)

5.2 Creating SNMP subagents

In this part we will show the basic principle of creating sub agents that will
process individual types of sensors. First we will create a class that will be
derived from the pyagent.Updater class. This derivation forces the class we
created to implement the update method. This method will be key for us
along with the updateTableEntries method, which we will explain below.

As an example of creating a table for IoT devices, we chose a magnetic
sensor, with class name magneticSensorTable. We will work with several
objects, specifically the databaseObjectList, databesObject and database ob-
jects.

• databaseObject - this object consist all information from database, at-
tributes, identifier, last update time, last changed time. It also contains
methods by which we can query the status and attributes of a given
sensor. These methods are for integer format, and string format.

• databaseObjectList - the task of this class is to keep all sensors of one
type together.Another task it performs is to check whether there has
been a change of state on an object.

• database - this object is used to query information about individual
sensors. It performs another task, this task is that we need to find out
all the names of sensors, of the specified type. We must define in each
class a prefix that represents the name, a substring, of a particular
sensor type that is used to find all sensors of that type.

Once we have imagined all the objects we will need, we can show a small
demonstration of the implementation, and the class diagram that is shown
5.1.

As we can see, the class contains a sensor prefix variable, this variable
is mentioned above as a substring that we use to find all sensors of a given
type.

The update method is iteratively called by the agent, and with each call it
obtains all available sensors and inserts them into the list of objects. Next,
the updateTableEntries method is called, which updates the SNMP table
values based on the list of objects.

CHAPTER 5. SNMP AGENT 14

class magneticSensorTable(pyagentx.Updater):
list_objects = databaseObjectList()
db = database()
sensor_prefix = ’binary_sensor.door_window_sensor’

def update(self):
self.db.connect_to_db()
sensors = self.db.get_sensors_id(self.sensor_prefix)
for sensor in sensors:

db_object = self.db.get_attributes_and_last_update(sensor[0])
self.list_objects.updateObject(db_object)

self.updateTableEntries()

def updateTableEntries(self):
cnt = 1
for sensor in self.list_objects.list:

idx = str(cnt)
self.set_INTEGER(’1.1.’ + idx, cnt)
self.set_OCTETSTRING(’1.2.’ + idx, sensor.get_str_state())
self.set_INTEGER(’1.3.’ + idx, sensor.get_int_attribute(’Open since’))
self.set_INTEGER(’1.4.’ + idx, sensor.get_int_attribute(’battery_level’))
self.set_OCTETSTRING(’1.5.’ + idx, sensor.get_str_attribute(’friendly_name’))
self.set_OCTETSTRING(’1.6.’ + idx, sensor.entity_id)
self.set_OCTETSTRING(’1.7.’ + idx, sensor.last_changed)
self.set_OCTETSTRING(’1.8.’ + idx, sensor.last_updated)
cnt += 1

self.db.close_db_connection()

Oncewe have an subagent created, it’s time to try query inidvidual re-
sources. For example, we can use snmptable tool. In this way, we can query
the entire contents of the table, which will also show us information with
column names. The result is shown in the figure .

CHAPTER 5. SNMP AGENT 15

Figure 5.1: Subagent class diagram

Figure 5.2: Caption

Chapter 6

Nagios installation and
configuration

To make our solution portable, we decided to run the monitoring system on
a virtual machine. We will use the virtualization software VirtualBox1, and
we chose Ubuntu 18.042 as the operating system.

6.1 Virtual machine

To log in, we created the user nagios with the password also nagios.
This step is specified only if the virtual machine is running outside the

company network or when you don’t have permissions connect to server.
After successfully installing the virtualbox, and installing the operating

system, we will need to configure the VPN client. We need to download the
configuration file and run openvpn client with root permissions.

wget https://www.fit.vut.cz/units/cvt/net/FIT.ovpn
sudo openvpn --config FIT.ovpn

6.2 Nagios installation

As a monitoring tool, we chose Nagios core 4.4.5, this tool is freely available,
and provides a wide range of tools, and various plugins. In this section, we’ll
show how to install it on Ubuntu 18.04, and configure it to be able to get
information from an agent that gets information from a home assistant.

First, we will update the Ubuntu repository and install some packages
dependencies for the Nagios installation.

1https://www.virtualbox.org/
2https://ubuntu.com/

16

CHAPTER 6. NAGIOS INSTALLATION AND CONFIGURATION 17

sudo apt update
sudo apt install -y autoconf bc gawk dc build-essential gettext

gcc libc6 make wget unzip apache2 php libapache2-mod-php7.2
libgd-dev libmcrypt-dev make libssl-dev snmp libnet-snmp-perl

As soon as we have the packages downloaded and installed, we need to
download the source files for Nagios core 4.4.5, and extract them to a folder.

tar xzf nagios-4.4.5.tar.gz
wget https://github.com/NagiosEnterprises/nagioscore/archive/nagios-4.4.5.tar.gz
cd nagioscore-nagios-4.4.5/

First, compile Nagios source code and define the Apache virtual host config-
uration for Nagios.

sudo ./configure --with-httpd-conf=/etc/apache2/sites-enabled
sudo make all

Create the Nagios user and group, and add the ’www-data’ Apache user to
the nagios group.

sudo make install-groups-users
sudo usermod -a -G nagios www-data

We will now install Nagios along with the daemon and command mode,
which we will work with later.

sudo make install
sudo make install-daemoninit
sudo make install-commandmode

Run script for sample configuration.

sudo make install-config

Install apache configuration for Nagios, activate mode for rewrite and cgi
modules and restart apache service.

sudo make install-webconf
sudo a2enmod rewrite cgi
systemctl restart apache2

We should have installed the Nagios kernel, now we need to add basic user
authentication. We will create the user nagiosadmin, and as the password
we will choose the same as the username, nagiosadmin.

sudo htpasswd -c /usr/local/nagios/etc/htpasswd.users nagiosadmin

CHAPTER 6. NAGIOS INSTALLATION AND CONFIGURATION 18

The next step will be the administration of the firewall, where we will
enable all the services necessary for the operation of Nagios core.

sudo ufw allow Apache
sudo ufw reload

The last step in completing the Nagios core installation is to add the
basic plugins.

sudo apt install nagios-plugins nagios-nrpe-plugin

To have Nagios and plugins in one place, we need to copy them, we can
use the sequence of commands below.

cd /usr/local/nagios/
sudo mkdir plugins
sudo cp /usr/lib/nagios/plugins/* ./plugins/

To verify that our installation process was successful, we will log in to
the application available at https://localhost/nagios. After successful login,
in the left menu we select the item hosts, in which we can see the current
status of our virtual machine.

We will also check the availability of downloaded plugins. In the left
menu we will now select the item services, which will show us the current
status of services such as http, ping, and the like on the picture 6.1.

Figure 6.1: Localhost services

CHAPTER 6. NAGIOS INSTALLATION AND CONFIGURATION 19

6.3 Nagios configuration

In that section, we’ll show you how to add a new device to your Nagios
system and how to monitor its services. We need to modify the nagios.cfg
configuration file, which is stored in /usr/local/nagios/etc/ the directory.
In the configuration file we can directly define the directory from which the
configuration for Nagios will be loaded, or only one file. All the information
we want to find out is stored on one server, so we will only add the path to
the file like file for localhost.

cfg_file=/usr/local/nagios/etc/objects/localhost.cfg
cfg_file=/usr/local/nagios/etc/objects/hassio.cfg

We will now discuss how to properly fill in the configuration file for the
new device. First we need to define what device it is, host name, alias and
IP address. If we did not use use linux-server, we would have to fill in other
mandatory fields3. An example is shown below.

define host{
use linux-server
host_name example
alias example
address 192.168.0.1

}

Once we have added a new device, it’s time to assign it some services
that we will monitor. We will show the addition of a new service on the
PING service.

As with the definition of a new device, some items must be filled in, we
can use for example the use general-service setting. Next, we need to identify
the device to which the service applies, add a comment on what the service
should do, and finally add the settings that will perform the service.

Now let’s look at the structure behind check_command.

• check_ping - this section defines which plugin should be called when
calling this service. If we look in the plugins directory, we will find the
check_ping program there.

• !100.,20% - char "!" is used as a delimiter for the arguments that you
use to define the command that we show in section 6.4.

3https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/objectdefinitions.html

CHAPTER 6. NAGIOS INSTALLATION AND CONFIGURATION 20

define service{
use generic-service
host_name example
service_description Ping example
check_command check_ping!100.0,20%!500.0,60%

}

We will use the commands below to verify the configuration and restart the
Nagios service.

/user/local/nagios/bin/nagios -v /usr/local/nagis/etc/nagios.cfg
service nagios restart

6.4 Plugin for SNMP table

There is nothing in the basic plugins to help us monitor an agent on a remote
device. We will use a freely available plugin called check_snmp_table4.
After downloading, unzip the plugin, rename it so that it does not have the
.pl extension, and copy it among other plugins.

In order to run a new plugin, we need to install new packages, which we
install into the following sequence of commands.

sudo perl -MCPAN -e ’install XML::Simple’
sudo perl -MCPAN -e ’install Monitoring::Plugin’

Due to the dependency between packages, we need to rename them in
the check_snmp_table file Nagios::Plugin to Monitoring::Plugin. In order
to verify the functionality of the plugin, we therefore need to create an XML
file, which we will show in section 6.5.

In order to use this plugin, we must first define a command to call it.
Commands are created in a file /usr/local/nagios/etc/objects/commands.cfg.
The command consists of two parts, its name and method of execution. The
command name will be used when creating a new service. The first argument
defines the destination address, and the second argument will contain our
arguments that we will add when defining the service, specifically the path
to the XML file.

define command{
command_name check_snmp_table
command_line $USER1$/check_snmp_table -H $HOSTADDRESS$ $ARG1$

}
4check-snmp-table.ommeluse.de/podwiki.pl?page=check_snmp_table_download

CHAPTER 6. NAGIOS INSTALLATION AND CONFIGURATION 21

6.5 Import SNMP table to Nagios

Before we start adding our SNMP tables, we will create a directory in which
we will store XML files that will define our monitoring parameters.

mkdir /usr/local/nagios/etc/objects/tables

Below is an example of an XML file that is intended for a motion sensor, its
task is to monitor the current battery status of individual sensors. We will
gradually analyze what the individual items in the XML file mean.

The XML file is divided into two main elements, general and status. The
first general element contains elements that define basic information about
the table, and the status element contains tests that will check the status of
sensors.

<?xml version=’1.0’?>
<config>

<general>
<description>MotionSensor battery</description>
<name>1</name>
<type>static</type>
<base_oid>1.3.6.1.3.999.1.2.1</base_oid>
<index>4</index>
<method>AND</method>

</general>
<status>

<test>
<item>motionSensorBattery</item>
<check_oid>5</check_oid>
<critical>15:</critical>

</test>
</status>

</config>

• description - a description that will be displayed along with the mes-
sage.

• name - sub OID that we can use as an identifier that we will display
when reporting the message with current status.

• type - its define type for IOD, in dynamic state we can use for example
regex to define OID.

• base_oid - OID for SNMP table.

• index - define sub identifier for table entry.

CHAPTER 6. NAGIOS INSTALLATION AND CONFIGURATION 22

• method - define how to sum up all return value from tests.

• test - tests in the status element, this element can contain several tests,
if we use a larger number of tests to evaluate the state of the object,
we must define how to evaluate these tests, using the method AND,
OR, MIN. Each test can also contain sub tests, with the same rule as
the element status.

• item - this element describe structure of sub OID

• check_oid - element whose value will be checked.

• critical - in this element we define the value from which it will be
considered like critical. Last char in our critical element is : which
describe, that value lower then 15 is critical, othewise char . is used
for greater values.

• warning - in this element we define the value from which it will be
considered like warning.

• string - comparing string value in sub OID, reporting is same like crit-
ical or warning.

We have almost everything ready so that we can obtain information from
the SNMP agent and display it in the Nagios software. The last step is to
create the services in the configuration file as we mentioned in section 6.3.
Below is an example that we used to monitor the battery status of the motion
sensor. Where path is /usr/local/nagios/etc/objects/table/.

define service {
use generic-service
host_name hassio
service_description Motion sensor - battery
check_command check_snmp_table!-c public -f /path/file.xml

}

6.6 Monitoring

To monitor the status of sensors from the home assistant, we have created
several usage examples. An example is the monitoring of the battery status
of individual sensors, which was used in the motion and magnetic sensor,
whose outputs are shown in the pictures.

With the magnetic sensor, we have information on how long it is in the
open state, how suddenly the duration is longer than ten minutes, it will be
reported as a warning.

CHAPTER 6. NAGIOS INSTALLATION AND CONFIGURATION 23

Figure 6.2: Nagios - motion sensor battery state

With the motion sensor, we have information about the status or whether
motion was detected, and we decided to add this information to Nagios.

Another sensor that we monitor with Nagios is a smart socket SHP6, this
sensor connects to Wi-Fi, and I monitor the signal strength, this parameter
can be significant, so we added it, and checks whether the signal level does
not fall below fifty percent. Together with this parameter, we monitor the
current voltage in the socket, at which we monitor whether the voltage value
does not reach over 250 volts.

CHAPTER 6. NAGIOS INSTALLATION AND CONFIGURATION 24

Figure 6.3: Nagios - magnetic sensor battery state

Bibliography

25

Appendix A

Floor plan

The picture A.1 shows the floor plan where the IoT network is located.
Attached to this image is a table A that contains information about the
distribution of sensors in the rooms.

Figure A.1: Floor plan

26

APPENDIX A. FLOOR PLAN 27

Room Friendly name Protocol Destination Destination Addr
C303 C303 Motion 1 Wifi/ZigBee Gateway C304 192.168.11.211
C304 C304 Motion 1 Wifi/ZigBee Gateway C304 192.168.11.211
C304 C304 Motion 2 Wifi/ZigBee Gateway C304 192.168.11.211
C305 C305 Motion 1 Wifi/ZigBee Gateway C304 192.168.11.211
C305 C305 Motion 2 Wifi/ZigBee Gateway C304 192.168.11.211
C306 C306 Motion 1 Wifi/ZigBee Gateway C304 192.168.11.211
C306 C306 Motion 2 Wifi/ZigBee Gateway C304 192.168.11.211
C307 C307 Motion 1 Wifi/ZigBee Gateway C307 192.168.11.212
C307 C307 Motion 2 Wifi/ZigBee Gateway C307 192.168.11.212
C304 C304 Door Wifi/ZigBee Gateway C304 192.168.11.211
C305 C305 Door Wifi/ZigBee Gateway C304 192.168.11.211
C306 C306 Door Wifi/ZigBee Gateway C304 192.168.11.211
C307 C307 Door Wifi/ZigBee Gateway C307 192.168.11.212
C304 C304 Window - Left Wifi/ZigBee Gateway C304 192.168.11.211
C304 C304 Window - Right Wifi/ZigBee Gateway C304 192.168.11.211
C305 C305 Window Wifi/ZigBee Gateway C304 192.168.11.211
C306 C306 Window Wifi/ZigBee Gateway C304 192.168.11.211
C307 C307 Window Wifi/ZigBee Gateway C307 192.168.11.212
C308 C308 Window - Right Wifi/ZigBee Gateway C308 192.168.11.213
C306 SHP6_kavovar_delongi Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_kavovar_saeco Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_konvica Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_ladnicka Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_nes_ap1 Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_nes_ap1 Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_pc_koutensky Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_pc_letavay Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_pc_lichtner Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_pc_mucka Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_pc_pluskal Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_pc_sperka Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_pc_vecerka Wifi/MQTT MQTT Broker 147.229.13.92
C306 SHP6_ventilator Wifi/MQTT MQTT Broker 147.229.13.92
C304 Gateway C304 Wifi/UDP Home assistant 192.168.11.10
C307 Gateway C307 Wifi/UDP Home assistant 192.168.11.10
C308 Gateway C308 Wifi/UDP Home assistant 192.168.11.10
C310 Gateway C310 Wifi/UDP Home assistant 192.168.11.10
C306 C306 Air Quality Monitor 1 Wifi/UDP Home assistant 192.168.11.201
C306 C306 Air Quality Monitor 2 Wifi/UDP Home assistant 192.168.11.202
C306 C306 Air Quality Monitor 3 Wifi/UDP Home assistant 192.168.11.203
C306 C306 Air Quality Monitor 4 Wifi/UDP Home assistant 192.168.11.204

Table A.1: Distribution of sensors

	Introduction
	Structure of the Report
	Acknowledgement

	Topology
	Devices
	Xiaomi aqara Gateway and sensors
	Message format
	Communication analysis
	Communication protocol
	Sensors

	MQTT broker and sensors

	Data acquisition
	SQLite in home assistant
	MariaDB in home assistant

	SNMP agent
	Creating SNMP agent
	Creating SNMP subagents

	Nagios installation and configuration
	Virtual machine
	Nagios installation
	Nagios configuration
	Plugin for SNMP table
	Import SNMP table to Nagios
	Monitoring

	Floor plan

