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Abstract—A computing power is important in space appli-
cations where a utilization of FPGAs is very useful. However,
the FPGAs are susceptible to manifestations of radiation which
can cause malfunction. Particularly dangerous are configuration
memory faults known as Single Event Upsets (SEUs), which
can lead to the entire system failure. Therefore, the fault-
tolerant techniques are used to prevent system failures. The main
motivation for the use of these techniques is to maintain the
correct behavior of the system despite the occurrence of faults. In
addition to fault masking, which only delays system failures due
to fault accumulation, the utilization of fault mitigation by partial
dynamic reconfiguration was used. Everything needed is provided
by the reconfiguration controller, which is a necessary additional
component of the entire system. It is also very convenient to
be able to detect the occurrence of fault in the system. After
that, the system need not be restored unnecessarily, which saves
useless work of the controller. The aim is to evaluate the benefit
of reconfiguring damaged parts of the system to increase fault
tolerance. In all experiments, an experimental platform was used
that emulates an electromechanical system, which consists of a
robot control unit on an FPGA and a simulation of their behavior
on a PC. Artificial faults have been injected into the FPGA
configuration memory that corresponds to this controller.

Keywords—Fault Tolerance, Partial Dynamic Reconfiguration
Controller, FPGA, Reliability Analysis.

[. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are widely
used in various systems, where the emphasis is mainly on
computing power and also on flexibility. However, when used
in higher radiation environments such as space applications,
configuration memory faults known as Single Event Upsets
(SEUs) [1] occur. Such configuration corruption will cause an
unexpected change in behavior, and this can lead to a total
system failure. Fault Tolerance (FT) [2] techniques ensure that
the system functions properly despite the occurrence of such
faults.

The effect of radiation on the FPGA is described in details
in [1]. The individual types of failures are classified here
and each is accompanied with a thorough description of the
interference, in which parts they arise and what they cause.
Finally, the authors state the need to be able to repair SRAM-
based FPGAs for the use in space applications such as using
scrubbing. Not only the use of TMR, but also other options to
ensure fault tolerance are discussed in [3]. These are different
approaches from fault avoidance to various methods of repair
after failure. It also deals with increasing the resilience of Block
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Random Access Memories (BRAMs) that are present on the
FPGA chip. The authors of Article [4] also compare different
approaches to scrubbing, i.e. repair after a failure by means
of reconfiguration. They discuss either the position of the
scrubbing control unit or evaluate a new cell for SRAM and its
possible use to increase durability. The use of FPGAs in space
is also discussed in the paper [5], where the authors introduced
nanosatellite equipment into which various research systems
can be implemented. Reconfiguration is used here to change
the function, but also to recover from a failure. In addition, a
strategy is prepared for less and more important parts, so that
the management system, for example, has priority over others.
There are also several possible stages of reconfiguration, where
at first they try to repair only small parts of the FPGA and
in case of failure then the whole FPGA. Paper [6] focuses
on testing different approaches to increasing fault tolerance.
It introduces the simulation of different environments by
artificially injecting faults into the design in HDL and sub-
sequent evaluation. Such an evaluation must be more time
consuming than direct injection into a running system and,
moreover, does not lead to its configuration. The creation of
robust system based on softcore processors is dealt with in
paper [7]. It is based on two processors in a Duplication with
Comparison (DwC) scheme and a reconfiguration controller
implemented in other softcore processors and in addition in
TMR. The unit comparing the outputs of both processors
is further provided with context switching logic. In case of
a fault, the processor is shut down, reconfigured and then
synchronized using the context recovery block. This is a very
useful approach for a system implemented in a processor. We
based the design on the approach described in [8], i.e. to secure
the system by masking with the help of TMR and to repair the
failed module by partial dynamic reconfiguration. In addition,
we will compare this approach with previous methods without
reconfiguration and thus evaluate the possible contribution to
the resilience of the system in a real environment.

This article is organized as follows. Section II is devoted
to the overall platform on which robustness is evaluated. An
integral part of it is also a fault injector and a tested system.
It also deals with the used reconfiguration controller and dis-
cusses the preparation of experiments to evaluate the resilience
of the system to failures. The following is an evaluation of the
experiments from several perspectives in Section III. These are
the system resilience in different environments and the benefits
of reconfiguration. Finally, the whole paper is summarized in
Section IV.



II. EVALUATION PLATFORM FOR FAULT TOLERANCE

TESTING

An experimental system designed specifically for this pur-
pose was chosen to investigate fault tolerance. This system
consists of an electronic control unit implemented to the FPGA
and a controlled mechanical part [9]. This approach allows
us to monitor the effect of faults both on the output of the
electronic part and on the behavior of the mechanical part. Fur-
thermore, to increase its resilience, a TMR will be used, which
will be further equipped with the ability to repair the affected
module by means of reconfiguration. The reconfiguration of
the damaged module itself will be controlled by its controller, a
specially added component to the system. The Generic Partial
Dynamic Reconfiguration Controller (GPDRC) [10] that is
implemented directly into the FPGA was selected.

For our experiments, we used ML506, an evaluation board
with Virtex 5 FPGA from Xilinx. The reason for our choice
are pre-built proven tools, such as an external fault injector
[11], which uses partial reconfiguration to swap one bit in
the FPGA configuration memory and communicates via JTAG.
The main advantage of this concept is the ability to test the
design without any additional components on the FPGA, so the
final design is tested without any modifications. Only exclusive
access to the configuration memory between the reconfigura-
tion controller and the fault injector must be provided.

The exact composition of the resulting experimental system
is shown in Figure 1, where it is possible to see the distribution
of individual units between the PC and the evaluation board
with FPGA. An evaluation platform runs on the PC, which
evaluates the control signals from the examined unit on the
FPGA, it also provides its configuration and fault injection into
the configuration memory. The control signals are transmitted
via Ethernet and other communication is provided via the
JTAG interface and Platform Cable, which is connected via
USB to PC. Virtex-5 FPGA and flash memory are used from
the evaluation board. The investigated robot controller in TMR
with the majority that can determine the failed module is on the
FPGA. This is exactly the part of the FPGA into which faults
are injected, i.e. more precisely into the relevant configuration
memory. Another unit on the FPGA provides communication
between the robot controller and the monitor on the PC. The
last unit is the GPDRC reconfiguration controller, it is based
on information from the voter and ensures the reconfiguration
of the particular failed module. Thus, it reads the relevant
data (golden bitstream) from the flash memory and ensures its
loading into the configuration memory via the ICAP interface.

A. Description and setup of Experiments

Our experimental system, the robot controller, is tested in
various degrees of a critical environment, which is given by
the number of faults per time unit per bit of configuration
memory of the tested system. The very useful unit is inj/s/bit
introduced in [12], which describes the same state, because
the faults injection corresponds to the faults that occurred
naturally.

The individual experimental runs are divided into sets
with the same intensity of disturbances. Each such set of
experiments consists of 5000 runs. In one run, the robot takes
204 s to pass through the maze from the starting position to the
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Figure 1: The overview of our evaluation platform alongside
with the TMR version of the robot controller, including the
GPDRC.

desired target. The maze consists of a square grid, where the
individual squares are either a corridor or a wall. If the robot
is lost, the experiment is terminated after the 324s timeout.

Each of the 3 robot controller modules in the TMR
occupies 331kB of configuration memory, which together
corresponds to almost 1 MB and thus 8 million bits that can
be affected by the fault. Therefore, to speed up the evaluation
of fault tolerance, we use injection only into configuration
bits that correspond to the design LUTs used. There are only
353440 bits for comparison, i.e. about 25 times less. The
obtained results will be comparable, because this method is
used in all experiments.

B. Reconfiguration of Sequential Circuits

Our initial intention to create a fault-tolerant control system
was to extend the majority voter by identifying the module
affected by the fault and adding a reconfiguration controller
that reconfigures the failed module. For the subsequent syn-
chronization of individual TMR modules, their Reset signal
would be used, which would reset them to the default state.
Then the operation of the whole system would be virtually
uninterrupted. This original assumption of ours turned out
to be wrong, because after the repair, the system cannot
return to its initial state, but must at least partially retain its
state. It is therefore necessary for each system, based on its
careful analysis, to design a method of synchronization of
individual modules, i.e. to ensure that the reconfigured module
gets into the same state as other undamaged modules before
commissioning.

After a thorough analysis, the moment when the robot
in the middle of the maze field decides where to go next
was chosen for the synchronization of the modules after the
reconfiguration. At this point, only the direction in which the
robot got to this field needs to be shared between the modules.
So after the reconfiguration repair, the repaired module is
kept in reset until the appropriate time for synchronization
occurs. Then the values from the other modules are copied
to this module via the majority and thus the functionality is
completely restored.



III. EXPERIMENTAL RESULTS

The results of the experiments are divided into two parts,
which correspond to the following views:

e At first perspective, the contribution of reconfiguration
to fault tolerance depending on the growing level of the
critical environment is investigated.

e Furthermore, the benefit of reconfiguration to increase
system fault tolerance is compared to previous versions,
where the system was unprotected or only equipped with
TMR to increase the resilience to faults.

A. Fault Tolerance of the Reconfigured System

Thanks to the chosen evaluation platform, the resilience of
the robot controller itself is monitored, but also the impact on
its physical activity. Therefore, there may be a situation where,
despite the failure of the electronics, the robot arrives at its
destination. The “natural” resilience of the physical system to
control failure is also taken into account.

The results of the individual sets are summarized in the
Table I. The first columns are the environment specification,
which is expressed by the number of faults injected per second
per bit of configuration memory. For better imagination, the
intensity of faults is expressed as the frequency of faults, i.e.
the average time between the occurrence of individual faults.
This interval is randomly selected with a uniform distribution
from a 2 second range with the mean value given in the
table. The reason is to get as close as possible to the natural
environment. Each fault is injected only into the configuration
memory of the robot controller, i.e. into all its modules in the
TMR. The next columns show the number of runs in which the
robot reached the expected goal, as well as their percentage.
The next columns, on the other hand, represent the number and
the percentage of runs in which the goal was not reached. The
last columns summarize the runs during which the electronics
failed, i.e. the robot controller does not provide the expected
control signals.

TABLE I: The Classification of Results According to Goal
Achievement and Electronics Failure Depending on the Inten-
sity of Faults

[ Intensity of faults | Goal reached [  Goal failed [ Electronics failure |
[avels] [ [inj/s/bit] | 1 [ (% [ 1 [ (%@ [ [ [ 1% |
28 1.01E-07 4964 99.28% 36 0.72% 48 0,96%

21 1.35E-07 4951 99.02% 49 0.98% 56 1,12%

15 1.89E-07 4901 98.02% 99 1.98% 117 2,34%

10 2.83E-07 4783 95.66% 217 4.34% 275 5,50%

8 3.54E-07 4717 94.34% 283 5.66% 343 6,86%
6 4.72E-07 4517 90.34% 483 9.66% 627 12,54%
4 7.078E-07 4083 81.66% 917 18.34% 1123 22,46%

The expected trend was confirmed, with the increasing
number of injected faults per second per bit, also the number of
runs of experiments in the set increases, during which the robot
does not reach the expected target in the maze. The number
of runs when the electronics failed is growing at a faster rate.
With the intensity of faults, the number of runs during which
the robot reached the goal despite the failure of the electronics
also increases. For a better view of these dependencies, they
are plotted in the chart in the Figure 2. The second half of
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the chart, i.e. the higher intensity of faults, shows in both
cases a practically linear increase in the incidence of failures.
In contrast, the part with a lower incidence of disturbances
indicates a gradual, slow convergence to zero. We explain this
in such a way that, despite the sufficient time for reconfig-
uration and subsequent synchronization of the modules, in
some cases a situation may occur in which the fault simply
results in an error. Another possibility may be that a fault
in the configuration memory will cause an error in the data,
and therefore its repair itself may not immediately lead to the
restoration of a fault-free state.
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Figure 2: Chart of failure dependencies (runs of experiment
where the goal is not reached and when the electronics failed)
on the level of critical environment expressed by the number
of faults per unit time and area.

B. Improving Fault Tolerance by Using Reconfiguration

The goal of using reconfiguration is to provide a higher
level of fault tolerance and thus not only to disguise the
faults but also to be able to recover from them. Therefore,
the obtained results of the experiment are compared with the
results of the previous research [13]. The robustness of the
basic system without providing techniques to increase the FT
and the version in TMR were investigated there. The results
are simply comparable, as it is an incremental increase in fault
tolerance by first only masking the faults and then adding the
possibility to reconfigure the modules affected by the fault.
The same conditions were always set, i.e. 5000 runs and
injections every 15 seconds into the control unit in the TMR
(corresponding to approximately 45 seconds into each of the
units). This comparison is summarized in Table II. At the top
there are the numbers of successful runs in which the robot
reached the desired target and also the runs in which it failed.
The stated values are given both in absolute terms and their
percentage in individual sets. The lower part of this table then
expresses the percentage improvement in reliability according
to the Equation 1, where new is with higher robustness and
with original it is compared.

TABLE II: The Comparison of Fault Tolerance of the Original
Version, Version Using Only TMR and TMR with Reconfig-
uration

noFT[13] TMR[13] Reconfiguration
[-] %] [-] [%] [-] [%]
Goal reached | 3571 71.42% | 4839 | 96.78% | 4901 98.02%
Goal failed 1429 | 28.58% 161 3.22% 99 1.98%
Reliability | noFT [ 88.73% [ 93.07% |
improvement | TMR [ 38.51% |




failures,rigina — fatlures ey

failureSm"iginal

reliab_improv = -100 (1)

The above comparison shows a more than 90% improve-
ment in reliability over the original unprotected version.
Adding reconfiguration to TMR version increases resiliency by
almost 40%. This improvement is at the expense of increasing
the occupied area on the FPGA by approximately 17% — 24%
compared to the version of the robot controller in TMR. More
details about the occupied area of each version are given
in Table III, where it is possible to see how much space
the individual designs of Registers, LUTs and Slices occupy.
Then there is an increase in the version with reconfiguration
compared to other versions in individual types of resources.

TABLE III: Utilization of FPGA Resources
Versions of the Robot Controller Design

in Individual

Version Register LUT Slice
noFT [14] 1617 1708 1080
TMR [14] 4755 5165 2991
Reconfiguration 5887 6264 3495
Increase Reconfiguration resources to:
[ noFT [ 264% [ 267% [ 224% |
\ TMR | 24% | 21% | 17% |

IV. CONCLUSIONS

The fault tolerance of the control system on the FPGA
equipped with fault masking by means of TMR and correction
by means of reconfiguration was evaluated in this paper. This
combination was chosen so that the system could operate
continuously without interruption to resume operation after a
failure occurred. These approaches were provided with a robot
controller, the aim of which is to find its way to the target
by navigating the maze. The main advantage of its use was
that it is a part of a platform that evaluates fault tolerance in
terms of both electronics and physical expression. Thus, the
effects of controller failures on the behavior of the robot itself
and whether it still achieves the desired goal were evaluated.
The faults were artificially injected directly into the FPGA
configuration memory.

First, it was evaluated how our system will perform in
environments with different intensity of failures. As expected,
with the increasing intensity of failures, the probability of
system failure also increased. However, even the very low
intensity of failures led to a significant probability of system
failure. Therefore, to further increase the resilience, it would be
appropriate to add another stage, for example, the possibility
of reconfiguring the entire FPGA with an external way.

Furthermore, the benefit of reconfiguration compared to
a system using only TMR and a non-resilient system was
evaluated. A system with reconfiguration repair is by 93%
more reliable than the original system. Compared to the TMR
version, the probability of failure has been reduced by 38%.

Future work will be aimed at increasing the resilience
of our reconfiguration controller itself, which is one of the
last remaining unprotected elements of the entire robustness
system. This is an important part of our work, where we want
to compare the various approaches to the implementation of
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these controllers and evaluate their impact on the resulting
system. We consider it crucial to compare different approaches
to control the reconfiguration of an autonomous system, where
such a controller can be directly on the FPGA with the system,
i.e. either hardcoded or as a processor (soft or hard core), as
well as an external component.

ACKNOWLEDGEMENTS

This work was supported by the BUT project FIT-S-
20-6309 and the JU ECSEL Project SECREDAS (Product
Security for Cross Domain Reliable Dependable Automated
Systems), Grant agreement No. 783119.

REFERENCES
[1]

H. Quinn, “Radiation effects in reconfigurable FPGAs,” Semiconductor
Science and Technology, vol. 32, no. 4, p. 044001, mar 2017. [Online].

Available: https://doi.org/10.1088/1361-6641/aa57f6

I. Koren and C. M. Krishna, Fault-Tolerant Systems.
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
Radiation Effects in SRAM-Based FPGAs for Space Applications,”
ACM Comput. Surv., vol. 47, no. 2, pp. 37:1-37:34, Jan. 2015.

T. S. Nidhin, A. Bhattacharyya, R. P. Behera, and T. Jayanthi,
“A Review on SEU Mitigation Techniques for FPGA Configuration
Memory,” IETE Technical Review, vol. 35, no. 2, pp. 157-168, 2018.
[Online]. Available: https://doi.org/10.1080/02564602.2016.1265905

C. Fuchs, N. Murillo, A. Plaat, E. Kouwe, D. Harsono, and T. Stefanov,
“Fault-Tolerant Nanosatellite Computing on a Budget,” 09 2018.

T. S. Nidhin, A. Bhattacharyya, R. P. Behera, T. Jayanthi, and
K. Velusamy, “Dependable system design with soft error mitigation
techniques in SRAM based FPGAs,” in 2017 Innovations in Power and
Advanced Computing Technologies (i-PACT), 2017, pp. 1-6.

H. Pham, S. Pillement, and S. J. Piestrak, “Low-Overhead Fault-
Tolerance Technique for a Dynamically Reconfigurable Softcore Proces-
sor,” IEEE Transactions on Computers, vol. 62, no. 6, pp. 1179-1192,
2013.

C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and Partial
Dynamic Reconfiguration to Mitigate SEU Faults in FPGAs,” in 22nd
IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems (DFT 2007), Sept 2007, pp. 87-95.

J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova, M. Krcma, and
Z. Kotasek, “Functional verification based platform for evaluating fault
tolerance properties,” Microprocessors and Microsystems, vol. 52, pp.
145 - 159, 2017.

M. Straka, J. Kastil, and Z. Kotasek, “Generic Partial Dynamic Recon-
figuration Controller for Fault Tolerant Designs Based on FPGA,” in
NORCHIP 2010. IEEE Computer Society, Nov 2010, pp. 1-4.

M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. TEEE
Computer Society, 2011, pp. 223-230.

J. Lojda, J. Podivinsky, Z. Kotdsek, and M. Kr¢ma, “Majority Type
and Redundancy Level Influences on Redundant Data Types Approach
for HLS,” in 2018 16th Biennial Baltic Electronics Conference
(BEC). 1EEE Computer Society, 2018, pp. 1-4. [Online]. Available:
https://www.fit.vut.cz/research/publication/11600

J. Podivinsky, J. Lojda, O. Cekan, and Z. Kotasek, “Evaluation platform
for testing fault tolerance properties: Soft-core processor-based experi-
mental robot controller,” in 2018 21st Euromicro Conference on Digital
System Design (DSD), 2018, pp. 229-236.

J. Podivinsky, J. Lojda, O. éekan, R. Pinek, and Z. Kotdsek,
“Reliability Analysis and Improvement of FPGA-based Robot
Controller,” in Proceedings of the 2017 20th Euromicro Conference on
Digital System Design. 1EEE Computer Society, 2017, pp. 337-344.
[Online]. Available: https://www.fit.vut.cz/research/publication/11425

[2]

San Francisco,

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]



