Testing Embedded Software Through
Fault Injection: Case Study on Smart Lock

Jakub Lojda, Richard Panek, Jakub Podivinsky, Ondrej Cekan, Martin Krcma, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations
Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, ipanek, ipodivinsky, icekan, ikrcma, kotasek } @fit.vutbr.cz

Abstract—The growing chip-level integration results in a
higher susceptibility to faults of today components. This also
relates to commonly used storage memories. A charged particle
causes bit flip and a program stored in such memory starts
to behave differently from it was supposed to. Even worse,
such bit flips can be induced also on purpose to tamper with
a device. While the so-called smart devices are becoming still
more popular these days, such failure or even tampering of
them is very undesired. A smart electronic lock can serve as an
example. This is why in this paper, we evaluate the consequences
of such program corruption. We target smart lock operation on
several computer architectures and show the results on our case
study observing the change of the lock behavior. We present our
Evaluation Environment that is able to connect with single-board
computers and evaluation Kkits to test the SW behavior on them,
which is done under the presence of faults in the tested SW.
Our results indicate that the most sensitive part of a program is
generally the loading of shared libraries. Problem in this process
results in inability to load the program. Segmentation Fault and
early termination of the program (e.g. problem in the logic of
motor cycle counting) is also serious. The least problematic,
according to our observations, is the syntactic error in the output
data. In such cases, the motor driver ignores corrupted commands
and the motor move is not smooth. Certain findings from the
experimental part of this paper, can be generalized to other
devices as well.

Keywords—Electronic Lock, Stepper Motor, Software Fault
Injection, Evaluation Environment, Linux, ARM, x64.

I. INTRODUCTION

Electronics is everywhere around us and its usage is
still growing. The increasing chip-level integration allows to
implement complex systems into a very small area on a chip.
But it also brings problems such as its higher susceptibility to
failures. This is why certain systems are built with hardened
reliability in mind. Reliable electronic designs are usually
embedded in systems the reparation of which would be very
expensive or even impossible (e.g. space satellites) or in
systems where a failure would be very dangerous (e.g. medical
equipment). However, the usage of reliable design also makes
sense for a certain part of the consumer electronics sector.

The so-called smart devices are penetrating into our lives.
One example of such a device is the so-called smart electronic
lock. It is an improved version of an ordinary door lock.
It benefits from the possibility to authenticate its user by
other means, such as passwords or dual-tone multi-frequency
signal [1]. The authentication can be even based on the
recognition of a color [2], which then serves as a password.
However, in order to achieve a high level of security, authen-
tication methods should be combined [3]. Certain electronic

978-1-6654-2057-0/21/$31.00 ©2021 IEEE

locks can be connected to a local network [4]. A detailed
description of such access control systems can be found in [5].

The consumer electronics is not usually considered to be
safety-critical. Such electronics includes, for example, home
assistants and other home automation systems and actuators,
the popularity of which is rising sharply in recent times.
The failure of such devices can be in certain circumstances
potentially dangerous to human or animal health or eventually
present a risk of financial losses. The failure can be introduced
intentionally by an attacker or naturally because of aging of
the device. Even for such types of systems, the consequences
of their potential failure should be well analyzed and proper
precautions done. Devices that perform decisions or guard the
accessibility of certain places, such as transportation cabins or
rooms in a building, must maintain certain level of reliability
and security. For example, blocking of an electronic lock or an
authentication terminal of an entrance during a fire, creates a
very unnecessary obstacle. Research in the field of security of
smart electronic locks is nowadays discussed in the literature.
For example, the authors of [6] present security analysis of
a commercially available smart electronic lock. In paper [7],
other authors show security problems of another commercially
available smart lock. It turns out that the back-end services
suffered several vulnerabilities.

Any software can be analyzed on random and deliberate
faults using the so-called fault injection, which is an artificial
incorporation of faults into a software (e.g. a source code or the
machine code). After a fault is injected, the altered behavior
of the software can be observed and evaluated, which provides
us with the insight to the software robustness. Specifics of the
CPU architecture might contribute to this result. Fault injection
into software is also a topic studied in the current literature.
For example, the authors of [8] propose a novel technique
called G-SWFIT, which uses operator emulation. The paper [9]
presents a fault injection system called Debug-based Dynamic
Software Fault Injection System. The authors of papers [10],
[11] propose a method based on the QEMU simulator. In [12],
the authors put software fault injection into the context of soft-
ware certification. The authors of [13] demonstrate a software
fault injection model based on the so-called software mutation.
The authors of [14] propose a fault injection testing approach
that accelerates the process of evaluation. Nonetheless, none
of these addresses the consequences of fault injection into
an advanced Internet of Things (IoT) device running on an
embedded operating system. In our previous research, we
focused on fault injection into CPU logic and memories of an
embedded microcontroller on a smart lock with the usage of
our Field Programmable Gate Array (FPGA)-based fault injec-
tion evaluation platform [15]. These were, however, targeting

the simplistic smart lock implementation on a microcontroller,
i.e. without the involvement of the embedded operating system.

This paper contribution targets two main areas. 1) It is the
contribution to a specific case of testing SW on embedded
operating system on various computer architectures. We do
consider the SW only (i.e. the operating system is not under
the fault injection). We do this by utilizing our new Evalua-
tion Environment, which connects to commercially available
single-board computers or evaluation kits, to provide severe
testing before the SW itself is considered robust. Our proof-
of-concept implementation of the presented architecture shows
that it is possible, with certain limitations, to test the software
with such concept. 2) Another contribution is the case study
targeting the motor controller program. This is a very unique
part of the smart lock SW, which controls the lock motor
driver. The results from the case study are, thus, unique to
this component of the smart lock. For this reason, at the time
of writing of this paper, it was not easy to find another such
evaluation, that would allow to compare the results obtained
in our case study.

This paper is organized as follows. Electronic lock de-
scription with the discussion of its reliability is presented in
Section II. Evaluation Environment, which we developed to
measure fault resiliency of a software, is presented in Sec-
tion III. Evaluation of faults impacts artificially injected into
our controller software is presented in Section IV. Section V
highlights the results and concludes the paper.

II. ELECTRONIC LOCKS AND THEIR RELIABILITY

It is obvious that the hardware configuration among various
electronic locks is very diverse. Generally, an ordinary smart
electronic lock consists of the Control Module, which is
usually realized as a computer with a CPU. There is also a
Motor Module, which drives the needed mechanical force to
eventually open or close the lock. Usually a stepper motor is
used [16], [17]. The I/O Module then implements communi-
cation with the outer environment. It can interface the lock to
a Local Area Network or a Cloud. Block diagram overview
can be seen in Figure 1.

Cloud _/‘/_ D
@ —
|
)
((¢i))) Smart Electronic Lock
1/0 Control Motor
Module Module Module

Figure 1: The block diagram of the smart electronic lock.

In the case of a smart electronic lock, which is connected
to the Internet (becoming part of the I0T), the communication
with the central server (Cloud) has to be mentioned. Based on
valid credentials, the Cloud executes user commands to open
or close the lock or other specific custom commands. [18]
From the communication point of view of the smart lock with
the surroundings, it is necessary to pay attention to its security.

Different manufacturers offer various locks with variant
functionality on the market [19]. State-of-the-art locks can
offer voice and image recognition, presence detection, remote
firmware updates, and various real-time notifications. These
locks can also be linked in a smart home and can be adapted
automatically in different scenarios that may occur in the
house (e.g. unlocked in the presence of fire, locked during
the evening, etc.).

All the smart lock operations require sophisticated control,
which is most often provided by a processor [20], [21], [22].
The processor controls all peripherals for communication with
the outside world and operates the mechanical part of the
lock itself. The processor is the brain of the entire smart
lock, so attention must be paid to its security. It is necessary
to ensure the correct evaluation of the unlocking request so
that unauthorized access is not granted. As the results of
independent tests show, only 4 of the 16 tested commercial
smart locks are not vulnerable, which is very worrying. [18]
For this reason, a huge attention should be devoted to secure
all smart lock components.

Several attack types targeting the lock processor can be
identified. Although the internal software and hardware com-
ponents are hidden from the view of the user, two main
different design approaches can be used for a smart lock main
processor unit. The processor of the lock can be I) a low-
power microcontroller, which can, perhaps, execute a real-
time OS for such purposes. This is useful mainly for locks,
utilizing a wireless connection to their environment and, thus,
it is important to keep their power consumption on a very low
level. Another approach is to contain II) a more powerful
System-on-Chip (SoC) with the ability to execute a light
version of an ordinary Linux kernel with the common shell
applications. For such cases, the software can be programmed
similarly as on an ordinary PC running a Linux OS. This
approach, however, is not suitable for battery-powered smart
locks.

Generally, the processor behavior can be changed in two
different ways. The first way is to change 1) the processor
logic. This can be achieved as a result of a failure on the
processor hardware logic level. Such failure can be a result
of the hardware aging, which occurs naturally. It can also
be evoked deliberately, as a consequence of an intentional
tampering or an attack on the lock. The second case, in
which the processor can start to behave differently than it was
designed to, is 2) the modification of the program or data.

One option is to A) influence the processor program
using the program input data. This may represent a forgery
of the credentials which will result in a successful unlock
of the lock. The credential may also be leaked during the
transmission over an unsecured channel. Due to the limited
capabilities of some microprocessors, the latest encryption
algorithms cannot always be used, therefore, the weak ciphers
can be broken. Many devices are battery-powered for many
years, so Denial of Service (DoS) [23] attacks can considerably
deplete the battery due to intensive communication which
shortens the lock life. The second option is to B) change the
program instructions and data or induce logic faults into
the hardware. Such faults can be induced naturally, which is
dependent on the place of operation of the lock. These faults
can be, however, also induced deliberately by the attacker’s
intention to manipulate internal data. It is very hard to detect
such manipulation, as it does not require to disassemble the
smart lock. It does not even require any mechanical contact

with the device. In our research, we focus on evaluation of
such effects of faults on the controller program itself.

In our previous research papers [24], [15], [25], we were
focusing towards the hardware logic robustness and memory
tampering and evaluation on a simpler smart lock hardware,
which can be classified as I-1-B and I-2-B in our classification
from the previous three paragraphs. For our previous research,
we used a different evaluation platform, that utilizes FPGAs
to instantiate the component of a microcontroller and inject
faults into such microcontroller. Our previous hardware, which
was utilizing the NEO430 microcontroller, was featuring the
Software-Implemented Fault Tolerance (SIFT) approach in the
software. Such architecture is present on simpler locks. In
this follow-up research, we target more advanced smart locks
that incorporate an embedded operating system. Such devices
are usually part of the building access system and are, thus,
connected to an external, usually uninterruptible, power source.
Such locks tend to utilize more powerful processor, running a
stripped version of the Linux OS. This research paper, thus,
examines part of the attacks classified as II-2-B. For targeting
such attacks, we had to design a new Evaluation Environment,
which is able to test software on various single-board com-
puters and testing kits. We believe this solution for this test
scenario precisely is more productive and universal, compared
to porting the Linux on various CPU Intellectual Property (IP)
cores for an FPGA. Because such porting has indeed been
done for commercially available single-board computers and
kits. The failing program can behave very differently under
presence of faults, when executed on an embedded operating
system. For example, in the case of Segmentation Fault error,
the operating system cancels the target binary execution, which
is not the case for the bare-metal implementation.

III. EVALUATION ENVIRONMENT

For the purposes of our experimental testing and mea-
surement, we propose our new Evaluation Environment. The
Evaluation Environment focuses on testing programs running
on the Linux OS. However, support for different operating
systems can be considered, if such operating system offers
possibility to 1) deliver and store a new binary program and
2) execute the program remotely and communicate with the
program. In the case of Linux OS, the first is easily addressed
by the Secure File Copy (SCP) and the second is addressed
with the usage of the Secure Shell (SSH). The Environment can
evaluate programs a) on the same computer as the Environment
is executed; or b) remotely on a different computer (with
possibly different architecture) using the SSH and SCP.

The obtained data are further analyzed and stored on the
personal computer serving as the experiment supervisor. For
such cases that allow to run the Evaluation Environment on the
target computer architecture, it is also possible to run the tested
program locally under a different operating system user. First,
this is useful to prevent the failing program to interfere with
the Evaluation Environment control program itself. Secondly,
it also allows to limit the available resources (such as memory
or storage write operations) to the tested program. The latter
is also applicable to the remote binary execution scenario.
To restrict the amount of Linux OS resources, the ulimit
command can be used. The structure of the Evaluation Envi-
ronment can be seen in Figure 2 for both the local and the
remote binary program executions.

(b) Remote Binary Execution
(For Test on a Different CPU Architecture)
A

~ N
(a) LocakBinary Execution

r)
-
Experiment Supervisor [Experiment
(Personal Computer, $|| Execution
Linux User Space) § (Single-board
Computer
oy f
g‘inalls%ates of the |[§|| Linux User
imulate ©l | Space)
Environment H
Ve - Executable
User A | Fault Iijector Upload
Comm. Evaluation IF ll,mi é{ SDecure Shell]
; ¢ aemon
Correctness Environment Comm, 3
Evaluation]

Controller H
e— o 3

Program
With a Fault
Injected

Possible

Environment
Simulation

Program

With a Fault
Injected

Figure 2: The architecture of the Evaluation Environment for
execution and testing of programs running (a) on the same
computer as the Evaluation Environment; (b) remotely on
another computer utilizing (possibly) different architecture.

A. Fault Injection Software Evaluation

Several runs are needed to evaluate one program. The
number of runs is usually based on the size of the tested
program. The program evaluation looks as follows:

1) a program is compiled for the target architecture,
2) the Evaluation Controller is started on a PC,
3) repeat until the number of runs is achieved:

a) one bit is flipped in a copy of the binary executable,

b) the binary is copied to the local or remote storage,

c) OS resource limits are set and the binary is executed,

d) the outputs are time stamped, stored and analyzed,

e) if no data are observed for a certain period of time, the
executable is stopped; if the timeout limit is reached,
the executable is forced to stop,

f) the stored results are further analyzed.

B. Testing in the Natural Environment

For certain scenarios, the tested program is actually a
controller logic. For such scenarios, 1) the program obtains
data from the environment simulation and 2) the simulation is
driven through the data obtained form the running program.
For certain types of systems, only the second is applicable. In
such cases the program does not sense any data back from the
simulation and it only drives the simulation. In these cases,
the data may be stored and the simulation can be performed
later, which is useful if the simulation cannot run in real time.

C. Prolonging Service Time of the Test Target

It is important to note that, for the remote execution, the
binary must be compiled for the target architecture. For the
remote execution on computers utilizing a flash storage, it
is advisable to create the so-called RAM disk on the target
computer to store the modified binary. This prolongs the ser-
vice life of the target computer, as the number of experimental
runs is usually at the magnitude of tens of thousands and the
continuous rewriting of the flash is not desirable in such case.

IV. EXPERIMENTS AND RESULTS

The aim of our experimentation is to find the most fault-
sensitive parts of a controller program. This experimentation
is performed on three different CPU architectures to possibly
confirm or exclude influences of the CPU architecture on the
result. Our experiments are performed on a generic example of
a smart electronic lock. This is because the smart lock belongs
to the category of such IoT devices that represent certain risk
in a case of their failure. Our experiments were held with the
usage of the Evaluation Environment, which was described in
Section III. For the experiments we used our own electronic
lock, which is composed of an electronic controller and a
stepper motor. The electronic controller is implemented on
a Linux single-board computer, which communicates through
a serial line with the motor driver. Our intention is to test
the behavior of a smart lock motor controller program under
the presence of bit flips (i.e. injected faults) in the program
binary code. The aim of the particular tested software is to
control a stepper motor driver based on the required angle.
The driven motor is then supposed to open or close the lock.
As the motor driver communicates through the serial line, the
motor controller program, thus, commands the driver through
its standard output (stdout). The system structure, from which
the Motor Module is simulated in software, can be seen in
Figure 3.

/Smart Electronic Lock \
r N N
Control Module Motor Module
(Single Board Computer (Motor Driver Connected

to the Stepper Motor)

Running Linux OS)

S Stepper
] "E Controller . Mog)li- w/
%fe{l Program L Gearbox
Y,

Figure 3: The block diagram of the smart electronic lock; the
Single-board Computer is actual hardware part and the Motor
Driver, Stepper Motor and the Gearbox are simulated on a PC.

In these experiments, security and safety of this motor
controller program is evaluated through artificial fault injection
of single bit flips into the whole binary program file. In our
study, we assume a failing data storage on which the controller
program is stored. This could be because of a natural aging
of the components or intentionally, as the memory could be
manipulated by an attacker, which has a possibility to blindly
inject faults into the binary control program inside the elec-
tronic lock. For our tests, we assume that the potential attacker
does not have a deep knowledge on the electronics layout and
the SW structure, which would allow the attacker to target
faults towards specific parts of the program. Thus, we also
assume that these memory errors are distributed uniformly-at-
random throughout the whole controller program. Thus, during
one run, always one uniform-at-random bit flip is injected into
the binary to emulate a hard corruption before the execution.
Our tests focus on the program, while the Linux kernel is not
included in our tests. Several runs are needed to evaluate one
program. The number of runs is dependent on the program size.
Based on our previous experiences described in paper [26], we
test circa 10% of bits available for the fault injection. For the
stepper motor simulation, we use very accurate model from
the Simscape library of Matlab Simulink software [27].

A. Target Architecture Influences

The experiments were held on three different CPU ar-
chitectures: 1) ARMV6Z from the ARMI11 family, 700MHz
single-core ARM1176JZF-S; 2) ARMv7-A from the Cortex-
A family, 1.3GHz dual-core ARM Cortex-A7; and, for the
reference purposes, 3) x64 (a.k.a. x86_64) 2.4GHz 6-core
Intel Xeon E5-2620v3 64-bit server CPU, to possibly compare
the results of the two embedded architectures to an ordinary
64-bit PC CPU. The controller program was compiled for
each architecture. For each compiled program, 8000 runs
were performed. Each run was evaluated according to the
correctness of its output data.

There are two classes based on the correctness of the output
data. The class “OK” contains the cases in which the injected
fault was not observable on the program output data, i.e.
commands for the motor driver. The class “Failed” contains
the opposite cases. We decided to prolong the execution of the
program to 80s, in order to increase the time to observe the
program behavior. The reference execution, thus, lasted 80s,
during which the program was instructed to rotate the motor
12.4 times. The results with the percentage representations of
these cases are displayed in Table I. An error in the output
data does not necessarily indicate a problem in the operation
of the lock. Because for the end user, the functionality is im-
portant. The fact that a controller received partially scrambled
command is very unimportant in the case of an attack or a
natural degradation (e.g. for the smart lock, in the case of
emergency). This is why we analyze also the motor module
behavior. Because of this, the table also contains minimal,
average and maximal rotation angles for each category. A sign
in front of the number of rotations represents the direction
of the rotation. If a run achieves the required 12.4 rotations
with a slight deviation of 0.2 rotations, such run is considered
successful lock or unlock. If the rotation angle is smaller, the
lock state does not change for an external observer, i.e. stays
locked or unlocked. Preventing the door to unlock is potentially
even worse than refusing to lock the door. A locked person
in a building on fire is a catastrophic failure from the safety
point of view. If the final angle of the motor is higher that
the required 12.4 rotations, the mechanics or the motor are
possibly damaged and are likely to fail during their future
requests.

As can be further observed in Table I, the failed percentages
among the CPU architectures are very similar. It means that the
architecture did not significantly impact the resulting reliability
of the program. Also, the minimal angle of failed runs for
the ARMvV6Z architecture is significantly smaller, compared
to the other two architectures. This behavior was the result of
injecting fault into the section of the program that chooses the
direction of the motor rotation (i.e. for locking or unlocking).
Obviously, this precise target was not impacted for the other
two architectures.

B. Failure Types

According to further analysis of the received data, five
categories of failure reasons were identified. These include:
1) “Lib. Error”, containing the runs that show problems with
load or relocation of shared libraries; and 2) “Seg. Fault”
including all executions that showed signs of memory access
violation. The category 3) “Early Term.” contains all cases that
stopped their execution before the desired result was achieved
(i.e. before the motor achieved the desired position). This can

TABLE I: Behavior of the Program Under the Fault Injection

ARMV6Z ARMV7-A x64
Cases Rotations [-] Cases Rotations [-] Cases Rotations [-]
[%] min. avg. max. [%] min. avg. max. [%] min. avg. max.
All Runs 100.00 -35.37 11.11 35.53 100.00 -0.09 10.87 35.68 100.00 -0.06 10.75 37.87
OK 88.16 12.40 12.40 12.40 86.05 12.40 12.40 12.40 85.56 12.40 12.40 12.40
Failed 11.83 -35.37 1.52 35.53 13.95 -0.09 1.42 35.68 14.43 -0.06 0.96 37.87

be caused, among others, by a problem in the cycle counting of
the program or by a Segmentation Fault during the data output
phase of the execution. 4) “Syntax Err.”’ contains the cases that
violated the format of commands parsed by the motor driver. In
such cases, the motor driver simply ignored such commands.
The last category 5) “Timeout” contained cases that continued
their execution beyond the supplied time, which was 220s. It
is important to note, that each failed run can belong to multiple
categories, for example, if the run produced corrupted format
of output data and then stopped on Segmentation Fault.

The percentage representations of these categories, based
on all the 8000 runs, are displayed in Table II. We believe,
that the reason for the higher representation of Segmentation
Fault errors on the x64 might be the more complex instruction
set of the x64. Alternatively, it might relate to the principle
of detection of the illegal memory access or, generally, the
principle of the memory management. This is not a negative
finding, as the reference x64 is not meant to be used in ordinary
embedded systems, in opposition to the widely-used ARM
architectures. Also, among the architectures, growth in Early
Termination is observed. This is because the Segmentation
Fault sometimes occurs during the run, not just immediately
after the execution starts. Also a lowering trend of Timeouts
is observed in the same order.

TABLE II: Categories of Failure Types of the Program and
Their Representation among All Runs

C[z:/sT Lib. Error Seg. Fault Early Term. Syntax Err. Timeout
‘0

ARMv6Z 1.13 7.85 10.58 0.90 0.25
ARMvV7-A 1.23 8.75 12.61 1.03 0.14
x64 1.13 10.91 13.43 0.88 0.09

In Figure 4, statistical box plot charts are displayed for
particular categories of failures from the previous table. As
can be seen on the chart, the very critical part of the program
is the part dealing with shared libraries selection and loading.
If such section is corrupted, the program does not start at all,
thus, as can be seen, the motor angle stays at zero. This is also
very important finding that affects other embedded software
as well. This problem, obviously, will not be limited to smart
locks and even not to the IoT segment itself. This is because
a large amount of programs utilize shared libraries (except,
for example, statically linked binaries). The Segmentation
Fault occurs also usually at the beginning of the execution,
causing the motor not to start at all in most cases. Also Early
Termination during the program execution occurs usually at the
beginning of the execution. On the other side, runs producing
syntactically wrong data usually achieve the desired rotation
angle. This is because, usually, the Syntax Error is contained
within one driver output configuration. Although the motor
driver ignores corrupted commands, the motor rotation further
continues. Its move is not, however, smooth. This finding might

be applicable to other actuator systems that are driven in steps
and are able to perform the required move even when certain
amount of steps is omitted. As can be also observed, the
Timeout can be caused by exceeding the required angle or
by slowing the output data. In the second case, the motor
eventually reaches desired angle, however, not in time. For
certain devices, this might be a problem. To some extent,
the slowing is however acceptable. For example, a smart lock
unlocked with one-second delay is not much of a problem.

V. CONCLUSIONS

In this paper, we proposed a new Evaluation Environment
for testing and measurement of software resiliency against fault
injection. The environment was used to evaluate properties of
our software controller, running on an electronic smart lock.
In the evaluation, we utilized the ability to execute the tested
program remotely, and thus, we tested the program on multiple
CPU architectures. The results show, that most sensitive part is
the loading of shared libraries. Such problem in this section of
the program causes inability to load. This is a very important
problem that is not limited to smart locks nor IoT devices. If a
program is corrupted in such way, that the embedded operating
system does not load the program properly, then this effectively
results in a permanent malfunction of the device. Such problem
is the most critical one.

Segmentation Fault and early termination of the program
(e.g. problem in the logic of motor cycle counting) is also
serious. However, in certain fault injection cases, the program
exceeded the required angle. There were also the cases, in
which the motor rotated too slowly, and thus, the required
angle was not reached in time. Such problem is dependent
on the target application. For example, if the smart lock
unlocks with a one-second delay, it does not pose a risk on
a human life. On the opposite side, if the motor is instructed
to rotate significantly faster, is could skip the necessary steps.
This might result in a partially-moved lock latch, effectively
blocking the door. The least problematic, according to our
observations, is the syntactic error in the output data. In
such cases, the motor driver ignores corrupted commands and
the motor continues its move. Nevertheless, the move is not
smooth. The motor then usually reaches its desired position.
This finding is applicable to other actuator devices as well.
Such device must be driven in steps and must be able to
perform the required move even when certain amount of steps
is omitted.

As a future work, countermeasures to the tested program
could be added and the resulting behavior could be studied.
It would be interesting to observe the effectiveness of the
countermeasures on the various program failure classes. The
most challenging problem, according to our findings, will be
the hardening of the library section of the program.

No. 783119.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

40
9 30
z
g o M | T H
5 101]
2 01 L 1 _ 1 L 1 |- L L |
g -10
2 201
2
z -30 +
-40
Lib. Seg. Early Syntax Time- Lib. Seg. Early Syntax Time- Lib. Seg. Early Syntax Time-
Error Fault Term. Error out Error Fault Term. Error out Error Fault Term. Error out
armél armv7I x64
Figure 4: Final rotations per each category of failure type on a box plot chart.
ACKNOWLEDGEMENTS
[12] D. Cotroneo and R. Natella, “Fault injection for software certification,”
This work was supported by the Brno University of IEEE Security Privacy, vol. 11, no. 4, pp. 38-45, 2013.
Technology under number FIT-S-20-6309 and the JU EC- [13] L. Yin, Y. Ri-huang, B. Jian-wei, and Y. Chun-hui, “Research on a
SEL Project SECREDAS (Product Security for Cross Domain software faul_t injection model based on program mutation,” in 2015
Reliable D dable Aut ted Syst), Grant t 2nd International Conference on Information Science and Control
cliaole ependable utomate ystems), rant agreemen Engineering, 2015, pp. 419-423.
[14] E. Cioroaica, J. Jahi¢, T. Kuhn, C. Peper, D. Uecker, C. Dropmann,
P. Munk, A. Rakshith, and E. Thaden, “Accelerated simulated fault
REFERENCES injection testing,” in 2017 IEEE International Symposium on Software
H A Ranekuti and 1. W. Si S lock b dinf Reliability Engineering Workshops (ISSREW), 2017, pp. 228-233.
. A. Rangkuti and J. W. Simatupang, “Security lock with dtm . -
polyphonic tone sensor,” in 2015 International Conference on Automa- (151 :I‘ Lojda’.R' Panek, J. POlelnSk.y » O. Cekan, M. Krcmz}, and Z. Kotasek,
. . R s . . g Hardening of Smart Electronic Lock Software against Random and
tion, Cognitive Science, Optics, Micro Electro-Mechanical System, and . s . X L
Information Technology (ICACOMIT), 2015, pp. 119-122. Deliberate I_:aults, in 2020 23rd Euromicro Conference on Digital
M. D. N. Chowdh M. K. Jah S’ S K’ N 4S. Mahmud System Design (DSD), 2020, pp. 680-683.
. D. N. Chowdhury, M. K. Jahan, S. S. Karmokar, and S. Mahmud, . Cwn g . .
“Color lock: 16 bit digital color based security system,” in Fifth Inter- (6] G"K‘ Verrpa and P, Trlpﬁthll’ A,fhgltal seeu m}; system Iwnh door lock
national Conference on Computing, Communications and Networking system using RFID technology,” International Journal of Computer
Technologies (ICCCNT), 2014, pp. 1-5. Applications, vol. 5, no. 11, pp. 6-8, 2010.
M. Mathew and R. S. Divya, “Super secure door lock system for critical [17] Z. Fonea, “Electronic lock system,” Nov. 14 2000, uS Patent 6,147,622.
zones,” in 2017 International Conference on Networks Advances in [18] M. Paveli¢, Z. Loncari¢, M. Vukovi¢, and M. Kusek, “Internet of things
Computational Technologies (NetACT), 2017, pp. 242-245. cyber security: Smart door lock system,” in International Conference
A. Kassem, S. E. Murr, G. Jamous, E. Saad, and M. Geagea, “A smart on Smart Systems and Technologies (SST), 2018, pp. 227-232.
lock system using wi-fi security,” in 2016 3rd International Conference [191 J. R. Delaney, “The Best Smart Locks of 2018
on Advances in Computational Tools for Engineering Applications https://www.pcmag.com/article/344336/the-best-smart-locks, 2018,
(ACTEA), 2016, pp. 222-225. accessed: 2019-04-10.
R. S. Divya an.d M-” Mathew, “Survey on various door lock access [20] D. Han, H. Kim, and J. Jang, “Blockchain based smart door lock
control mechanisms,” in 2017 International Conference on Circuit system,” in 2017 International Conference on Information and Com-
,Power and Computing Technologies (ICCPCT), 2017, pp. 1-3. munication Technology Convergence (ICTC), 2017, pp. 1165-1167.
M. Ye, N. Jiang, H. Yang, and Q. Yan, “Ssgurity analysis of internet-of- [21] Y. T. Park, P. Sthapit, and J. Pyun, “Smart digital door lock for the home
things: A case Study.Of a}ugust smart lock,” in 2017 IEEE Conference on automation,” in TENCON 2009 - 2009 IEEE Region 10 Conference,
Computer Communications Workshops (INFOCOM WKSHPS), 2017, 2009, pp. 1-6.
pp. 499-504. ’ .))
22] M. P D. f: . M E. Tt h, “D f
E. Knight, S. Lord, and B. Arief, “Lock picking in the era of internet 22] smartris)i(l)(’ on tlslgag:ﬂieg) bo:rroge{na;g]7 Ei;}(zjtofrl();’;?nt}ne .S?ysir%;og'uma
S i 200 I3 L el e O Ttk and Cofoon o Emiedid Syt (CASE, 2017 . 16
International Conference On Big Data Science And Engineering (Trust- [23] L. Prudente, E. Aguirre, A. F. M. Hdez, and R. J. Garcia, “Dos attacks
i _ ood techniques,” International Journal of Combinatorial Optimization
Com/BigDataSE), 2019, pp. 835-842. flood tech " International Journal of Combinatorial Optimizati
J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field Pmble‘mfv and Inf Or_matws’ vol. 3, no. 2, pp. 3-13, 2012.
data study and a practical approach,” IEEE Transactions on Software [24] J. Podivinsky, J. Lojda, R. Panek, O. Cekan, M. Krcma, and Z. Kotasek,
Engineering, vol. 32, no. 11, pp. 849-867, 2006. “Evaluation Platform for Testing Fault Tolerance: Testing Reliability of
Y. Zhang, B. Liu, and Q. Zhou, “A dynamic software binary fault Smart Electronic Locks,” in 2020 IEEE 11th Latin American Symposium
injection system for real-time embedded software,” in The Proceedings on Circuits and Systems (LASCAS), 2020, pp. 1-4.
of 2011 9th International Conference on Reliability, Maintainability and [25] J. Lojda, R. Panek, J. Podivinsky, O. Cekan, M. Krcma, and Z. Ko-
Safety, 2011, pp. 676-680. tasek, “Analysis of ‘Software—lmplemented Fault Tglerance: Case Stgdy
J. Xu and P. Xu, “The research of memory fault simulation and fault on Smart Lock” in 2020 IEEE East-West Design Test Symposium
injection method for bit software test,” in 2012 Second International (EWDTS), 2020, pp. 1-5.
Conference on Instrumentation, Measurement, Computer, Communica- [26] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma, “Majority Type and
tion and Control, 2012, pp. 718-722. Redundancy Level Influences on Redundant Data Types Approach for
A. Holler, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “Qemu-based HLS,” in 2018 16th Biennial Baltic Electronics Conference (BEC), Oct
fault injection for a system-level analysis of software countermeasures 2018, pp. 1-4.
against fault attacks,” in 2015 Euromicro Conference on Digital System [27] MathWork®, “MATLAB and Simulink,” https://www.mathworks.com/,

Design, 2015, pp. 530-533.

2018, accessed: 2019-03-20.

