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Abstract—This paper evaluates the possibility to accelerate
fault tolerance evaluation of arithmetic circuits through reduced
stimuli. In our research, we used a simplistic on-chip stimuli
generator producing numbers in a row with a certain step
(i.e. every nth number). The results are obtained through exper-
imentation on a real HW Field Programmable Gate Array. The
results confirm the hypothesis, that there might exist appropriate
settings, for which the critical bit detection precision becomes
only slightly worse but the reliability verification will accelerate
significantly. Thus, the correct detection of critical bits in relation
to step size is evaluated as certain steps provide significantly lower
precision of the estimation than others. Our data show that the
steps of sizes larger than 30 do not provide any further effective
acceleration. In this paper, evaluations requiring error rate per
fault injection are also considered. We also propose a novel stair
chart to illustrate the measurement of the error rate per each
fault. The results show that the size of the circuit had a minimal
impact on the precision. General conclusion is that, by tuning the
proper settings of the simplistic generator, significant acceleration
of the evaluation can be achieved. The low area overhead of the
reduced stimuli generator leaves the saved resources to the tested
unit, which in the case of parallel evaluation further supports
the acceleration.

Index Terms—Fault-tolerant System Design Evaluation, Fault
Tolerance Property Estimation, Functional Verification, High-
level Synthesis, Test Bed Generation.

I. INTRODUCTION

Certain types of electronic systems are required to be very
durable as their failure might cause financial losses or expose
human lives to a risk. Some of these systems must be suffi-
ciently robust simply because they cannot easily be repaired
manually, such as space probes. Generally two approaches
exist in order to design robust and durable systems: 1) Fault
Avoidance (FA) [1] which aims to select durable components
in order to produce durable system. 2) Fault Tolerance (FT) [2]
on the other hand accepts the problem of unreliable compo-
nents and tries to compose a durable system from unreliable
components through the system structure modifications.

Moreover, ever-growing demands on electronics increase
their design complexity. For this reason, High-level Synthe-
sis (HLS) became a common approach to electronic system
design. HLS is able to (with certain limitations resulting
from the target HW) create Register-transfer Level (RTL)
description from an algorithm written in a higher programming
language (e.g. C, C++, ...). This results in the combination of
the FT and HLS approaches with the vision of lowering the
time needed to design a system.

FT systems often utilize (but are not limited to) the so-
called Field Programmable Gate Arrays (FPGAs). FPGAs are
often used in space environment to accelerate computation.
For example, the National Aeronautics and Space Administra-
tion (NASA) Perseverance rover [3] utilizes Xilinx FPGAs to
accelerate its searching for signs of life on Mars [4]. Such type
of use creates a strong motivation to test FPGA-implemented
arithmetic components. Quick and accurate evaluation of
the component reliability is very important for its designer,
whether it is a manually conducted design or automatic design
flow. We shorten the evaluation times through HW acceleration
– the test controller, including its test pattern generator, is tem-
porarily added to the FPGA technology, very near the tested
component (i.e. on the same FPGA). Such approach reduces
the bandwidth and for smaller components, parallel evaluation
technique can be utilized. As a bonus to this, the tested unit is
run at its design speed, outperforming the time complexity of
any current simulation approach. The test is usually held with
usage of the so-called artificial fault injection and functional
verification. In this research paper, we observe the influences
of test stimuli generation on the resulting precision and time
duration of fault detection. Stimuli generation greatly affects
the length of a test. This is very important as it brings a
potential to further research and considerably accelerate the
evaluation of the designed component. It is also important
for computer aided design of fault-tolerant systems, which is
also our topic of research. So far, the evaluation was the most
time-consuming part of our method run time. The goal of this
research is to reduce stimuli amount in order accelerate the
evaluation of a design.

Various approaches to test data generation are published
in the literature. These are, however, in opposition target-
ing the generation in a simulated environment. The authors
of [5] show a concept of efficient stimuli generation based on
constraint random verification techniques. The same authors
extend their research with the coverage-guided sampling in
their paper [6]. In paper [7], another constrained random
stimuli generation method is presented. The authors of the
paper use genetic algorithm to provide fast test coverage,
also a case study on the PCI Express component is shown.
The authors of [8] developed a new framework that generates
stimuli for parallel VHDL processes. In [9], the authors show
a new approach to guide fault injection in order to ensure
representativeness of the obtained data. Also the authors
utilize data mining approaches in their research. In [10], a
Universal Verification Methodology (UVM) implemented in
SystemVerilog is shown. The authors of the paper focus on
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the Joint Test Action Group (JTAG) interface.
This paper is organized as follows: Section II puts this

research in context to our automatic test bed generation frame-
work. Section III presents the two main approaches to on-
FPGA stimuli generation. The experimental setup is proposed
in Section IV. The case study and experimental results are
presented in Section V. Section VI concludes the paper.

II. TEST BED GENERATION FRAMEWORK

We developed a framework [11] that produces synthesizable
test beds which run functional verification directly on an
FPGA, which we utilized in research papers [12], [13] and
further extended in [14]. After the verification started, an
artificial fault is injected directly into the tested component and
the changes in behavior of its outputs are compared to the so-
called golden (i.e. reference) unit and further tracked. It is thus
possible to verify fault tolerance properties of the designed
component, i.e. the Unit Under Test (UUT) on a real HW.
The test bed includes stimuli generator that operates directly
on the FPGA in order to maximize throughput and allow the
at-speed testing. Fault tolerance of an FPGA circuit design is
expressed by the cardinality of the critical bit set. Critical bit
(also called sensitive bit) is a bit the flip of which is observable
on the design output pins, as it causes change in output data
for a given test. It is obvious that the detection of each of the
critical bits is costly, as the number of tests (i.e. functional
verification runs) is high to identify each critical bit.

The block diagram of the test bed generated using our
framework is shown in Fig. 1. The scenario of each test is
managed by the Finite State Machine (FSM) inside the eXper-
iment Control Unit (XCU). The Input Generation Unit (IGU)
generates input stimuli which are directed to tested units
(i.e. UUTs) in the Unit Instantiation Area. The Output Com-
pare Unit (OCU) compares the results between the so-called
golden unit (i.e. reference unit) and UUTs to which a fault was
injected. The Failure Capture Unit then stores the number of
mismatching output transactions into the Register File which
is accessible to the control PC with the usage of the ICON [15]
and VIO [16] IP Cores and the SW ChipScope Engine TCL
Interface [17]. The faults are injected with the usage of our
Fault Injector [18] which is able to inject permanent faults into
utilized Look-up Table (LUT) contents.
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Fig. 1. Block diagram of automatically generated test bed; HW (FPGA) part
on the left, SW (PC) part on the right.

The majority of the test bed is generated automatically and
does not require a modification, however, three parts that are
marked by red color in the Fig. 1 might be adapted to suit the
UUT in its particular test requirements. These parts include
XCU, which manages the test scenario and the IGU, which
generates the test stimuli. Also the Experiment Loop must be
prepared to suit the test scenario. This includes the setup of

the required parameters for autonomous verification execution
and the fault injection strategy, which injects faults into the
bitstream configuration string using our Fault Injector [18].

III. ON-CHIP STIMULI GENERATORS

Generally, an on-chip stimuli generator can be implemented
in two contradictory manners: 1) Relatively complex generator
with very good setting possibilities and a high test coverage.
Such generator would however occupy a relatively large FPGA
area which reduces the remaining FPGA space left for UUTs,
thus lowering the number of parallel instances that can be
tested at the same time on one FPGA. 2) The second approach
is to create a very specific, however simplistic generator which
saves space on the FPGA and allows to increase the number of
simultaneously tested units for our future (i.e. real and parallel)
tests. The parallel testing of units is possible for scenarios, in
which multiple random faults are accumulating during one
run into one unit. The possibilities to adjust the coverage of
such solution are then limited and correspond to the simplistic
nature of such generator. The flow of preparation and usage
of HW stimuli generator can be seen in Fig. 2.
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Fig. 2. The flow of preparation and usage of a stimuli generator.

In this section, both possible approaches to on-chip stimuli
generation are presented. However, the approach finally uti-
lized in our study is described in the last part of this section.

A. Complex Generators
For complex systems or for sophisticated stimuli generation,

manual IGU creation at the HDL description level is very
difficult, therefore, in the following text, the advanced way to
generate the content of the IGU from the description of formal
grammar will be presented to illustrate its design process.

The main idea is to design a particular grammar which
can be easily transformed into adequate FSM. Tools that can
transform an FSM directly to VHDL description (e.g. Kiss2-
to-VHDL [19]) exist. Such description can be directly an-
alyzed and synthesized. Grammars and FSMs are mutually
transferable which can be turned to a large benefit. In our
previous research, we developed the Universal Stimuli Gener-
ator (USG) [20] which is based on the formal grammar, and
therefore it can be used for the purposes of an FSM generation.

Generally, stimuli generation for complex systems is based
on solving the Constraint Satisfaction Problem (CSP) [21]. It
is a mathematical problem which is based on assigning values
from certain domain into variables such that all specified
constraints are respected. For the purpose of stimuli generation
for various systems, we combined CSP with formal grammar.

The USG is based on our Probabilistic Constrained Gram-
mar (PCG) which is based on two input structures, through
which input stimuli can be both described and generated. The
first structure defines the probabilistic context-free grammar
and the second structure defines the constraints for this gram-
mar. Both input structures form the newly defined grammar
(PCG) which is the pair G:

G = (H,C); where:



H is a probabilistic context-free grammar.
C is a ordered list of constraints for the grammar H.

The probabilistic context-free grammar (PCFG) [22] is the
5-tuple:

H = (N,T,R,S,P); where:

N is a finite set of non-terminal symbols.
T is a finite set of terminal symbols, N∩T = 0.
R is a finite set of production rules with form A → α , where

A ∈ N a α ∈ (N∪T)*.
S is the starting non-terminal.
P is a finite set of probabilities for production rules.

The PCFG is the common context-free grammar into which
the probability values for production rules were delivered.
Certain production rule may have adjusted its probability
which causes an increased or decreased chance for rewriting.
The defined probability value can be modified by the constraint
during the generation process. It ensures stimuli generation
through the selection of appropriate production rules.

The constraint is the 5-tuple:

C = (RS,RD,P,[RE],[O]); where:

RS is the production rule which invoke this constraint.
RD is the production rule for which the probability is changed.
P is the new probability value.
RE (optional) is the production rule which application causes

the abolition of the set probability.
O (optional) is the count of RE applications before abolition

of the constraint.

The constraint in PCG definition performs one of the
possible solutions for solving the CSP which is a technique
called propagating constraints. In this formal grammar, the
propagating constraints limit the domain of production rules
for each non-terminal symbol such that only certain rules are
activated. Thanks to that, it can generate valid stimuli in terms
of correct syntax and especially to keep the correctness of
semantics which is a necessity.

One of the challenges for generating more complex stimuli
defined in this way is to describe and generate FSM. For
this purpose, the above mentioned tool Kiss2-to-VHDL can
be used. Kiss2-to-VHDL uses its specific format of input
description called Kiss2 code which can be transformed into
equivalent FSM in VHDL description through this tool. The
PCG has to be defined in such format to setup the USG to
generate the required Kiss2 code. The generated Kiss2 code
then represents the required stimuli. The Kiss2 code is a
plain text which encodes information about inputs, outputs,
transitions and states of the required FSM. This format must
be understood in detail and encoded into our definition of
the formal grammar. Fig. 3 shows the block schema of this
transformation process. Through this, it is possible to describe
the input stimuli on the higher abstraction level to generate
VHDL code directly. With bit of modifications of generator
inputs, we should be able to generate different variants of the
IGU to obtain the best stimulus properties and the highest
coverage of key system functions.

B. Simplistic Generators
The second and opposite approach to the IGU design is to

simplify it, resulting in a smaller chip area which belongs to
the test bed overhead. There are several possibilities to create
a simple, yet effective stimuli generator. Data-oriented UUTs
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Fig. 3. The transformation of the probabilistic constrained grammar into
its FSM through the USG and then into the VHDL description through the
Kiss2-to-VHDL tool.

require a production of a large amount of data to test them.
Related generators include, but are not limited to, a sequential
generation of all binary combinations which can be easily
implemented as a digital counter; or a pseudo-random number
generation which can be implemented as a linear-feedback
shift register, in order to save space. Certain generators are not
intended to generate a large amount of data, but, in opposite,
to generate signals to verify a function of, for example, an
electronic controller. Such generators can be appropriately
implemented as an FSM. For all these cases, simplistic design
of a generator can significantly save the FPGA area. Also, it
lowers the requirements to prepare a specific single-purpose
stimuli generator. This must be considered, as the preparation
of a specific generator requires its separate design process in
order to develop and implement the generator. Simplistic gen-
eration is also usually easily scalable, as it requires only minor
modifications to alter its output bit width. In our research, we
investigate the possibility to use a counter based simplistic
generator in order to process all the possible combinations
on the inputs of a tested unit. The manual design flow of a
simplistic generator is displayed on Fig. 4.

Infor-
mation about
the Stimuli

Format

VHDL
Generator

Description

Tested Unit Analysis Manual VHDL Implementation

VH
D

L
VH

D
L

Fig. 4. The manual design flow of a simplistic stimuli generator.

This research focuses on testing a special class of circuits –
the arithmetic circuits. Such circuits must be properly tested, as
their failure causes incorrect results output. We use a counter
to produce stimuli for our benchmark circuits. The counter
has a possibility to set the starting value START and the target
value END. Also, it is able to count between these values with
a specified STEP. It is obvious, that with increasing the value
STEP, the stimuli are evenly reduced. This way, also the test
run time reduces and the complete evaluation accelerates. If
we intend to estimate the fault tolerance of the UUT more
precisely which is always welcome, it is good to perform as
many tests as possible. This is why it is desirable to minimize
the time that is needed by each test, allowing us to make more
tests. This brings us to the requirement to tune the generator
parameters in order to minimize the test run time length.
This offers a hypothesis, that there might exist appropriate
settings for the simplistic generator, for which the critical bit
detection precision becomes only slightly worse but the test
will accelerate significantly.

IV. THE EXPERIMENTAL SETUP

For the case study experiments in this paper, we use our
automatic test bed generation framework in conjunction with
a simplistic approach to generate stimuli directly on the
FPGA for at-speed testing. As the generator, we use a HW
implementation of a counter that is SW-adjustable from the
PC. We investigate the possibility to maximize its critical bit



detection probability while shortening the run time of one test.
The usage of a simplistic stimuli generator in our research is
motivated by the effort to save the most of the FPGA area
for the UUTs. This is because for certain test scenarios, it is
possible to significantly accelerate the test or refine the results
through the multiple unit instantiation, and thus, the saved
space brings the possibility to further accelerate the test.

The resources utilized by the test bed components (i.e. the
area overhead that is necessary to hold the autonomous on-
chip test) are shown in Fig. 5. We use the Xilinx Virtex 5
technology in our tests. The chart shows (a) the slices;
(b) LUTs; and (c) registers occupied by the test bed logic. As
can be seen, the test bed logic components (i.e. without the
UUT) occupy only 6.13 % of the FPGA, leaving the remaining
93 % to instantiate the UUTs, as can be seen in the part (a).
The simplistic counter-based IGU requires nearly 18 % of
LUTs of the complete test bed logic, as can be seen in (b). This
is because in its nature, the IGU adds numbers which must
be implemented as an adder. Although for the powers of two,
the IGU can be implemented as a bit-shift operation, this is
not our case, as the IGU is configurable from the PC, thus its
design remains constant among the step-size configurations.
On the other hand, the remaining part of the test bed logic
does not occupy a large area of LUTs. Also, as can be seen
in (c), the IGU does not require a lot of registers, as the input
parameter values are stored and connected from the register file
and only the counter register is implemented within the IGU. It
is important to note that keeping the occupied space as low as
possible leaves more space for the instances of UUTs, allowing
further acceleration through massive parallel evaluation.
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Fig. 5. Virtex 5 FPGA resources used by the test bed components (overhead)
and proportionally by the IGU; the remaining free space can be used to
instantiate UUTs.

In order to test the behavior for unhardened and fault-
tolerant designs as well, we utilize the Redundant Data
Types (RDTs) [23] technique for HLS. This method of treat-
ment is based on the modification of data types in the
source code implementation. In our research, we use the
C++ programming language, as it supports the so-called C++
Templates [24] to easily decorate C++ native data types and
modify operations associated with them. The new data types
can be used identically to the native C++ data types, however,
inside they extend the computation checks, add temporal
or spatial redundancy, etc. For example, a Triple Modular
Redundancy (TMR) template for a new data-type set stores
each data structure three times. Each operation with such
data structure is also triplicated. In order to use the RDT
approach, only the data type names must be decorated with the

particular C++ template and after the synthesis, the resulting
circuit is hardened. Moreover, the RDT technique allows
to implement transition mechanisms between different fault
tolerance structures (e.g. TMR, Duplication with Comparison,
etc.) also implemented as RDTs. This allows to combine
various fault tolerance approaches in one circuit.

V. THE CASE STUDY AND EXPERIMENTAL RESULTS

For testing purposes, we selected six various benchmark
circuits differing in their complexity and fault tolerance. More
complex combinational circuits can be partitioned into smaller
slices before their testing. Our experimental circuits include:
1) addition – a simple adder for two 16-bit unsigned integers;
2) addition_triple – similar to (1), however RDT triple incor-
porating TMR to the data path was used; 3) crc8 – calculates
the Cyclic Redundancy Check (CRC) from 32 bits to an 8 bit
long checksum; 4) crc8_triple – similar to (3), however all
data structures were hardened using the RDT triple approach.
5) composed – a circuit that calculates the number of high-set
bits in an addition of two 16-bit numbers and one constant
number; and 6) composed_triple – similar to (5), however
triple RDT was applied to each data structure. The circuits
were originally written in the C++ language and the fault-
tolerant units were created from their unhardened counterparts
after a voter was included to each of the final output pins of
each circuit. Circuits were synthesized using Mentor Graphics
Catapult C University Version (UV) 8.2b [25] to obtain their
RTL description. These were then settled into the environment
of the test bed generation framework and the complete test
bed was synthesized using the Xilinx Integrated Synthesis
Environment (ISE) 14.7 [26]. Xilinx ML506 boards [27] are
used in our case study. Parameters of synthesized benchmarks
are shown in Table I.

TABLE I
PARAMETERS OF SYNTHESIZED BENCHMARKS

UUT Name LUT
size [b]

Critical bits Input
Pins [-]

Output
Pins [-][b] [%]

addition 4288 b 163 b 3.8 % 32 16
addition_triple 8320 b 162 b 1.95 % 32 16
crc8 4800 b 977 b 20.35 % 32 8
crc8_triple 6592 b 819 b 12.42 % 32 8
composed 9120 b 1521 b 16.68 % 32 13
composed_triple 19648 b 1056 b 5.37 % 32 13

As each of the benchmarks has 32 bit wide input, the stimuli
of one test were from the interval of 0 to 232− 1. For each
test, exactly one bit from the selected part of the bitstream was
permanently flipped during the whole execution of the test.
Such test was performed for each of the selected bits. One or
more incorrect outputs during the one test then indicate the
sensitivity of the currently tested bit. This is how a complete
list of sensitive bits is obtained.

A. Test Length and Detection Success Rate
The previously described process of experiments utilized

the step of size 1, to obtain accurate list of critical bits. This
process was subsequently repeated for stimuli generated with
the step size 2, 3, ... 200. It is obvious that the test (i.e. one
functional verification) run length decreases with increasing
step size. As can be seen in Fig. 6, with increasing the step
size, the verification accelerates. Constant and dynamic part of
time consumed for one test can be identified in the chart. The
constant part of the time is connected with the communication,
UUT preparation and fault injection overhead. The dynamic



part depends on the number of test stimuli that the UUT has
to process. The chart illustrates that near the step of size 30,
the acceleration ceases to be beneficial, considering the time
consumption of the UUT refresh and fault injection which are
not dependent on the number of stimuli transactions.
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Fig. 6. Time (in milliseconds) consumed by various stages of one test for
stimuli step sizes of 1 – 200.

For step sizes higher than 1, the resulting percentage of
critical bits is literally an estimation. This is the consequence
of the lower coverage, which might render certain critical
bits undetectable. As can be seen in Fig. 7, higher steps
lower the precision of such estimation. But also the even step
sizes and especially the powers of two cause significantly
higher inaccuracy of the estimation. Such step sizes do not
cause changes in certain least significant bits of the stimuli
transactions, thus decreasing the precision significantly.
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If for each step size a sum from all the six inaccuracy
measurements is taken, then the best (i.e. the lowest) value
is 1.37 percentage points belonging to the step of size 91.

B. Step Size vs. Error Rate
So far in this paper, we have been considering only detection

of a critical bit. However, an advanced evaluation might con-
sider error rate that a particular bit-flip causes (i.e. the number
or percentage of incorrect result transactions per test for one
bit-flip). With such information, the failures (e.g. critical bits)
can be categorized by their severity. One test produces the
number of incorrect results which is nonzero for critical bits.
Taking a test for each selected bit of the bitstream, a multiset
of error rates is produced. Such multiset can be sorted and
visualized in a chart we call the stair chart in our work. The
bitstream addresses then correspond to the x axis and error
rate percentage belongs to the y axis. For the purposes of
visualization, the x axis can be marked by the measure of bits
as a dimension rather than their addresses. Example of such
stair chart for the addition UUT can be seen in Fig. 8.

A set of 200 charts is obtained for 200 experiments of
different stimuli step sizes per each UUT. These chart sets
can be visualized and studied after a stair chart heat map
is created from them. If we suppose the step size does not
influence the shape of the stair chart, the heat map color would
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Fig. 8. Sorted error rates for the addition UUT as an example of the stair
chart for stimuli step equal to 1.

then sharply follow its shape and no color gradients would
be observed. In practice, the step size influences the stair
chart shape. The marginal cases show up as a lighter shade
of color on the charts. Fig. 9 shows the heat maps for each
of the benchmark circuits. Considering the stair chart shape,
the step size generally influences only slightly the error rate
measurement. As well for various sizes of the benchmarks,
the results indicate that the design size influences the shape
by adding stairs. However, the design size affects the accuracy
only slightly, as can be seen on the color scale. Also, an
interesting fact concerning circuit evaluation can be observed:
larger and more complex designs have more stairs on the chart.
We believe that this is actually indicating the growth of the
set of potential failure types that can affect the design. The
general conclusion is that for the applications requiring to
measure the error rate per each fault injection, the step size has
a negligible impact on the accuracy while one can still profit
from the acceleration, resulting in nearly 5 times smaller test
run length for steps of sizes larger than 30.

VI. CONCLUSIONS

In this paper, the possibility to accelerate fault tolerance
evaluation through reduced stimuli set was examined. In our
research, a simple on-chip stimuli generator was used to
produce numbers in a row with a certain step. Such simple
generator saves space on the FPGA. In the case study, six
different circuit designs were evaluated. At first, the attention
was paid to the acceleration. The results show that the steps
of sizes larger than 30 do not provide any further effective
acceleration considering the constant fixed run times of UUT
reconfiguration and fault injection. Secondly, the paper focuses
on the correct detection of critical bits as some steps provide
significantly lower precision of the estimation than others. In
the third part of the paper, evaluations requiring error rate
per fault injections are considered. The results show that the
size of the circuit has a minimal impact on the precision.
The results presented in the case study are useful especially
for combinational circuits. However, generally, this research
is useful for everybody utilizing on-chip testing and, also
particularly, for our research of fault-tolerant system design
automation, in which the speed of evaluation determines the
size of state space our tool is able to explore.

ACKNOWLEDGMENTS

This work was supported by the Brno University of Tech-
nology under number FIT-S-20-6309.

REFERENCES

[1] J.-C. Geffroy and G. Motet, Design of Dependable Computing Systems.
Kluwer Academic Publishers, 2002.

[2] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[3] NASA, “Mars 2020 Perseverance Rover,” 2020, accessed: 2021-04-11.
[Online]. Available: https://mars.nasa.gov/mars2020/



0 50 100 150 200

addition addition_triple

Er
ro

r r
at

e

crc8 crc8_triple

composed composed_triple

Particular tests (functional verifications);

100
80
60
40
20

0

0 200 400 600 800 1000

0 200 400 600 800 16001000 1200 1400

Distribution of stair charts between various step size settings [num. of test runs]
0 20 40 60 80 100 120 140 160 180 200

of
 te

st
 [%

]

sorted by the error rate

Particular tests (functional verifications);

Er
ro

r r
at

e 100
80
60
40
20

0of
 te

st
 [%

]

sorted by the error rate

Particular tests (functional verifications);

Er
ro

r r
at

e 100
80
60
40
20

0of
 te

st
 [%

]

sorted by the error rate

0 50 100 150 200

Er
ro

r r
at

e

Particular tests (functional verifications);

100
80
60
40
20

0

0 200 400 600 800 1000

0 200 400 600 800 16001000 1200 1400

of
 te

st
 [%

]

sorted by the error rate

Particular tests (functional verifications);

Er
ro

r r
at

e 100
80
60
40
20

0of
 te

st
 [%

]

sorted by the error rate

Particular tests (functional verifications);

Er
ro

r r
at

e 100
80
60
40
20

0of
 te

st
 [%

]

sorted by the error rate

Fig. 9. Heat maps created from the stair charts of each benchmark circuit; black color indicates the highest representation while the yellow color indicates
the lowest representation.

[4] Farhad Fallahlalehzari, “How does the Mars Persever-
ance rover benefit from FPGAs as the main pro-
cessing units?” accessed: 2021-04-11. [Online]. Avail-
able: https://www.aldec.com/en/company/blog/188–how-does-the-mars-
perseverance-rover-benefit-from-fpgas-as-the-main-processing-units

[5] R. Dutra, J. Bachrach, and K. Sen, “SMTSampler: Efficient Stimulus
Generation from Complex SMT Constraints,” in 2018 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), Nov 2018,
pp. 1–8.

[6] R. Dutra, J. Bachrach, and K. Sen, “GUIDEDSAMPLER: Coverage-
guided Sampling of SMT Solutions,” in 2019 Formal Methods in
Computer Aided Design (FMCAD), Oct 2019, pp. 203–211.

[7] W. Jiawen, L. Zhigui, W. Suliang, L. Yang, L. Yufei, and Y. Hao,
“Coverage-directed Stimulus Generation Using a Genetic Algorithm,”
in 2013 International SoC Design Conference (ISOCC), Nov 2013, pp.
298–301.

[8] V. Jusas and T. Neverdauskas, “Stimuli Generator for Testing Processes
in VHDL,” in 2014 NORCHIP, Oct 2014, pp. 1–4.

[9] F. Cerveira, I. Kocsis, R. Barbosa, H. Madeira, and A. Pataricza,
“Exploratory data analysis of fault injection campaigns,” in 2018 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), 2018, pp. 191–202.

[10] C. Elakkiya, N. S. Murty, C. Babu, and G. Jalan, “Functional Coverage
– Driven UVM Based JTAG Verification,” in 2017 IEEE International
Conference on Computational Intelligence and Computing Research
(ICCIC), Dec 2017, pp. 1–7.

[11] J. Lojda, J. Podivinsky, O. Cekan, R. Panek, and Z. Kotasek, “FT-EST
Framework: Reliability Estimation for the Purposes of Fault-Tolerant
System Design Automation,” in 2018 21st Euromicro Conference on
Digital System Design (DSD), Aug 2018, pp. 244–251.

[12] J. Lojda, J. Podivinsky, O. Cekan, R. Panek, M. Krcma, and Z. Kotasek,
“Automatic Design of Reliable Systems Based on the Multiple-choice
Knapsack Problem,” in 2020 23rd International Symposium on Design
and Diagnostics of Electronic Circuits Systems (DDECS), 2020.

[13] J. Lojda, R. Panek, and Z. Kotasek, “Automatically-Designed Fault-
Tolerant Systems: Failed Partitions Recovery,” in Accepted for Presen-
tation on: 2021 IEEE East-West Design and Test Symposium (EWDTS),
Batumi, Georgia, Sep 2021.

[14] J. Lojda, R. Panek, and Z. Kotasek, “Automatic Design of Fault-

Tolerant Systems for VHDL and SRAM-based FPGAs,” in Accepted
for Presentation on: 2021 24th Euromicro Conference on Digital System
Design (DSD), Palermo, Sicily, Sep 2021.

[15] Xilinx Inc., “LogiCORE IP ChipScope Pro Integrated Controller (ICON)
Documentation,” https://www.xilinx.com/support/
documentation/ip_documentation/chipscope_icon/v1_05_a/
chipscope_icon.pdf, Jun. 2011, accessed: 2018-02-15.

[16] Xilinx Inc., “ChipScope Pro VIO Documentation,”
https://www.xilinx.com/support/documentation/ip_documentation/
chipscope_vio.pdf, Sep. 2009, accessed: 2018-02-15.

[17] Xilinx Inc., “ChipScope Pro 11.4 Software and Cores User Guide,”
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/
chipscope_pro_sw_cores_ug029.pdf, Dec. 2009, accessed: 2018-02-15.

[18] M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. IEEE
Computer Society, 2011, pp. 223–230.

[19] A. Abdel-Hamid, M. Zaki, and S. Tahar, “A Tool Converting Finite State
Machine to VHDL,” Canadian Conference on Electrical and Computer
Engineering, vol. 4, pp. 1907 – 1910 Vol.4, 06 2004.

[20] O. Cekan, R. Panek, and Z. Kotasek, “Input and Output Generation for
the Verification of ALU: A Use Case,” in 2018 IEEE East-West Design
& Test Symposium (EWDTS). IEEE, 2018, pp. 1–6.

[21] V. Kumar, “Algorithms for constraint satisfaction problems: A survey,”
AI MAGAZINE, vol. 13, no. 1, pp. 32–44, 1992.

[22] R. Giegerich, Introduction to Stochastic Context Free Grammars,
J. Gorodkin and L. W. Ruzzo, Eds. Totowa, NJ: Humana Press, 2014.

[23] J. Lojda, J. Podivinsky, Z. Kotasek, and M. Krcma, “Data Types and
Operations Modifications: A Practical Approach to Fault Tolerance in
HLS,” in 2017 IEEE East-West Design Test Symposium (EWDTS), Sept
2017, pp. 1–6.

[24] D. Vandevoorde and N. M. Josuttis, C++ Templates. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[25] M. Graphics, “Catapult HLS,” https://www.mentor.com/hls-lp/catapult-
high-level-synthesis/, 2017, accessed: 2017-07-07.

[26] Xilinx Inc., “ISE Design Suite,” https://www.xilinx.com/products/design-
tools/ise-design-suite.html, 2017, accessed: 2017-07-07.

[27] Xilinx Inc., “Ml506 Evaluation Platform User Guide,” UG347 (v3. 1.2),
2011.


		2021-11-09T09:50:41-0500
	Certified PDF 2 Signature




