2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

17-20 October, 2021. Melbourne, Australia

Distributed Evolutionary Design of High Intensity Focused Ultrasound
Treatment Plans*

Jakub Chlebik! and Jiri Jaros?2

Abstract— High-Intensity Focused Ultrasound (HIFU) is a
modern and still evolving technique used to treat a variety of
solid malignant cells in a well-defined volume including breast,
liver, pancreas, prostate or uterine fibroids or other general
soft-tissue sarcomas. HIFU treatments allow a noninvasive and
non-ionising approach when compared to more conventional
cancer treatments, such as radio and chemo-therapy or open
surgery, which can lead to a multitude of complications after the
treatment. In recent years, a realistic thermal model accounting
for patient-specific materials to design HIFU treatment plans
was introduced, along with an evolutionary strategy to optimize
them. However, the execution times of this model is too
prohibitive to allow for a routine use. This paper presents
a comparison of two distinct distributed evolutionary models
employing a further optimized fitness model. The experiments
show up to 6 times decrease in the evolution time. These
improvements allowed to investigate a new real-life based
benchmark and use-case.

I. INTRODUCTION

The principle of the HIFU treatment is coagulative thermal
necrosis by raising the temperature in the focal region by tens
of degrees. The danger of potential tissue ablation outside
of the focal region is low since the cytotoxic levels of
temperature only occur in small volumes (about 1 mm by
10mm). Tumours of larger size are destroyed by chaining
multiple focal regions, thus creating a contiguous lesion
lattice encompassing the malignant tissue [1].

Compared to traditional methods such as radiotherapy, the
method suffers from low delivery precision. Only with re-
cent advancements in numerical methods, high performance
computing, and physically relevant models, detailed simula-
tions accurately capturing the relevant physical behaviour of
HIFU waves and temperature distribution in a heterogeneous
medium are now possible [2], [3].

This paper furthers the efforts towards the automated
design of the treatment plans by taking another step in the
fitness function optimization, and by use and comparasion of
the already proposed Island evolution model with a simple
Farmer-Workers model, using an equal size population. Ex-
periments are then repeated on a newly introduced realistic
use-case.
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II. RELEVANT WORK

Recent work by Jaros [3] achieved first promising results
at evolving precise HIFU treatment plans using Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) [4] with
a physically correct fitness function. However, the process of
evolution took up to 48 hours on very powerful computing
machines. Additional effort on accelerating this computation
was undertaken by Kuklis in [S], showing promising results
comparing multitude of Island based evolution strategies
to find the best parameter set-up. This paper presents a
comparing review of the best found Island evolution strategy
against the standard Farmer-Workers model, using a new,
better optimized thermal model and a more demanding
realistic HIFU surgery use case.

ITI. PROPOSED EVOLUTIONARY STRATEGY

This section describes the Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES), developed by N. Hansen
[4]. After a brief introduction, the treatment plan encoding
is outlined. Finally, the fitness function, based on the tissue-
realistic heat diffusion model developed as part of the k-Wave
toolbox is introduced [2], [6].

A. Covariance Matrix Adaptation Evolutionary Strategy

The Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) is a state-of-the-art real domain optimization
method very popular for its ability to solve nonlinear,
nonconvex objective functions. In contrast to the canonical
Evolutionary Strategy, which moves the population towards
the optimum by a random step size taken from a distribution
with a fixed standard deviation, CMA-ES extends this ap-
proach by using a covariance matrix to describe the pairwise
dependencies between genes [7].

In CMA-ES, a new population of A\ new search points
is generated by sampling a multivariate normal distribu-
tion N'(p, C). This distribution is determined by its mean
1 € RY and its symmetric and positive defined covariance
matrix C € RY*N | Together, these parameters create an
ellipsoid on the search space, with the covariance giving
it its shape and the mean describing its center, effectively
creating a currently searched subspace. The length of the
step is controlled by the step-size parameter 0 € RV,
New generation is consequently sampled by the following
formula:

x;~ p+oN(0,C)

These newly generated individuals are first sorted by
fitness and the best m of those individuals are selected.

fori=1,...,\ (1)
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Next, the mean value, step size and the covariance matrix are
updated. The mean p is updated by weighting intermediate
recombination, where the weight of every selected individual
is proportional to its rank in the population. The step size o is
controlled by the so-called evolution path. Conceptually, the
evolution paths are the search paths the strategy takes over a
number of generation steps. The main benefit of the CMA-ES
is a relatively small population and fast convergence for real-
valued problems. The step-size control allows for log-linear
convergence and possibly linear scaling with dimension [7].

B. Encoding of the Treatment Plans

The treatment of large target areas using HIFU requires
multiple sonications to cover the desired volume. The candi-
date solution I describes the trajectory the HIFU transducer
follows. The treatment is not continuous but proceeds at
precisely defined points in the tissue. The amount of energy
delivered during a single sonication is given by the length
of the sonication, represented by the variable t,,, and the
length of the subsequent cooling interval, represented by the
variable ?,¢¢. The number of sonications is limited to N,
usually low to mid tens. If we consider 2D problems, one
sonication can then be defined as a 4-tuple consisting of
two spatial coordinates of the beam focus, and the temporal
sonication and cooling intervals:

Si = (@i, Yis ton, torf) ()

The entire solution is then defined as a sequence of sonica-
tions:

I=(5,5,...,5n) 3)

With this considered, the optimization of the treatment plan is
defined as the search for the optimal positions and sonication
lengths for the given number of ablations to destroy the
targeted volume of a malignant tissue while preserving the
surrounding areas.

C. Fitness Function

With problem definition set, we need to describe the fitness
function used to assess the quality of candidate plans. Such
assessment is composed of several stages, described in the
following sections [3].

1) Heat Deposition: The first step is to determine the heat
energy deposition for every sonication using the predicted
shape and position of the ultrasound focus and the sonication
interval. This can be determined by a several complex
numerical models, such as [6], [8], [9]. Unfortunately, their
execution times are often too prohibitive for the use in
evolutionary algorithms. Consequently, a few simplifications
assuming a perfect transducer had to be made. (a) The center
of the focus is possible to be placed at coordinates given by
the sonication. (b) The distribution of the energy around the
focus follows the Gaussian distribution [10]. For the sake
of simplicity, we always assume the transducer axes to be
aligned with the domain axes and only consider problems in
2D.

2) Thermal Model Execution: The second step is the
execution of the numerical thermal model to calculate the
temperature distribution in the domain during the treatment.
The heat diffusion is modelled by the Pennes’ bioheat
equation [11] incorporating various tissue properties and
effects of blood perfusion. Blood perfusion in particular is
important to take into account since the blood vessels carry
away considerable amounts of energy and thus cool down
the tissue and prevent the ablation of malignant cells.

3) Thermal Damage Computation: Finally, the resulting
tissue damage is evaluated using the Sapereto-Dewey isoef-
fect thermal dose relationship [12]. This relationship, called
CFEMA43 [13], represents the equivalent time which would
produce the same biological effects at a temperature of 43°C'.
Generated spatial map of CEM43 is compared to a value
of 240 (thermal dose of 240 minutes at 43°C' irreversibly
damages and coagulates critical cellular proteins, leading to
tissue destruction) to produce a binary mask of destroyed
tissue. Eq. (4) describes this process.

0
Cyy =
-]

To give the optimization algorithm more freedom, some
”do not care” areas can be specified as well. Eq (5) describes
the calculation of the resulting fitness value.

if CEM43,, < 240
else

“)

Y X
1= [ o wr-opay o

X and Y are the domain sizes along the = and y axes,
respectively. D is a target map specifying the area to be
treated, C' is a binary mask representing the actual result
of the evaluated plan. C' is a complementary mask for C,
representing the nontreated area. P represents the prohibited
area. As D and P are provided by the user and are specific
to each patient, a professional user can specify the level of
urgency for any given point by increasing its D or P values.

IV. PROPOSED IMPROVEMENTS

To further the efforts from [5], the entire optimization
process was rewritten from Matlab to C++, eliminating the
overhead of interfacing between two systems and allowing
full control over the process, including the generation of heat
energy matrices for deposition. Next, further optimizations of
the source code were carried out. This concerns mostly better
exploitation of a multi-core computation and vectorization
using OpenMP implementation to allow for better scaling.
Finally, the C++ code was compiled with the highest opti-
mization level specific for the target CPUs.

A. Performance Analysis

With these changes, a new scaling test using the same
hardware as [5] - 2 x Intel Xeon E5-2680v3 with 12
cores at 2.5 GHz - was performed, see Fig. 1. The results
show the execution time decreasing rapidly up to 12 cores,
from thereafter, a slight slow down can be observed, caused
comunicatoin between both processors. However, this is a
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Fig. 1: Median of 15 execution times of a random single in-
dividual executed on 1 to 24 cores. One individual represents
a treatment plan of 6 sonications. Logs scale on both axes.

major improvement in terms of scalability over the results
presented in [5].

B. Distributed Evolution Models

The probability of finding the optimal solution by CMA-
ES is known to increase with the population size [14],
especially for non-linear problems. Faster evolution can be
achieved by concurrent evaluation of multiple individuals.
One option is to simply distribute the fitness evaluation
to multiple computing nodes and gather results. This is
called the Farmer-Workers model. An alternative is to use
multiple smaller populations to run in parallel and exchange
information periodically. This model is called the Island
model of evolution. In this approach, each island employs
several processor cores. These cores can be used either to
evaluate multiple individuals concurrently, or to accelerate
the evaluation of any single individual. The updated execu-
tion profile revealed only a 1.5% overhead introduced by
the island model. Both models were implemented using the
OpenMPI library.

1) Island Model: The driving idea behind the Island
model is to use multiple smaller populations and increase
diversity by accepting solution candidates evolved inde-
pendently on other islands, and thus avoid local minima.
Pseudocode displayed in Listing 1 shows the Island CMA-
ES workflow. After the initialization, the evolution runs in
a loop until the stopping condition is met. Each generation
starts with evaluation of A newly sampled individuals from
the local CMA-ES, updating its internal state right after.
However, every [N generations migration occurs. During the
migration, the population on each island is sorted according
to its fitness and M best individuals are distributed to some
other islands. The receiving islands accept these immigrants
only if the acceptance condition is met. Next, P immigrants
undergo a selection process to replace P worst individuals
in the local population. At the end of each loop, the local
CMA-ES models are updated. Some additional controls are
employed to prevent too steep drift of the search space

1 def island():

2 while evo:

3 pop = sample_population (params, lambd)
4 fitvals = fitness_function (pop)

5 if migratelInterval (gen) :

6 sortedI = index_sort (fitvals, >)

7 broadcast (fitvals[1l:nBest])

8 (incPop, incFit) = recieve()

9 if accept (incFit):

10 for i in (l:nImmigrants):

11 incIndex = select (incFit)

12 orgIndex = sortedI[i]

13 poplorgIndex] = incPop[incI]

14 fitvals[orgIndex] = incFit[incI]
15 end = cmaes_update (pop, fitVals)

16 gen += 1

17 evo = all_reduce (end, +)

Listing 1: Pseudocode of the Island CMA-ES.

1 def farmer():

2 while evo:

3 pop = sample_population (params, lambd)
4 popPart = scatter (pop)

5 fitvals = fitness_function (popPart)
6 append (fitvals, gather_results())

7 evo = cmaes_update (pop, fitvals)

8 gen += 1

9 broadcast (evo)

10

11 def worker():

12 while evo:

13 popPart = gather ()

14 fitvals = fitness_function (popPart)
15 send (fitVals, ROOT)

16 evo = recieve()

Listing 2: Pseudocode of the Farmer-Workers CMA-ES.

ellipsoid, limiting the ability of CMA-ES to hard pivot the
evolution paths based on a single individual outside of its
distribution. Before the next loop repeats, each island checks
whether the optimization met the stopping condition and
distributes this information accordingly.

2) Farmer-Workers model: Two complementary pseu-
docodes of this approach are displayed in Listing 2. In this
model, the farmer node (see Listing 2) runs the optimization
process, generating a large population of individuals. The
farmer then distributes the computation of fitness evaluations
among workers. After a worker is done with the assigned job
batch, the results are sent back to the farmer node. Once all
workers complete their tasks, the farmer updates the internal
state of the optimization algorithm and repeats the process
with next sample of individuals. Once the stopping criterion
is satisfied, the farmer node informs workers and terminates.
The advantage of this approach is a larger and thus more
diverse population.

V. EXPERIMENTS

This section details the setup for our experiments. The
treatment setup parameters and the parameters for the dis-
tributed evolution models - the Farmer-Worker (FW) model
and the Island (/) evolution model. For completeness, the
ordinary one node sequential (SQ) model is also compared.
15 independent runs for each model were executed on two
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Fig. 2: A visualisation of the target and penalization masks
used in benchmarks. Medium data are taken from the open-
source AustinWoman voxel model. Left picture represents
the monolithic use case. Right pictures is the flower use case.

different benchmarks. To compare the two presented models
of distributed evolution, two metrics were examined:

o The success rate - The percentage of all runs capable
of finding the optimal solution.

o The time to solution - The computational model capable
of delivering satisfying results faster should be favoured
for further development.

A. Treatment Setup

To set as realistic conditions as possible, the same bench-
mark as presented in the paper [3] was used. It represents the
use case of ablation of one abdominal target within the right
lobe of the liver. Tissue parameters were acquired from the
open-source AustinWoman voxel model [15]. Multiple levels
of severity for both the target and the penalization maps
were employed to diversify the search space. Two levels to
represent the target area D and three levels for the prohibited
area P.

Additionally, thanks to the improvements in performance
of fitness evaluation, we present a new benchmarking case
- a tumour overgrown around a critical, healthy tissue, such
as arteries, large veins or even urethra. For this case study,
a very rigid penalization mask was used, with the aim of
preventing ablation of the area in the middle of the target at
all costs. A wider ”do not care” area around the target was
also employed to allow for more leeway in finding the outer
shape. This use case model was named a ’flower’.

Both benchmarks, can be seen in Fig. 2.

As for the heat source; the spatial peak of the volume
rate of heat deposition was set to 100 Wcm™2, which
approximately matches the clinical data.

The parameters of the numerical thermal model were set
according to numerical convergence testing as follows:

o Domain size 495 x 495 grid points, periodic boundary
conditions, with 0.2 mm spatial resolution.

« Temporal resolution of heat deposition calculations was
set to 0.1s.

« Ultrasound focus center position limited to the bounding
box [270, 230] x [345, 295] for the monolithic case study
and [287,207] x [287,207] for the flower case study.

o Temporal intervals are bound to [0, 20s] for both the
monolithic and the flower case. However, the flower
model used a wider - [0, 150s] - interval for the cooling

axis. This change is introduced because of the heat
diffusion into the surrounding tissue after a sonication,
causing energy accumulation inside the sonications area
overlap. The aim of this change is to introduce a
possible cooling of the surrouding non-targeted tissue.

e 6 (6x in figures) and 20 (20 x) sonications used for both
benchmarks. Setting the number of sonications correcly
is a very tedious task requiring expert knowledge. The
success rate and evolution time are highly dependant
on the number of sonications used. In the paper [3],
treatment plans with varying numbers of sonications
have been investigated, with the conclusion of 6 and
8 being the best. We decided to use 6 to be able
to compare with [5] and then introduce a benchmark
using 20, to see the behaviour of the treatment planning
methods on a higher sonication use case, expanding
the original study with a real world scenario use case.
This test is relevant as a proof of concept as it was not
previously possible.

B. Optimization Run Parameters

One of the big advantages of CMA-ES is the lack of
parameters necessary to be tuned for a successful evolu-
tion. This advantage is preserved using the Farmer-Workers
model, however, the proposed Island model introduces sev-
eral parameters heavily influencing the behaviour of the
evolution. We are building on a paper [5] which already
did a deep study on the effect of various Island evolution
parameters on the ability to solve this specific problem. As
such, we adopted the results and aim to expand the research.

o Number of Islands - The island model with 6 nodes (x6)
was investigated. Since the performance improvements
allowed to scale past 12 cores and the reference machine
uses 2 x 12 cores per node, we decided to fully levarege
the fitness scaling and use all 24 cores for one island.
Thus, 6 islands per run were used.

« Size of population per island - The size of the popula-
tion is 13 and 17 individuals for 6 and 20 sonications,
respectively. These are default values decided by CMA-
ES.

« Migration interval - The decision to migrate every M =
10 generations was made after brief evaluation. This
seems like a reasonable compromise [16] as too frequent
migration causes a loss in diversity and too rare slows
down convergence.

« Island topology - We decided to adopt a fully connected
graph topology from [5]. Based on our empirical data,
there was no or negligible difference with a ring or even
randomly connected topology.

o Acceptance policy - Each island has a probability to
accept new individuals into the population based on the
current state of optimization. We decided to adopt the
acceptance policy introduced in paper [5] as it showed
a good improvement in convergence times.

« Replacement strategy - Each island receives more im-
migrants than it can reasonably keep in its population.
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Which migrants are integrated is decided by a tourna-
ment selection.

The population size for the FW model is adjusted to
be the same as the sum of the population sizes across all
islands in the competing model. This means 78 individ-
ual for 6 sonications (6 x 13) and 102 (6 x 17) for 20
sonications. The population size for the SQ model is the
default population determined by CMA-ES and serves as a
comparison of distributed models to a standard single node
search process. Lastly, the evolution algorithm is allowed to
run for maximum of 8 hours to simulate the result urgency
requirement.

VI. RESULTS
A. Monolithic Target

Different distributed evolution models were evaluated us-
ing the introduced monolithic case study. Treatment plans
consisting of 6 and 20 sonications were measured and the
final fitness of the solutions plotted in Fig. 3. The upper plot
describes the results of planning for the monolithic case, the
lower represents the flower case.

We can see that for lower numbers of sonications, the
island evolution model provides superior results, as all of its
runs managed to find the optimal solution, confirming results
from [5]. However, from the same figure we can observe that
the Farmer-Workers model is not very far behind.

Since the median of the FW model settles to the optimal
fitness value, more than 50% of all runs managed to find
an optimal solution. Furthermore, when analysing Fig. 4, we
can see that when it did, it generally converged faster than
the Island model. It should also be mentioned that very small
fitness values (less than 50) are usually acceptable solutions
t0o, as only a small fraction (less than 0.5%) of the targeted
volume was not treated. Alternatively, a very small volume
of penalized protected area was destroyed.

For the higher number of sonications, the FW model pulls
ahead of the T model substantially, boasting 100% success
rate with a much faster time to solution, compared to the
Island model, which managed to find the optimal solution in
less than 25% of all runs.

B. Flower

Solving the flower benchmark proved to be more dif-
ficult than the original monolithic one. None of the runs
managed to find the optimal treatment plan for both 6 and
20 sonications. Nevertheless, smaller numbers of sonications
appear to be better suited for solving this benchmark. If the
assumptions are correct, the reason for this is that fewer
sonications provide less residual heat to diffuse into the
prohibited middle part. However, a smaller dimension of
the problem, with all other parameters remaining the same,
allows for faster heat diffusion simulations and thus a higher
number of fitness evaluations inside the given time window.
To confirm that the number of sonications is the culprit of this
behaviour, we plot the fitness against the number of fitness
evaluations for both options (Fig. 5). In this figure, we can
see that better results are not because of the higher number of

fitness evaluations. Worthy of mention might be the fact that
the median fitness of around 70 for the F'W6x6 model might
be acceptable for treatment in some edge cases. Penalization
mask used for this benchmarks causes even a single pixel hit
of the middle area to highly increase fitness.
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Fig. 3: The final fitness value of the treatment planning
process for 6 and 20 sonications on the monolithic target
(top) and flower target (bottom).
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Fig. 4: The time needed for each model to find the solution
for the monolithic target. All runs were capped at 8 hours.
Times for the flower benchmarks are not shown because
of the inability to find the optimal value and thus always
running for the maximum allowed time.
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Fig. 5: Median fitness of best solutions at given number of
fitness evaluations for both number of sonications. The data
for option 6x are cut and aligned to the final number of
fitness evaluations for 20x.

VII. CONCLUSIONS

This paper has presented the results of our latest work
on optimizing HIFU treatment plans. Farmer-Workers model
seems to, in general, outperform the Island based approach,
most likely thanks to exposing the entire population data
to the CMA evolution strategy, instead of just the best
individuals from separately evolved populations. It appears
that a simple increase in population diversity by injection of
separate individual is not enough. Considering the approach
CMA-ES uses to improve solutions, a possible reason for
this could be that randomly perturbing the population from
outside of the distribution slows down the exploitative ca-
balities of the method, forcing an adaptation of the entire
covariance to a solution that might be from a different local
optima or on the edge of the search space. The latter is
known from literature to harm the performance of CMA-
ES [14]. Meanwhile, for large populations governed by a
single instance of the algorithm, the method has access to a
much larger sample size to learn all pairwise dependencies
correctly. However, thanks to a newly optimized model, we
were able to move a previous computational time limit of 48
hours down to 8 hours while still finding feasible solutions
without any loss in precision. Furthermore, introducing the
distributed computation models allows us to find a good
enough solution for the basic monolithic use case in less
than 2 hours. This in turn enabled the use of another realistic
setting with a higher number of sonications - 20.

Increasing the amount of sonication (hundreds or more),
however, raises the dimension of the solved problem. Al-
though our data shows that 20 sonications are still solvable in
roughly 5 hours, we must consider the inevitable transition to
3D spatial domain. This will further increase the complexity
of finding a feasible solution, by at the very least introducing
one more variable per sonication. While we can compensate
by also increasing the number of computational nodes used,
this approach quickly becomes cost inefficient and unsus-
tainable. Most probable solution here lies in a change of
our heat diffusion modeling, e. g. a GPU acceleration or a

completely new approach, based on recent advancements in
machine learning or surrogate modeling.

Sadly, the introduced flower target still requires more
work to be done before moving further to 3D. Despite the
fact that the solution for 6 sonications shows promise, the
20 sonication benchmark still provides very unsatisfactory
results. The most likely culprit here is the heat accumulation
inside the protected region. One possible solution to this
would be an introduction of yet another variable into the
search space - the transducer power. Another could be
automaticaly adapting the number of sonications during the
optimization. Both of these, however increase the complexity
of the entire optimization process, even more feeding into
dimension creep problem outlined above.
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