
Handling C++ Exceptions in MPI Applications
Jiri Jaros∗

Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations
Brno, Czech Republic
jarosjir@fit.vutbr.cz

KEYWORDS
MPI, C++ Exceptions, Error Reporting.
ACM Reference Format:
Jiri Jaros. 2021. Handling C++ Exceptions inMPI Applications. In Proceedings
of Supercomputing Conference (SC’21). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND MOTIVATION
Handling error states in C++ applications is managed by excep-
tions [1]. This technique protects a piece of code by a try-catch
code block. Any error arising in the try block is converted into an
exception object and resolved in the catch block. If the error is not
handled, the application is still properly terminated. Exceptions
bring many significant benefits over standard error code checking
implemented in the C language, the most important of which is
decoupled program logic and error handling.

In distributedMPI applications, it is often necessary to inform the
other processes (ranks), that something wrong happened, and that
the application should either recover from the faulty state, or report
the error and terminate gracefully. Unfortunately, the MPI standard
does not provide any support for distributed error handling. It only
defines return codes for MPI calls. The distribution of the error
message is then left to the developers. If they are not willing do
so after every MPI call, the MPI runtime may be informed that all
errors are fatal. This, however, leads to application termination and
the error reporting from all ranks, which is not user friendly while
running over thousands of ranks.

After dropping the C++ interface in the MPI-3.0 standard [8], the
MPI exception interface for reporting the MPI errors was removed
from the default branch as well, yet it can still be enabled during
MPI compilation. Nevertheless, the MPI exceptions only cover the
MPI routines and report to the local rank only. This brings a lot
of troubles since any exception thrown by either the MPI runtime
or the user code breaks the standard code path and jumps into the
exception handler. This may cause several communication routines
to be skipped leading to a deadlock. This is even an worse situation
than an uncoordinated crash, since the application hangs and keeps
consuming computing resources until manually terminated.

Surprisingly, there is very little work published on the error han-
dling inside MPI applications. Most research concerns on solving
MPI faulty states such as a node crash, lost interconnection, or
detection and recovery of deadlock states [6, 7, 9]. However, what if
the MPI itself is working properly but the application encountered
an unexpected situation? As far as the author knows, there is only a
∗corresponding author.

SC’21, 2021, St. Louis, MO, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Class diagram of the MPI error checker.

single paper devoted to exception propagation in MPI applications
by Engwer at.al [2]. This work uses a side channel for distributing
error states over all ranks and asynchronous error checking. The
technique seems to be pretty robust, but has a major drawback. All
MPI calls have to be made via a custom interface which makes it
unfit for applications using third party libraries.

This poster presents a new approach for exceptions handling in
MPI applications. The goals are to (1) report any faulty state to the
user in a nicely formatted way by just a single rank, (2) ensure the
application will never deadlock, (3)propose a simple interface and
ensure interoperability with other C/C++ libraries.

2 PROPOSED METHOD
The proposed method adopts a minimalistic interface. In the sim-
plest case, the user can use only a single try-catch block to manage
error reporting in a sensible way. Nevertheless, the user is free to
use as many try-catch blocks as necessary.

The interface consists of two classes, DistException and Error-
Checker, see Fig. 1. The DistException class wraps all excep-
tions derived from the base C++ class std::exception, including
MPI::Exception and maintains information about the type of the
exception, faulty MPI communicator, its name, faulty rank, user
error code and error message, and the presence of deadlock.

The ErrorChecker class is used to report and handle exceptions.
The application errors are reported by instances of DistException.
In a nutshell, ErrorChecker clones the MPI communicator it is
supposed to protect (e.g., MPI_COMM_WORLD) to build a side channel
where the ranks announce to have passed a given checkpoint, usu-
ally at the end of the try block, at end of the iteration, or after a
long operation the user should be informed about. At these points,
the setSuccess() method is called to inform the others that no
exception was thrown by this rank. If any other rank yet threw an
exception, this routine will propagate this information within the
local process by throwing a private instance of DistException.

To handle exceptions in the catch block, checkException()
shall be called at the first place to pass on the information about

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC’21, 2021, St. Louis, MO, USA Jiri Jaros

local exceptions as well as to collect the error information from the
other ranks, and to vote a suitable rank to log the error message
(usually the root rank or the first alive). If the code is not dead-
locked, the user can try to recover, or terminate the code gracefully
otherwise. A code snippet showing the use can be seen in Listing 1.

1 int main(int argc, char** argv)
2 {
3 // Init MPI and set the error handler.
4 MPI_Init(&argc, &argv);
5
6 // Initialize error checker (static class).
7 ErrorChecker::init(MPI_COMM_WORLD, timeout);
8
9 // Protected block of the code.
10 try
11 {
12 // Any combination of local and MPI computation may appear here.
13 MPI_Bast(...);
14 foo();
15 MPI_Barrier(...);
16 ...
17 // The very last command of the try block set a success flag.
18 ErrorChecker::setSuccess();
19 }// end of try
20 // Error handling.
21 catch (const std::exception& e)
22 {
23 // Find out whether any remote rank caused an exception and
24 // which rank is supposed to print out an error message.
25 const auto& distException = ErrorChecker::catchException(e);
26
27 // Check whether code has deadlocked due to some blocking call
28 // or collective communication in progress. If so, find the rank
29 // which will report the error, otherwise leave if for root.
30 const int reportingRank = (distException.getDeadlockMode()
31 ? distException.getRank()) : 0;
32 if (reportingRank == myRank) reportError(distException);
33
34 // Print out error message and terminate or recover.
35 printErrorAndTerminate(distException);
36 }// end of catch
37
38 ErrorChecker::finalize();
39 terminateApplication(EXIT_SUCCESS);
40 }// end of main

Listing 1: Simple usage of the error checking code

3 IMPLEMENTATION DETAILS
As mentioned previously, ErrorChecker creates a side channel to
distribute information about exceptions.

The setSuccess() method informs all other ranks that no ex-
ception was thrown by this rank up to this point. For this purpose,
a non-blocking MPI_Iallreduce call with an MPI_MIN operation is
used. Each healthy rank sends the MAX_INT value to announce no
error. Faulty ranks will, however, skip the setSuccess() method,
but join the communication in the catchException()method and
provide its rank instead. Back in setSuccess(), all ranks are sit-
ting in MPI_Wait, waiting for the result of the reduce operation.
If the result is MAX_INT, no error happened. Otherwise, the ranks
will get the information about the first faulty rank that threw an
exception. Although it would be possible to collect all faulty ranks
by MPI_Iallgather, this is usually not required for reporting pur-
poses. Once the faulty rank is known, the reporting rank asks
the faulty one about the exception details using a set of point-
to-point nonblocking communications. The exception details are
only stored in the reporting rank, the others only know an error
happened. This behaviour can be simply changed to an inform-all
mode. Once all healthy ranks know about the remote exception,

they create a local instance of DistException and throw it at the
end of setSuccess() to join the faulty ranks in the catch block.

The catchException(const std::exception& e) first checks
the exception type. If the exception was thrown by setSuccess()
method, it was obviously created by a remote rank and rethrown
locally. In that case, the exception details are extracted and returned
for local processing. Otherwise, it must be a new local exception
thrown somewhere in the try block and has to be propagated to
the other ranks. This is done by joining the already mentioned
MPI_Iallreduce communication. Since the faulty rank left the
predescribed code path, it is possible that the other ranks will
never join this call (never call setSuccess()) since being stuck
in another blocking call. This is solved by periodic testing of the
MPI_Iallreduce communication in catchException(). If not fin-
ished within a predefined timeout (10s by default), the application
has deadlocked and the only solution is to call MPI_Abort. How-
ever, before that, it is necessary to report the error message and
create an error code. Since there might be multiple faulty ranks (e.g.,
input file is not accessible from one node), it is necessary to find
all faulty, but still alive ranks, to agree which one will overtake the
reporting and termination responsibility. This is done by probing all
ranks within the protected communicator. Each faulty rank sends
its rank value to all other ranks and waits for the answer. Simply
said, a custom deadlock-free variant of MPI_Iallgather commu-
nication is performed. After a given timeout, communications with
not responding ranks are cancelled, and the reporter is chosen to
be the process with the lowest rank. Consequently an exception
information is wrapped into an MPI message with the deadlock
mode set to true and sent to the reporter.

If deadlock was not detected while running MPI_Iallreduce,
the faulty rank with the lowest rank value wraps the exception into
the error message and sends it to the root rank. In this situation,
the code is able to recover.

4 CONCLUSIONS
The proposed exception handling mechanism was integrated into
the MPI version of the acoustics k-Wave toolbox [5]. The code was
tested under different MPI implementations such as IntelMPI 19.x
and OpenMPI 4.x up to 1536 ranks. As external libraries heavily
utilising collective communications, distributed version of the fast
Fourier transform (FFTW) [4] and the HDF5 [3] I/O libraries were
chosen. The code was tested with several injected errors into mul-
tiple ranks such as non existing input file, disk quota exceeded,
wrong rank in the MPI call, custom k-Wave exceptions, and stan-
dard system exceptions such as out of memory problems, numerical
errors, etc. In all situations the code has worked properly.

The advantages of the proposed solution is that no dedicated
rank for testing the errors is necessary, a single reduce operation
is only required to confirm the application passed a check point,
deadlock in application cannot interrupt the error handling, and the
application always terminates gracefully with a proper error mes-
sage. The necessary support for MPI exceptions to handle MPI error
states, not part of the default branch, may be seen as a disadvantage,
but it can be overcome by custom MPI error handlers. The code can
be downloaded from https://github.com/jarosjir/MPIErrorChecker

https://github.com/jarosjir/MPIErrorChecker

Handling C++ Exceptions in MPI Applications SC’21, 2021, St. Louis, MO, USA

5 ACKNOWLEDGEMENT
This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic through the e-INFRA CZ (ID:90140).

REFERENCES
[1] Rodrigo Bonifacio, Fausto Carvalho, Guilherme N. Ramos, Uira Kulesza, and

Roberta Coelho. 2015. The use of C++ exception handling constructs: A compre-
hensive study. In 2015 IEEE 15th International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, 21–30. https://doi.org/10.1109/SCAM.
2015.7335398

[2] Christian Engwer, Mirco Altenbernd, Nils-Arne Dreier, and Dominik Goddeke.
2018. A High-Level C++ Approach to Manage Local Errors, Asynchrony and
Faults in an MPI Application. In 2018 26th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP). IEEE, 714–721. https:
//doi.org/10.1109/PDP2018.2018.00117 arXiv:1804.04481

[3] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An overview of the HDF5 technology suite and its applications. In Proceedings
of the EDBT/ICDT 2011 Workshop on Array Databases - AD ’11. ACM Press, New
York, New York, USA, 36–47. https://doi.org/10.1145/1966895.1966900

[4] M. Frigo and S.G. Johnson. 2005. The Design and Implementation of FFTW3. Proc.
IEEE 93, 2 (feb 2005), 216–231. https://doi.org/10.1109/JPROC.2004.840301

[5] Jiri Jaros, Alistair P. Rendell, and Bradley E. Treeby. 2016. Full-wave nonlinear
ultrasound simulation on distributed clusters with applications in high-intensity
focused ultrasound. The International Journal of High Performance Computing
Applications 30, 2 (may 2016), 137–155. https://doi.org/10.1177/1094342015581024
arXiv:arXiv:1408.4675v1

[6] Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, Bronis R de
Supinski, Kathryn Mohror, and Howard Pritchard. 2016. Evaluating and extending
user-level fault tolerance in MPI applications. The International Journal of High
Performance Computing Applications 30, 3 (aug 2016), 305–319. https://doi.org/10.
1177/1094342015623623

[7] Nuria Losada, Patricia González, María J. Martín, George Bosilca, Aurélien
Bouteiller, and Keita Teranishi. 2020. Fault tolerance of MPI applications in
exascale systems: The ULFM solution. (may 2020), 467–481 pages. https:
//doi.org/10.1016/j.future.2020.01.026

[8] Martin Ruefenacht, Derek Schafer, Anthony Skjellum, and Purushotham V. Banga-
lore. 2021. MPIs Language Bindings are Holding MPI Back. CoRR abs/2107.10566
(2021). arXiv:2107.10566 https://arxiv.org/abs/2107.10566

[9] Guang Suo, Yutong Lu, Xiangke Liao, Min Xie, and Hongjia Cao. 2016. NR-MPI: A
N on-stop and Fault Resilient MPI SupportingProgrammer Defined Data Backup
and Restore for E-scaleSuper Computing Systems. Supercomputing Frontiers and
Innovations 3, 1 (jun 2016). https://doi.org/10.14529/jsfi160101

https://doi.org/10.1109/SCAM.2015.7335398
https://doi.org/10.1109/SCAM.2015.7335398
https://doi.org/10.1109/PDP2018.2018.00117
https://doi.org/10.1109/PDP2018.2018.00117
http://arxiv.org/abs/1804.04481
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1177/1094342015581024
http://arxiv.org/abs/arXiv:1408.4675v1
https://doi.org/10.1177/1094342015623623
https://doi.org/10.1177/1094342015623623
https://doi.org/10.1016/j.future.2020.01.026
https://doi.org/10.1016/j.future.2020.01.026
http://arxiv.org/abs/2107.10566
https://arxiv.org/abs/2107.10566
https://doi.org/10.14529/jsfi160101

	1 Introduction and Motivation
	2 Proposed method
	3 Implementation details
	4 Conclusions
	5 Acknowledgement
	References

