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Preface

This book provides a multidisciplinary resource for major depressive
disorder (MDD) also simply termed as depression. The main theme of
this book is to discuss the details of electroencephalography (EEG)-
based methods that can provide solutions to the diagnosis and
treatment-related issues for depression. The book addresses the
depression-related challenges by studying both neurobiological and
electrophysiological point of views. The book shows that MDD is a men-
tal illness and needs proper diagnosis and patient care. Hence, the
authors believe that this book can become a resource to increase aware-
ness against depression. In addition, the book may benefit clinical prac-
titioners, researchers, and depressed patients.

The book introduces new treatment strategies for clinicians.
According to existing practice, the diagnosis of depression involves
structured clinical questionnaires such as the Beck Depression
Inventory (BDI) and Hospital anxiety and depression scale (HADS).
However, these questionnaires have a subjective nature and could be
inefficient in particular cases. Therefore, the investigation of objective
methods involving EEG technology could open new treatment strategies
for depression. Ultimately, improvement in the quality of life for
depressed patient is possible.

From the perspective of researchers, the book furnishes information
on an EEG-based experiment design involving depression. Thanks to
the digital age, the advancement in the implementation of machine
learning techniques has opened the door for ubiquitous applications,
and depression is not an exception. However, the idea is still in its
infancy, as the clinical application of EEG-based machine learning meth-
ods for depression still need research efforts to achieve clinical valida-
tion. Therefore, this book provides examples of EEG-based methods for
depression termed Intelligent Treatment management system (ITMS) for
depression. The ITMS exhibits improved machine learning solutions
and shows clinical relevance as well.

Chapter 1, Introduction: Depression and Challenges, introduces
depression and its subtypes and associated challenges. Moreover, the
chapter emphasizes the development of objective methods for diagnosis
and treatment efficacy assessments involving depression. In particular,
this chapter shows examples of the EEG research studies that have

xiii



addressed the research area on EEG-based methods for depression diag-
nosis and prognosis.

Chapter 2, Electroencephalography Fundamentals, elaborates on the
fundamentals of electroencephalography, including EEG frequency
bands, EEG recording techniques, EEG references, EEG artifacts, and
methods for EEG-based artifact reductions. The EEG artifact reduction
section explains the offline and online methods developed for multiple
channels and single channel EEG data. The references for each tech-
nique provide guidance for detailed information on each method.

Chapter 3, Electroencephalography-Based Brain Functional
Connectivity and Clinical Implications, discusses the EEG-based func-
tional connectivity (FC) methods and their clinical implications. In addi-
tion, the chapter tabulates various applications of the EEG-based
functional connectivity methods for mental illnesses such as MDD, epi-
lepsy, schizophrenia, alcohol-use disorder (AUD), and Alzheimer’s dis-
ease. Furthermore, this chapter furnishes a list of open-source
MATLAB-based toolboxes focused on developing EEG-based FC
methods.

Chapter 4, Pathophysiology of Depression, discusses the pathophysi-
ology of depression, especially detailing possible causes for depression
based on evidence provided by animal and human studies. The chapter
emphasizes fusing of information from different sources, including evi-
dence from human and animal studies and the functional level informa-
tion from the neuroimaging modalities. The underlying causes and
effects of depression include brain volume losses involving different
brain areas.

Chapter 5, Using Electroencephalography for Diagnosing and
Treating Depression, reviews research work involving EEG-based meth-
ods for diagnosis and treatment efficacy assessment for depression. The
chapter provides details on the EEG and event-related potential (ERP)
methods. The chapter explains common findings on the fusion of neuro-
biological and electrophysiological data. In addition, important research
gaps based on this information are highlighted.

Chapter 6, Neural Circuits and Electroencephalography-Based
Neurobiology for Depression, focuses on two main areas of study: (1)
the neural circuits implicated during depression and (2) the neurobiol-
ogy of EEG/ERP-based markers for depression. The first section
explains the underlying neural circuits, including important brain areas
implicated during depression. The purpose of the second section is to
discuss theories regarding the underlying mechanisms defining EEG
biomarkers for depression.

Chapter 7, Design of an Electroencephalography Experiment for
Assessing Major Depressive Disorder, provides a detailed design of the
EEG-based experiment involving issues such as the sample size

xiv PREFACE



calculations, study’s exclusion and inclusion criterion, experimental
setup for EEG/ERP data recording, and the selection of clinical ques-
tionnaires for depression. Moreover, the chapter provides information
of the study participants in tabular form, including their clinical scores
regarding disease severity, demographic information, and the total
number of participants included in the study based on the sample size
formula.

Chapters 8 and 9 provide a machine learning (ML) scheme, termed
Intelligent Treatment Management System (ITMS) for unipolar MDD
patients. Chapter 8, Electroencephalography-Based Diagnosis of
Depression, provides details of the EEG-based diagnosis for depression
(ITMS diagnosis) by classifying MDD patients and healthy controls.
Chapter 9, Electroencephalography-Based Treatment Efficacy
Assessment Involving Depression, explains EEG-based prediction of
treatment outcome of antidepressant therapy (ITMS treatment selection),
while classifying the MDD patients as either treatment respondents (R)
or nonrespondents (NR) based on the pretreatment EEG data acquired
from the MDD patients. The EEG-based scheme presented in these
chapters inherently involves subprocesses such as noise removal from
the EEG data, EEG-based feature extraction, feature selection, classifica-
tion, and validation, including 10-fold cross-validation (10-CV). This
chapter provides the technical details regarding these subprocesses.

All the chapters have summary and references at the end of each
chapter. The readers can use the references to get more detailed infor-
mation on a particular topic. We hope that readers will enjoy this book
and that the information provided will be useful for their practices and
research.
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C H A P T E R

1

Introduction: Depression
and Challenges

1.1 INTRODUCTION

Major depression, also termed as major depressive disorder (MDD),
unipolar depression, clinical depression, or even simply depression, is a
mental illness. According to the World Health Organization (WHO),
depression has been identified as a leading cause of functional disabil-
ity, worldwide. About 300 million people have been reported suffering
from depression, globally.1 In addition to the functional disability caused
by depression, it may lead to suicide ideations. Moreover, the treatment
management for depression has been challenging due to multiple factors,
such as the suitable selection of medication for a patient being based on
the subjective experience of clinicians and which might not be appropri-
ate for the patient and could result into unsuccessful treatment trials.
Another implication is that the patient may stop the treatment.

In this chapter, the topics covered in this book are introduced by pro-
viding a basic explanation of the relevant concepts which will be elabo-
rated on in later chapters. More specifically, this chapter explores the
possibilities of utilizing electroencephalogram (EEG) as an objective
method for the diagnosis and treatment efficacy assessment for depres-
sion. Also, depression will be discussed from different perspectives
such as its subtypes, signs and symptoms, the challenges associated
with treating depression, an overview of the literature involving EEG
studies for depression, EEG as a modality, and the basics of an EEG-
based machine learning (ML) approach.

EEG-based diagnosis of depression may be compared with the con-
ventional practice of treating depression. Conventionally, depression
has been diagnosed according to criteria in the Diagnostic and
Statistical Manual (DSM)-V and its earlier versions. The DSM-V pro-
vides a questionnaire-based assessment that depends on the patient’s
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feedback. However, misreporting may occur when patients do not
explain their condition well. Therefore an objective assessment provided
by EEG may assist clinicians during clinical decision making. In addi-
tion, EEG-based methods may help standardize clinical decision making
for depression.

1.2 DEPRESSION AND SUBTYPES

Several different types of major depression have been identified, for
example, unipolar depression, bipolar disorder (or manic depression),
dysthymia, postpartum depression, atypical depression, psychotic depres-
sion, and seasonal effective disorder.2 Major or unipolar depression is the
most generic form of depression. It has been characterized based on a
depressed episode that persists for at least 2 weeks rendering the patient’s
functionally disabled. Moreover, it has been discovered as a leading cause
of disease burden for women in high-, middle-, and low-income coun-
tries.3 In the United States, it has been declared as the most common cause
of functional disability.4 For example, the prevalence of unipolar depres-
sion has been found in 13%�16% of the total US population.

Bipolar depression normally manifests as two different episodes: a
depressive episode and a manic episode. The occurrence of manic epi-
sodes differentiates bipolar from unipolar depression. However, bipolar
depression is less common than unipolar depression. According to
National Institute of Mental Health (NIMH), it has affected 2%�3% of
the americal adult population. (https://www.nimh.nih.gov/health/sta-
tistics/bipolar-disorder.shtml). Other forms of depression such as post-
partum depression is a form of depression that affects 5% of women in
their second half of menstrual cycle, 10% of pregnant women, and 16%
of women 3 months after giving birth.

Some other forms of depression which are normally considered to be
less common include psychotic depression, atypical depression, seasonal effec-
tive disorder, and dysthymia. Psychotic depression has been characterized
as a mental state with false beliefs (delusions) or false sights or sounds
(hallucinations). It is a more severe form of depression, but is less com-
mon as about 20% of depressed patients may have psychotic symptoms.
Similarly, atypical depression and seasonal effective disorder are forms
of depression that occur only during specific seasons, particularly,
winter. Dysthymia, which may entail less severe but longer lasting
symptoms than of depression, has been found in only approximately
1.5% of adult Americans (https://www.nimh.nih.gov/health/statistics/
persistent-depressive-disorder-dysthymic-disorder.shtml). As unipolar
depression is the most common and affects the largest population, this
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book mainly focuses on the patients with unipolar depression; all other
forms of depression are out of scope. In this book, unipolar depression is
termed as MDD, or simply as depression.

1.3 SIGNS AND SYMPTOMS OF DEPRESSION

The two core symptoms of depression are low mood and lack of plea-
sure from pleasurable activities. Depression involves sad episodes that
prevail for more than 2 weeks and renders the patient functionally dis-
abled. On the contrary, normal sadness that may result because of rou-
tine matters or a social problem may not be considered as depression,
which is recurrent and comorbid in nature. Hence, depression should
be treated properly by a specialist such as a psychiatrist or psychologist.
Other symptoms of depression include:

• significant changes in appetite or weight;
• insomnia or hypersomnia nearly every day;
• psychomotor agitation and retardation;
• fatigue or loss of energy almost every day;
• feeling of uselessness or inappropriate guilt;
• decreased ability to think, concentrate, or to make decisions nearly

every day; and
• recurrent thoughts of death or suicidal ideas, plans, or attempts.

1.4 UNIPOLAR DEPRESSION AND CHALLENGES

The treatment management for depression has been associated with
two serious issues. First, a successful diagnosis of depression is required
during a patient’s care. Since MDD is heterogeneous and comorbid in
nature, there is a high chance that MDD patients may be misdiagnosed
as having a bipolar disorder during their first visit to a psychiatric
clinic.5 Because of such a misdiagnosis, the appropriate treatment pro-
cess could be delayed. In addition, patients could be mistreated involv-
ing unsuitable medication (antidepressants) that may further complicate
the patient’s condition, for example, development of a treatment resis-
tant scenario. Hence, an accurate diagnosis increases the chances to
achieve remission (absence of symptoms) early. Currently, the diagnosis
of depression involves the use of well-structured questionnaires such as
those provided in the DSM-V.6 Since the questionnaires are subjective
in nature as the feedback from the depressed patients is required, there
is a probability that the patients may not reveal their true conditions.
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Hence, the reliability of questionnaire-based diagnosis depends on the
expertise of the specialist handling the patient. For example, in some
cases a patient initially diagnosed with unipolar depression may revert
from unipolar depression to psychotic depression after 2 weeks of
treatment.

Second, prediction of the treatment outcome of antidepressant ther-
apy for a depressed patient has been challenging, termed here as the
antidepressant’s treatment efficacy assessment or treatment selection. A suc-
cessful prediction could lead to a suitable selection of antidepressants
for the MDD patient. Currently, the selection is subjective and mainly
based on clinical expertise including an analysis of the patient’s symp-
toms and medical history. Unfortunately, a nonresponse to an antide-
pressant could be a waste of the adequate time frame of 2�4 weeks and
may lead to a second-time selection. Eventually, the selection of antide-
pressants might become a sequential iterative treatment process.7

Hence, the inappropriate selection of antidepressants would result in
poor quality-of-life for those MDD patients. In extreme cases, MDD
patients may even abandon the treatment. Hence, to improve the anti-
depressant’s treatment selection, an early and effective treatment strategy
is required.

The treatment for MDD patients includes multiple therapies such as
psychotherapy, pharmacotherapy, electroconvulsive therapy, and neu-
rofeedback, or a suitable combination designed by an expert, for
example, a psychiatrist. Specifically, pharmacotherapy involves the
administration of antidepressants and is usually applied when psycho-
therapy alone is believed to be noneffective. The administration of anti-
depressants has been considered as the first-line treatment for
depression involving the selective serotonin inhibitors (SSRIs), a class of
antidepressants.8 SSRIs include more than 20 different antidepressants
with similar mechanisms-of-action (MOAs) that are available commer-
cially. Antidepressants have been associated with low treatment efficacy
due to treatment nonresponse as initial treatments often do not lead to
recovery.9 For example, according to a study on Sequenced Treatment
Alternative to Relieve Depression (STAR*D), MDD patients achieved
modest rates of remission with first treatment. For example, according
to a study on sequenced treatment alternative to relieve depression
(STAR*D), MDD patients achieved modest rates of remission with first
treatment, that is, 47% which was even less than half the total study
participants.10 In addition, only a few patients who received adequate
pharmacotherapy could actually achieve remission defined as the
absence or near absence of symptoms.10 Hence, MDD has been associ-
ated with functional disabilities, low treatment efficacy, high social bur-
den, and medical costs.
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1.5 ELECTROENCEPHALOGRAPHY AS
A CLINICAL MODALITY

The use of EEG has been considered as a standard clinical modality
because it offers a noninvasive and a low-cost solution to various psy-
chiatric conditions. For example, EEG is suitable for applications such
as diagnosing and predicting the occurrences of epileptic seizures,11,12

ancillary evidence of brain death13, quantifying sleep stages,14 and
indexing for anesthesia monitoring.15 More specifically, EEG has been
utilized for the diagnosis of depression16,17 as well as the prediction of
antidepressant’s treatment response.18,19 The digital version of EEG,
known as quantitative EEG (QEEG), provides computer-based solutions
to solve complex real-world issues. A detailed description involving
the EEG-based methods for depression shall be provided in later
Chapters 5, 8 and 9.

In psychiatry, EEG/event-related potentials (ERP) data could be uti-
lized for two main applications: (1) as a diagnostic tool to discriminate
MDD patients from healthy controls among a study population and (2)
as biomarkers to generate scientific evidence of treatment outcome
involving antidepressants, also termed as antidepressant’s treatment effi-
cacy assessment.20,21 QEEG includes various time and frequency domain
techniques referred to as digital signal processing and computational
psychiatry.22�24 In the context of MDD, various research studies have
extracted information from EEG/ERP data to develop EEG/ERP-based
methods for the treatment management of MDD.25,26 The EEG/ERP-
based methods have shown promise as biomarkers for treatment selec-
tion. Furthermore, such methods help in identifying patients who can
continue current treatment. Hence, the treatment selection is improved
by the justification of the suitability of an antidepressant and helps clini-
cians provide patient care. In addition, successful prediction effectively
avoids the possibility of time-consuming treatment trials and improves
the patient’s quality-of-life.

1.6 ELECTROENCEPHALOGRAPHY-BASED MACHINE
LEARNING METHODS FOR DEPRESSION

ML has found its place in the diagnosis and treatment efficacy assess-
ment for mental illnesses such as diagnosing a depression state16 or the
automatic identification of epileptic EEG signals.11 ML is a form of arti-
ficial intelligence as a ML model can learn from the features or input
data in the form of variables. The learned classification model can be
used to classify a completely new data set within the learned space of
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the classifier. For example, a trained ML model naı̈ve to a completely new
set of data can classify it correctly. A simple example of a ML scheme is
shown in Fig. 1.1 including the basic structure of a ML model such as data
preprocessing, feature extraction, selection of the most suitable features,
and the training and testing of the classification model. Usually, the vali-
dation of the ML model is performed with k-fold cross validation. A brief
description on each of these subprocesses is provided next.

1.6.1 Data Preprocessing

Data preprocessing implies the removal of noise due to the rejection
or correction of the artifacts from the data. An artifact is an irrelevant
additive signal found in the EEG data that may suppress the actual

FIGURE 1.1 A general ML scheme for EEG data analysis.
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neural activity. Due to such artifacts, the EEG analysis could be con-
founded and misleading. Common types of EEG artifacts include eye-
blinks, eye-movements, muscular and heart activities, etc. Eye-blink arti-
facts are higher in amplitude than the normal EEG signal. A detailed
description of the EEG artifacts and artifact removal or cleaning meth-
ods is provided in Chapter 2, EEG Fundamentals.

1.6.2 Feature Extraction

After successful artifact cleaning, the EEG data can be subjected to
various kinds of feature extractions including time-based methods,
frequency-based methods, and time�frequency-based methods.
Examples of frequency-based methods involve the EEG signal power
extraction in different frequency bands; the time-based methods could
be EEG sample entropy, approximate entropy, and fractal dimension
calculations; and the time�frequency methods may include the wavelet
decomposition of the data. A detailed description of the EEG-based fea-
ture extraction method is provided in the following Chapters 5, 8 and 9.

1.6.3 Feature Selection

Tremendous advancements in the digital signal processing domain
have introduced various new feature extraction methods. As an implica-
tion, various features can be extracted from the data. However, the fea-
tures could be redundant or irrelevant when compared with the ground
truths of the problem at hand. Therefore the feature selection has pro-
found importance. The feature selection is an ongoing research area.
The feature selection result into a reduced set of most key features that
can be utilized for classification purposes. The features selection is
important because it can significantly improve classifier performance
because overfitting or underfitting problems can be avoided.

1.6.4 Classification

A classifier could be a statistical model that provides a mathematical
function between the input features and the output target vector. A clas-
sification model requires proper training and testing based on the
recorded data. The data can be the extracted features arranged in the
form of a matrix, termed as a data matrix. The rows of the matrix corre-
spond to the samples while the columns represent the number of fea-
tures. A high-dimensional data matrix entails a substantial number of
features. Usually, the data matrix is subjected to features selection to
improve the classification performance as the redundant and irrelevant
features might overfit or underfit a classification model.
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Classification can be divided into two broad categories, supervised
and unsupervised classification. Supervised classification requires infor-
mation, such as the ground truths, for training purposes. For example,
the support vector machine (SVM) is a supervised classifier and
requires information on the target vector that can serve as the ground
truth and can be obtained during data collection. On the contrary, unsu-
pervised classification such as the k-means clustering is independent
from the availability of the target vectors.

For any classification model, validation is important to quantify the
classification performance. For this purpose, methods such as the k-fold
cross validation can serve better. The k value can be any value, although
the most commonly employed values are 10, 5, etc.

1.6.5 The 10-Fold Cross Validation

Fig. 1.2 shows an example of a 10-fold cross validation method. The
samples in a data matrix are randomly distributed among the training
and validation (testing) samples. The objective of doing this is to ensure
that each sample of the data matrix is utilized as a training and testing
sample. This allows the calculation for the classifier accuracy, sensitiv-
ity, specificity, and other performance metrics.

1.7 ELECTROENCEPHALOGRAPHY-BASED
DIAGNOSIS FOR DEPRESSION

Various EEG-based measures or features have shown an association
with depression when compared with a healthy control group. For

FIGURE 1.2 Ten-fold cross validation.
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validation of the differences between the two groups under observation,
it is important to employ statistical methods and for generalization pur-
poses a classification model can be trained. In ML terms, the generaliza-
tion means how a trained ML model can perform or classify a
completely naı̈ve data set within its problem domain. This could be
achieved only when a properly trained ML model has learned specific
patterns in the data set that can significantly discriminate the study
samples into respective groups. Hence, the core of a properly trained
model is the identification of a specific pattern and generalization.

A trained ML model can automatically classify new data or samples.
This automation of the method enables easy classification of the depressed
patients and health controls, termed as the diagnosis of depression. Also, a
trained ML model can classify whether a patient can be a treatment
responder or nonresponder, termed as the prediction of treatment efficacy
assessment. These objectives can be achieved based on the ML concepts
where the relevant features can be used to train the classification model.
The trained model can then perform the desired classification. The litera-
ture involving the EEG-based diagnosis of depression has recorded many
different techniques. Table 1.1 lists a summary of these methods.

ML techniques have received considerable attention due to their
capability to mine (referring to data mining) noninvasive neuroimaging
data to establish the CAD-based solutions that facilitate the diagnosis
process.25,26,35 For example, mining functional magnetic resonance

TABLE 1.1 The EEG-Based Methods for the Diagnosis of Depression

Study

Reference/

Number of

EEG Electrodes

EEG-Based Features and

Classifier Classification Accuracy

27 Left and right
mastoids/33
electrodes

EEG feature extractor called
kernel eigen-filter-bank common
spatial pattern (KEFB-CSP),
support vector machine (SVM)
classifier

B80% classification
accuracy

28 REST/19
electrodes

Power of different EEG frequency
bands and EEG alpha
interhemispheric asymmetry,
logistic regression (LR), SVM,
and naı̈ve Bayesian (NB)

SVM (accuracy5 98.4%,
sensitivity5 96.66%,
specificity5 100%)

29 REST/19
electrodes

Synchronization likelihood (SL)
features

SVM classification
accuracy5 98%,
sensitivity5 99.9%,
specificity5 95% and
f-measure5 0.97

LR, SVM, and NB

(Continued)
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imaging (fMRI) data with ML methods has shown promising research
results.36,37 Specifically, the SVM is emphasized as a method of choice
for the diagnosis of depression.38 Moreover, the automated EEG-based
ML methods proved feasible to discriminate the depressed patients
from healthy controls.16,32,33,39,40 In addition to depression, the classifica-
tion algorithms are also found useful for neurological diseases such as
schizophrenia and Alzheimer’s disease.41 In the context of depression, a
classifier such as artificial neural networks can be trained to classify

TABLE 1.1 (Continued)

Study

Reference/

Number of
EEG Electrodes

EEG-Based Features and
Classifier Classification Accuracy

16 NA Chaos theory and nonlinear
dynamic methods

�

30 Bipolar/Fp1-T3
and Fp2-T4/2
electrodes

Nonlinear measures of
approximate entropy (ApEn),
sample entropy (SampEn), renyi
entropy (REN), and bispectral
phase entropy (Ph) probabilistic
neural network (PNN), SVM,
decision tree (DT), k-nearest
neighbor algorithm (k-NN), NB
classification, Gaussian mixture
model (GMM), and Fuzzy
Sugeno Classifier (FSC)

Classification accuracy of
99.5%

31 Bipolar/Fp1-T3
and Fp2-T4/2
electrodes

Relative wavelet energy (RWE)
and artificial feedforward neural
network

Classification accuracy
and its value of 98.11%

32 Bipolar/Fp1-T3
and Fp2-T4/2
electrodes

SVM classifier An average accuracy of
about 98%, sensitivity of
about 97%, and
specificity of about 98.5%

33 NA/19
electrodes

Power of four EEG bands and
four nonlinear features including
detrended fluctuation analysis,
Higuchi fractal, correlation
dimension, and Lyapunov
exponent

Classification accuracy of
83.3%

k-nearest neighbor, linear
discriminant analysis, and LR

34 LE reference/21
electrodes

EEG power, frequency,
asymmetry, and coherence

Classified 91.3%

Linear discriminant analysis
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depressed and healthy controls.31,42 Recently, a depression diagnostic
index was proposed based on nonlinear features extracted from EEG
data.32 In contrast to fMRI, EEG offers high temporal resolution and
comparatively low cost which makes it suitable for portable and remote
clinical applications, especially for monitoring epileptic patients,11,12

quantifying different sleep stages,14 and indexing for anesthesia moni-
toring,15 etc. Furthermore, EEG data acquisition is faster than fMRI and
trained nursing staff (rather than only expert psychiatrists) can handle
the EEG-based CAD system.

More recently, a further advanced version of an ML method termed
as deep learning method has been proposed for the automatic diagnosis
of depression.17 The authors have claimed that instead of having a fea-
ture extraction and a feature selection stage, the EEG data can be directly
utilized as input data to classify depressed patients from healthy controls.
The automatic identification of the most relevant features is possible
because of the multiple layers of a deep neural networks. The deep learn-
ing model involves multiple layers of the convolutional neural network,
the softmax, and an output layer.17 The authors have reported a classifi-
cation accuracy of more than 83%. This method can be extended with
different number and combination of layers in the network.

In the literature, various nonlinear features such as detrended fluctu-
ation analysis, Higuchi fractal, correlation dimension, and Lyapunov
exponent are extracted from EEG signals and have shown promise for
MDD diagnosis, for example, a recently performed study achieved 90%
accuracy for discriminating MDD patients and healthy controls.33 MDD
has been associated with cognitive deficits and functional impairments
involving the frontal and temporal cortexs43,44 According to a recent
review, abnormalities such as MDD tend to exhibit decreased left fron-
tal brain activity (measured as increased interhemispheric alpha
power/amplitude).45 In another study, greater left frontal brain activity
is associated with less depressive symptoms.46 In addition, EEG inter-
hemispheric alpha asymmetry is concluded to be a risk marker for
MDD because of the finding that study participants with lifetime
depressive symptoms have shown less relative frontal cortex activity
compared to subjects without depression.47

The importance of interhemispheric alpha asymmetry in the diagnosis
of depression is evident from numerous studies.48�50 For example, psy-
chomotor retardation during depression is linked with interhemispheric
alpha asymmetry48; EEG frontal asymmetry is considered as a marker
for vulnerability of depression49; and decreased interhemispheric alpha
waves are observed during depression.50 In addition, the altered struc-
ture of EEG oscillatory pattern is reported in MDD patients.45 Hence,
this evidences adds to the confidence on the EEG interhemispheric alpha
asymmetry as a feature to be used for automatic diagnosis of depression.
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In addition to the alpha band, activity in other bands such as the theta
band has shown relevance, such as a decreased frontal theta activity has
also been reported.34,51,52 Moreover, hypoactivation of the left frontal
brain region53,54 and hyperactivation in the right frontal region51 have
been reported during MDD. Despite all research findings, the clinical
applications of the frontal interhemispheric alpha asymmetry and frontal
midline theta band have been largely unclear.55 Hence, further investiga-
tion on the applications of EEG features, such as EEG interhemispheric
alpha asymmetry and spectral power of different EEG frequency bands,
is required for diagnosing MDD.

Recently, neuroimaging modalities such as EEG signals have been
successfully utilized to diagnose and predict an antidepressant’s treat-
ment efficacy for MDD.25,26,35 For this purpose, EEG-based features
such as the EEG alpha interhemispheric asymmetry and the functional
connectivity between different brain regions could uncover significant
differences between the depressed and healthy controls. In a study,27

EEG features such as the kernel eigen-filter-bank common spatial pat-
tern (KEFB-CSP) and an SVM classifier were combined to perform diag-
nosis of depression. This method could achieve 80% classification
accuracy26. Following similar concepts, features such as the power of
different EEG frequency bands and EEG alpha interhemispheric asym-
metry28 and the functional connectivity measures such as the synchroni-
zation likelihood29 have been utilized for feature extraction. Later, these
features were classified with the logistic regression, naı̈ve Bayesian, and
SVM utilized for the classification of the study participants into their
respective groups. A summary of all these methods is provided in
Table 1.1 and will be discussed in detail in Chapter 2, EEG
Fundamentals, in the literature review of related studies.

1.8 ELECTROENCEPHALOGRAPHY-BASED
TREATMENT SELECTION FOR DEPRESSION

The EEG/ERP-based methods for prediction of antidepressant treat-
ment efficacy assessment are termed as EEG/ERP-based predictive biomar-
kers for MDD.21,25 For example, ML-based technique provides an
automation during treatment selection for MDD patients, termed
“Psychiatrists in the Machine.”56 The technique utilizes an automated
computer system that acquires information extracted from a MDD
patient’s EEG data to prescribe suitable antidepressants. This technique
could save time and may help during further standardizing the treat-
ment process for MDD. In a clinic, a professional may use this technique
as a second opinion to select suitable medication for a particular MDD
patient that also forms the basis of personalized medication.57
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In the literature, the EEG/ERP-based methods to predict the antide-
pressant’s treatment selection have proposed various EEG-based features
such as the spectral power computed from the alpha and theta fre-
quency bands. In addition, their mathematical combinations are pro-
posed as an antidepressant treatment response (ATR) index58 and
QEEG theta cordance59 (details are provided in Chapter 2: EEG
Fundamentals). The ATR index-based methods provide results with
70% accuracy for classifying treatment responders (R) and nonrespon-
ders.58 A further study with 25 participants achieved 88% accuracy.58,60

In the case of QEEG theta cordance, a decrease of prefrontal values of
QEEG theta cordance has shown a correlation with the treatment
R.59,61�63 Both the ATR index and the QEEG theta cordance have shown
promise. However, these methods have exhibited low specificities (e.g.,
70%) which decreases their feasibility for clinical applications. In addi-
tion, the related brain mechanisms in support of these measures are less
discussed and largely remain unclear.64

Referenced EEG (rEEG)65 involves the selection of suitable treatments
based on the evidence provided by a normative database of QEEG pat-
terns. The prescriptions related to certain QEEG patterns are listed. The
database has been developed and built over a time frame including var-
ious patient’s medical records, treatment histories, and related QEEG
patterns. The rEEG method allows the MDD patients to go through an
EEG recording session during their visit to a clinic. The QEEG patterns
are then compared with the recorded patterns from the database. For
example, the technique performs comparisons between QEEG patterns
of MDD patients and the QEEG patterns saved in the database. The best
matched pairs help in selecting a suitable treatment for the MDD
patient. The rEEG method has shown better treatment results than the
STAR*D study.65,66 However, its clinical utility has been less studied
and may need further research efforts.

EEG has low spatial resolution, therefore techniques such as
LORETA (low-resolution brain tomographic analysis) and its var-
iants67,68 are employed to localize neuronal sources inside the brain.
These techniques have contributed toward the development of predic-
tive biomarkers for MDD. For example, LORETA-based studies have
reported correlations between rostral anterior cingulate cortex (rACC)
activation and the antidepressants’ treatment response.69�72

Recently, EEG-based ML methods for treatment selection have been
proposed to automate the treatment selection process,56 including for
conditions such as schizophrenia and depression.73,74 In the literature,
the ML techniques employed for treatment selection have performed
with a maximum 87.5% classification accuracy. However, further repli-
cation of these findings with improved classification accuracy (in a
larger population) is needed.
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ERP-based predictive biomarkers are derived from electrophysiological
data captured during the performance of an activity, for example, an
oddball task. Previous research studies based on ERP components such
as P300 and loudness dependence auditory evoked potentials (LDAEP)
have been performed for treatment selection involving MDD patients.
For example, the methods have proposed the use of P300 intensities75

and latencies.76 Some other studies have utilized auditory evoked
potentials known as LDAEP. These studies have reported the associa-
tions of the ERP features with treatment efficacy such as the steepness
or sharpness in the P300 component and their slopes.77�79

In short, the EEG/ERP-based predictive biomarkers for MDD have
shown less clinical utility due to many factors, especially the EEG find-
ings being seldom replicated. EEG-based neurobiology of MDD has
been less explored.64,80 Moreover, the methods exhibited low perfor-
mances, specifically, low specificities (less than 70%). Even though EEG
has high temporal resolution, the multiresolution decomposition of EEG
signals has not been exploited completely for the development of methods
for diagnosing MDD. In addition, the QEEG features such as the power of
different frequency bands, alpha asymmetry, and synchronization likeli-
hood were integrated. In the literature, the ML techniques employed for
treatment selection have performed to a maximum of 87.5% classification
accuracy.73 It is vital to further progress into the development of predictive
biomarkers based on electrophysiological datasets. Therefore more solid
and systematic research efforts are necessary to develop new techniques.

The research problems that have been identified from the literature
and that can be helpful for proposing a framework to assist clinicians to
diagnose depression and to perform the treatment selection for the MDD
patients include:

1. The EEG/ERP-based predictive biomarkers for MDD have shown less
clinical utility that warrants reassessment of current findings with
improved accuracy. This will further add to the evidence of the
clinical feasibility of EEG/ERP methods for the diagnosis and
treatment selection for depression.

2. The EEG-based studies for MDD did not focus on the integration of
different EEG/ERP quantities.

3. The EEG-based biomarkers for treatment selection require week 1
data that causes delay in the treatment process.

4. Noise removal and features extraction from the EEG data collected
from the MDD patients and healthy controls.

5. Selection of the most noteworthy features that show relevance to the
brain regions implicated during depression.

6. Classification of the study participants-based patterns specific to
disease conditions.
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1.9 DISCUSSION

In this book, a new research method is discussed in detail that pro-
vides an improved feature selection and classification method while uti-
lizing pretreatment (week 0) EEG-based features to assist clinicians
during diagnosis of depression and selection of antidepressants by
focusing on unipolar depressed patients only. The challenge was to
develop a method which was invariant to changes in the EEG data due
to factors other than the actual neural activity, for example, the artifacts
in the EEG data. Therefore the task was subdivided into separate sec-
tions starting from EEG data preprocessing, features extraction, feature
selection, classification, and validation.

The research results are only applicable for unipolar depressed
patients. For example, inclusion of MDD patients with psychotic symp-
toms is out of scope for this book because of the less-clear neurobiology
associated with psychotic depression. Furthermore, in this study, the
proposed ML method is validated with 64 study participants including
both MDD patients and healthy controls that are specific to the
Malaysian population. Hence, this constraint restricts generalization of
research results and further warrants clinical trials before being applied
in a clinical setting.

In this book, the localization of abnormalities caused by MDD was
performed based on investigating the differences of brain activations
between the MDD patients and healthy controls involving two methods:
(1) the brain source localization technique including the standardized
low-resolution electromagnetic tomography (sLORETA) analysis; and
(2) the 2D topographic maps of activations. These approaches provide
localization of the brain areas that show statistical differences between
MDD patients and healthy controls. This signifies an association of the
brain areas with the pathology imparted due to MDD. Since EEG has
higher temporal resolution and comparatively less spatial resolution
than functional magnetic resonance imaging (fMRI); therefore due to
the less spatial resolution of EEG data, the EEG-based localization is an
estimation of the exact source of the abnormalities.

In this book, an ML scheme, an Intelligent Treatment Management
System (ITMS) for treatment selection (ITMS-TS), is presented based on
pretreatment EEG data of MDD patients. The ITMS-TS for MDD was
developed to predict the treatment outcome efficacy of four different
antidepressants—escitalopram (E), fluvoxamine (F), sertraline (S), fluox-
etine (Fl)—with similar MOA. The objective was to classify MDD
patients as either a treatment respondent or a nonrespondent based on
the pretreatment EEG data (because the antidepressants effects on the
brain are less clear). The ITMS-TS is restricted to these four types of
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antidepressants only. Because the inclusion of MDD patients with anti-
depressants with different MOAs requires an increased sample size,
such research is not within the scope of this research work.

This book focuses on the multiresolution decomposition of EEG data
based on wavelet transform (WT) analysis. Since the time�frequency
decomposition of EEG data can be performed with techniques such as
the empirical mode decomposition (EMD) and the short-time Fourier
transformation (STFT), hence, to prove the performance of the proposed
WT analysis, its performance was compared with the EMD and STFT.

The ITMS for diagnosis (ITMS-diagnosis) involved EEG features such
as EEG spectral power, EEG alpha interhemispheric asymmetry, and
synchronization likelihood. The EEG features were used as input data for
the proposed ML scheme, that is, ITMS-diagnosis. These features were
used as discriminants during the diagnosis process. Moreover, the brain
region’s connectivity was used as between group differences as diagnos-
tic criterion for the development of the proposed ML framework.

Both qualitative (questionnaires) and quantitative techniques were
used to validate the proposed ML framework. For example, in this
study clinical assessments were considered as the gold standard involv-
ing questionnaires such as the Beck Depression Inventory II (BDI-II)
and the Hospital Anxiety and Depression Scale (HADS). The clinical
scores (outcomes) were then compared with the predictions generated
by the proposed ML framework. The quantitative assessment involved
several parametric measures such as classifier accuracies, specificities,
and sensitivities. Because the plotting of box-plots require enough statis-
tical data; therefore, 100 times iterations of the 10-fold cross validation
were performed.

1.10 SUMMARY

This chapter introduces the basic concepts of depression from the
perspective of a layman’s point of view such as the different kinds of
depression and its subtypes, as well as the challenges in addressing
depression as an illness. In addition, the chapter emphasizes the impor-
tance of EEG as a modality for automatic identification of MDD patients
while explaining the benefits of EEG-based methods for depression
diagnosis and treatment efficacy assessment.
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C H A P T E R

2

Electroencephalography
Fundamentals

2.1 WHAT IS ELECTROENCEPHALOGRAPHY?

As shown in Fig. 2.1, the bulk of neuronal activity from various
on-scalp locations is captured as an ensemble of electrical records,
termed as electroencephalography (EEG) data. In most cases, EEG is a
noninvasive and safe modality for capturing the human brain’s neural
activity with high temporal resolution [millisecond (ms)].1 Therefore,
EEG has made the online monitoring of epileptic patients and the
prediction of occurrence of an epileptic seizure activity a reality.

Resting-state EEG data involve recording during two physiological
conditions: eyes closed (EC) and eyes open (EO). More importantly,
resting-state EEG data are useful for studying the behavior of default
brain networks and their associated background activities. On the other
hand, event-related potential (ERP) data involve brain electrical activi-
ties recorded during experimental activity time locked to an event. The
ERP components, such as P300, can be extracted from the ERP data and
are considered as indices of cognition, attention, and risk markers for
depression.2

2.2 ELECTROENCEPHALOGRAPHY APPLICATIONS

Usually, brain electrical activity is measured in microvolts and EEG
data are direct representations of human brain activity. Many EEG
patterns are expected to appear during certain physiological states, for
example, EEG patterns during sleep have shown specific patterns as
mentioned in Fig. 2.2. As seen in Fig. 2.2, brain death is represented as a
straight line which means that no electrical activity is detected.
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FIGURE 2.2 EEG patterns specific to various physiological conditions.

FIGURE 2.1 A small trace of EEG data.
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Other applications include:

1. monitoring alertness, coma, and brain death;
2. locating areas of damage following head injury, stroke, tumor, etc.;
3. testing afferent pathways (by evoked potentials);
4. monitoring cognitive engagement (alpha rhythm);
5. producing biofeedback situations, alpha, etc.;
6. controlling anesthesia depth (“servo anesthesia”);
7. investigating epilepsy and locating seizure origin;
8. testing epilepsy drug effects;
9. assisting in experimental cortical excision of epileptic focus;

10. monitoring human and animal brain development;
11. testing drugs for convulsive effects; and
12. investigating sleep disorders and physiology.

2.3 ELECTROENCEPHALOGRAPHY FREQUENCY
BANDS

Moreover, EEG data are composite in nature and can be decomposed
into different frequency bands, such as: Delta (0.5�4 Hz); Theta
(5�8 Hz); Alpha (8�12 Hz); low Beta (12�18 Hz); high Beta (19�30 Hz);
and Gamma (30�70 Hz).

2.3.1 Delta Band

The delta band (0.5�4 Hz) involves diffused slow waves and is gen-
erally seen during sleep, injury, coma, and brain trauma. In addition,
delta waves are nonsinusoidal and wandering and are often character-
ized as nonrhythmic activity. The underlying mechanisms could be due
to slow neuronal mechanisms. It is often seen after epileptic seizures.
Sources other than the brain, such as skin potentials and slow cortical
potentials, can show up as delta band.

2.3.2 Theta Band

Like the delta band, the theta band (5�8 Hz) consists of nonsinusoi-
dal waves, such as square waves, and is often mediated by subthalamic
connections to the cortex. Theta waves often indicate either distractibil-
ity or a deep inward awareness or lack of presence. Theta waves are
common in attention deficit disorder and other types of disorders where
brain excitability is not well regulated. Theta waves are often associated
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with memory retrieval and extreme creativity. Moreover, experienced
meditators tend to exhibit theta waves during meditation, which indi-
cates an internalized state and a state of inward focus. Furthermore,
during epilepsy and attention deficit disorder excessive theta waves are
seen.

2.3.3 Alpha Band

The alpha band (8�12 Hz) is the resting rhythm of the visual system
and is found to be maximal at the occipital area. Alpha waves are
highly sinusoidal and smooth indicating that the visual system is at rest
and is not processing information. It could explain other mechanisms,
such as reverberation between the thalamus and cortex as well as mem-
ory scanning. The alpha band does occur in other brain locations such
as the temporal lobe. Moreover, connectivity measures are important
with alpha waves, such as coherence, synchrony, and asymmetry. These
measures of alpha are of tremendous diagnostic importance. For exam-
ple, alpha synchrony may be used as a biofeedback parameter even in
people who are perfectly normal and wanted to improve their mental
performance. On the contrary, there are variants of high alpha that are
abnormal. For example, if you see large amounts of diffuse alpha in an
individual, and that alpha is seen to drone on and on, this would indi-
cate an anxiety disorder.

2.3.4 Low Beta Band

The low beta band (12�15 Hz) is often termed as 14 Hz, as men-
tioned by Michael Tansey who is a pioneer in this field. He made use of
a filter with a pass range of 13�15 Hz in order to center on 14 Hz.
Other researchers have used 12�16 Hz. This rhythm, when observed
over a motor strip (C3, C4, and Cz), is called sensory motor rhythm
(SMR). SMR is the alpha waves of the motor system. It is maximal at
C3, C4, and Cz, and when the body is still. Dr. Barry Sterman discov-
ered this rhythm in cats who were sitting still. SMR is maximum when
the brain intends to remain still. Hence, the SMR can be used as a
parameter during biofeedback therapy. SMR deals with intentions, that
is, that which an individual intends or plans to do. When it is up-
trained, it was found that individuals become quiet, still, relaxed, are
focused and remain in a concentrated state. The state in which lots of
SMR is being produced is studious, quiet, healthy, and pensive state.
One can solve math problems, read, or sit through a lecture in that state
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(i.e., your legs are not jiggling, you are not shuffling around in your
chair, you are not wandering about during lunch. or when class is
over).

The thalamic�cortical reverberations between the motor strip and
thalamus take about 80 ms in one direction and then 80 ms to get back.
The distance is much shorter than the distance from the thalamus to the
back of head (occipital). Therefore, SMR is slightly faster than alpha
because of the fact that it is simply a shorter trip to go from the thala-
mus to the central lobe compared to going from the thalamus to the
occipital lobe.

2.3.5 Beta Band

The beta band (15�20 Hz) occurs during a thinking state. As we
move to higher frequencies, waves become more and more localized.
For example, alpha could involve both hemispheres and one could have
synchronous alpha for both hemispheres. Low beta is typically more
localized to one hemisphere or the other (low beta synchrony across
hemispheres is not done. In fact, it is asymmetrical between hemi-
spheres.) Beta is even more localized in a certain area. The reason is that
the connections in the brain that produce beta waves are more corti-
cal�cortical. It’s one part of the cortex talking to a neighboring part in
the cortex. Hence, beta waves tend to be localized where work is being
done. Beta activity may be associated with memory recall when reading
(increased activity over the motor strip). If a normative amount of beta
does not occur it means that there is underactivity (individual may not
be sharp enough, feeling depressed, etc.). In other words, beta is a sign
of activation.

2.3.6 High Beta Band

The high beta band is usually from 20 to 30 Hz. In some case, it could
go up to 35 Hz. At high beta, muscular activity can sneak in electromy-
ography (EMG). The only way to tell the difference between high beta
and muscle activity is by looking at the waves. Muscle activity is more
like droning activity while high beta is more like waxing and waning,
that is, true sinusoidal. High beta is associated with intensive thinking,
such as worrying about things like solving a hard math problem.
Generally, guard (stop) bands are used here so that artifacts, like teeth
grinding, muscular activity, etc., do not leak down to alpha. With kids,
it is extremely important to observe them. They might make slight faces
when nervous or for other reasons and hence produce the desired
waves and get rewarded. Therefore, it is important to explain to them
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in detail and then also to observe them, otherwise, false data may be
recorded or observed. One needs to tell them to be quiet, still, relaxed
and to listen and look, and only then to ring the bell (for example).

2.3.7 Gamma Band

The gamma band is typically from 40 Hz and above. Researchers
have gone up to 64 Hz and still referred to it as gamma. The gamma
band indicates high levels of sensory and perceptual binding and may
be an indicator that binding has occurred (researchers are unsure).
Binding can be explained using a simple example; let’s take a pen—one
can move it in their fingers (motor interaction), see it from any side,
hide behind, or just feel it—but they know it is a single object: it is a
pen. There is no confusion in the brain as to what it is, and the brain
sees it as a single entity. On the contrary, a small child does not have
this ability. When an object has gone out of sight, it is gone. When it
reappears, it is something new to them. An adult can smell the ink of a
pen and can hear if it has a button, etc. This means that there is infor-
mation coming from all the sensory mechanisms (sight, sound, smell,
touch, taste, memory), which informs a person about the pen. This indi-
cates the binding among the sensory, perceptual, and memory systems
inside the human brain.

2.4 ELECTROENCEPHALOGRAPHY RECORDING
TECHNIQUES

EEG recording has fundamental importance for recording quality
data because data quality has direct effects on analysis and subsequent
inferences. The EEG recording system consists of electrodes (EEG sen-
sors) with conductive media and amplifiers with suitable filter settings.

2.4.1 Electroencephalography Sensor’s Location

As shown in Fig. 2.3, the location of EEG sensors over the scalp
follow a standard electrode placement known as the international
10�10 and 10�20 systems.3 The sensors are labeled according to their
spatial locations, for example, the frontal electrodes might have labels
such as Fp1, Fp2, Fpz, F3, F4, F7, and F8; electrodes in the parietal are
labeled as P3, P4, and Pz; the occipital electrodes are labeled as O1, O2,
and Oz, etc. Most vendors have provided predesigned caps with opera-
tional manuals. The end users or researchers can achieve correct place-
ments of the sensors by correctly observing the operational manual.
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2.4.2 Electroencephalography Sensors and Conductive Media

EEG recording is impossible without establishing a contact
between the sensors and the scalp surface, this is achieved using a
conducting media. A connection can be achieved through a conduct-
ing material such as a gel or water (in the case of a hydrosensor). The
use of gel or water depends on the application type. For example, the
gel-based electrodes are preferred over the hydrosensor-based elec-
trodes during sleep studies. Because the gel-based electrodes can
work efficiently for longer hours of recording than the hydro-sensor-
based electrodes. On the contrary, the hydrosensor-based electrodes
have shorter setup time than the gel-based electrodes and preferred
for small duration experiments such as for 1 to 2 hours.

2.4.3 Electroencephalography Amplification

The use of amplifiers for amplifying a weak EEG signal is quite
common during EEG recording. An amplifier not only provides amplifi-
cation but also performs analog-to-digital (A/D) conversion as well.
Usually, an amplifier has these settings: low and high frequency range,
sampling rate and number of channels, type of channels, etc. For exam-
ple, the low and high frequencies could be 0.5�70 Hz (covering delta,
theta, alpha, beta, and gamma bands), while the sampling rate can be

FIGURE 2.3 19 scalp EEG sensor locations.
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128, 256 Hz, etc. The number of channels can vary from as low as 1
channel to 1024 channels depending on the application. For example, if
source localization needs to be performed, the lowest number recom-
mended is 64 channels.

2.5 ELECTROENCEPHALOGRAPHY REFERENCE
CHOICES

EEG data are electrical signals that require a reference electrode to be
placed on the human body. Commonly, the link-ear reference, Cz refer-
ence, and bipolar reference are being used in practice. It has been
assumed that the human body has no reference with a potential zero.
Therefore, most recently the reference electrode standardization
technique (REST) has been introduced that has been considered to be at
potential zero, theoretically.

Recently, the choice of an appropriate EEG reference has been
highlighted as a critical issue, especially during EEG-based clinical deci-
sion making, such as the automatic diagnosis of epilepsy, depression,
and schizophrenia. In the literature, studies based on EEG reference
choices have reported differences in EEG-derived measures due to
distinct EEG references, for example, bias in the computed head surface
integral.4,5 In addition, differences in the computation of the frequency
spectrum based on EEG datasets are reported.6 Moreover, one of the
initial studies that investigated the influence of the reference on the
experimental effects between two groups7 and EEG-based connectivity
analysis8 have shown similar effects. Furthermore, the effects of EEG
reference choices on information�theoretic measures of the complexity
are reported.9 In a recent study, EEG-based brain network analysis
shows discrepancies just because of EEG reference choices.10 To further
elaborate this point, a comparative study of average, linked mastoid,
and REST references for ERP components acquired during functional
magnetic resonance imaging (fMRI) has been performed.11 The authors
have recommended REST for EEG/ERP analyses. Similarly, REST has
been recommended for the analysis of ERP component P300.12 In a
different study, the authors recommended REST to be the first choice of
re-referencing, while average reference (AR) may be an alternative
option in the case of high-level sensor noise.13 In short, all these
evidences provided a clear picture of the influence of reference choices
on EEG data analysis.

For the sake of explanation, three different references, linked-ear
(LE), AR, and REST, have been utilized. A brief summary of each refer-
ence is provided in Sections 2.5.1�2.5.3.
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2.5.1 Linked-Ear Reference

According to the LE reference, as shown in the mathematical formu-
lation provided in Eq. (2.1):

VLE 5V2TðMleft 1MrightÞ=2
VLE 5 V2TMleftð Þ2TðMright2MleftÞ=2
VLE 5VCM 2TVCM2right=2

(2.1)

where the data matrix V and VCM with size n3 k represents the scalp
potential recordings with n electrodes and k samples. T is a column vec-
tor with size n3 1 and all its entry values are set at unity. The VCM-right

with size 13 k is the potential recorded as right mastoid with the left
mastoid as the reference, that is, the recording in the VCM correspond-
ing to the right mastoid electrode. Mleft and Mright, with size 13 k,
represent the scalp potential of the left and right mastoids when
referenced to a neutral point, respectively.

2.5.2 Average Reference

EEG data recorded with AR records potential according to the aver-
age of voltage potentials at all scalp sensors at each time point.
Mathematically, it can be expressed as (Eq. 2.2):

VAR 5V2TMeanðVÞ
5VCM 2TMeanðVCMÞ (2.2)

where the data matrix V and VCM with size n3 k represents the scalp
potential recordings at n electrodes and k samples. T is a column vector
with size n3 1 and all its entry values are set at unity. Where mean (*)
denotes the spatial average over all recording channels at each temporal
sample point.

Based on the provided formulae, the recordings with the other refer-
ences, such as the LE and AR, are readily obtained from the actual
recordings VCM. The formulae can be implemented with Matlab or any
other programing software.

2.5.3 Reference Electrode Standardization Technique

The REST reference has been considered to be at potential zero, theo-
retically. Mathematically, it can be computed as (Eq. 2.3):

V5GS (2.3)
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while for the contralateral mastoid reference (CM) recording VCM, we
have (Eq. 2.4):

VCM 5GCMS (2.4)

where the G and GCM are the transfer matrices determined by the head
model, source configuration, electrode montage and reference, infinity,
and left mastoid, respectively. S represents actual sources. Based on the
previous equations, we can write (Eq. 2.5):

V5GS5G GCMð Þ1VCM

� �
5RVCM (2.5)

where (*)1 is the Moore�Penroose generalized inverse, and R is the
transfer matrix. Based on these equations, there is no need to know
the actual source S; however, the transfer matrices G and GCM can be
defined as being the transfer matrix from the equivalent distributed
source of the actual sources. Thus, the G and GCM are determined by
the head model.

2.6 ELECTROENCEPHALOGRAPHY ARTIFACTS

EEG artifacts can be of diverse types, such as electro-ocular (EOG)
(eye blinks, and horizontal and vertical eye movements), electromyogra-
phy (EMG) (muscular activities), electrocardiogram (ECG) (heart
activities), gait-related movement artifacts, power line noise (50 or
60 Hz signal component), and noise, due to floating electrodes, such as
a loose connection with the scalp or high impedance electrodes, discon-
tinuity in the data, or artifacts due to electric devices interference. Some
of these artifacts are more prominent and can cause severe damage to
the EEG data, and are described in Sections 2.6.1�2.6.4.

2.6.1 Ocular Artifacts

Fig. 2.4 shows an ocular artifact (OA) in EEG data. Ocular artifacts
are considered as the most important artifacts during EEG artifact
reduction because they occur frequently and the amplitude of EOG arti-
facts is even higher than that of EEG data. Ocular artifacts involve both
the eye-blink and the eye movements (horizontal and vertical), and
normally occur in low frequency bands. Sources of ocular artifacts
include the existence of a dipole model. For example, the eye forms an
electric dipole where the cornea is positive and the retina is negative.
When eye movement occurs the electric field around the eye changes
producing an electric signal, this is known as an ocular artifact. Many
EEG artifact reduction methods have been proposed to remove EEG
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artifacts. For example, Gasser and coworkers found that eye movements
increased the power of low frequency bands in schizophrenic patients,
and that they also decreased the chance of finding significant differ-
ences between the schizophrenic and control groups.14

2.6.2 Muscle Artifacts

Fig. 2.5 shows muscle artifacts that often occur during EEG record-
ings and that have been characterized as high frequency bursts. Artifact
sources could be head movement, mouth clenching, swallowing of
saliva, etc. Furthermore, the topographic distribution of fast EEG activ-
ity associated with muscle contamination showed maximal values over
frontotemporal areas and was near zero in the remaining cortical
regions. EEG segments contaminated with muscle activity suffered a
drastic enhancement of spectral power above 50 Hz. Many methods
have been developed for muscle artifact reduction.15,16

2.6.3 Line Noise Artifacts

Fig. 2.6 shows a power spectrum of an EEG line noise artifact peaked
at 50 Hz, which could confound an EEG signal. The possible sources of

FIGURE 2.4 EEG ocular artifact (OA).
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FIGURE 2.5 EEG muscle artefact.
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FIGURE 2.6 EEG line noise artefact: (A) power spectrum magnitude of EEG with arti-
fact (EEG1EOG1ECG1 line frequency) and (B) power spectrum magnitude of EEG
without line frequency.
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a line noise artifact include the noise produced from the electric power
supply to the system. Commonly, a notch filter designed for 50 or 60 Hz
can remove the EEG line noise artifact, successfully.

2.6.4 Gait-Related Motion Artifacts

Fig. 2.7 shows a power spectral view of an EEG signal confounded
with gait-related artifacts. Possible sources are running, or fast or slow
walking. The power spectrum shows the amplitude of artifacts during
running, fast walking, and slow walking. The difference is quite signifi-
cant in terms of amplitude. Recently, many studies have been
performed to correct data confounded with gait-related artifacts.17

2.7 ELECTROENCEPHALOGRAPHY-BASED METHOD
FOR ARTIFACT REDUCTION

(ELECTROENCEPHALOGRAPHY PREPROCESSING)

2.7.1 Analog Methods

Analog methods mainly involve the use of an analog circuit, such as
a potentiometer, to subtract subject specific EOG activity from EEG data
during recording. For example, one of the initial papers verified that
involuntary eye movements during the click-tone interval consistently
generated potential shifts, which spread from the corneo-retinal dipole
to the scalp electrodes, thereby, contaminating the CNV by a factor of
23%.18 Another study concluded that the blink and vertical eye move-
ment artifact fields are quantitatively different in terms of their trans-
mission to the scalp.19

As a solution,20 described one of the first online methods for reduc-
ing OA in CNV recordings using a simple potentiometer arrangement.
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FIGURE 2.7 EEG gait-related artefact.
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The vertex EEG signal was referred to as the center terminal of the
potentiometer. The other terminals of the potentiometer were connected
to a frontal EEG electrode and linked mastoids. The corrector was cali-
brated, prior to recording, by adjusting the center terminal while the
subject moved his eyes repetitively until there was no trace of OA in the
LEG. The device was then left at this setting during recording.

An earlier paper has suggested removing different fractions of arti-
fact ratios from EEG data because of the different effects on the EEG
data.19 This was later confirmed by Picton (Picton 2000). In this context,
the first attempt was made by Girton and Kamiya.21 The method was
based on subtracting a fraction of both the vertical and horizontal EOG
signals from the EEG signal to be corrected. Similar work has been done
by other researchers as well.22 The process seems clear; however, the
absence of a true reference may effect the process of artifact correction.

In the study,23 artifact signals are measured with a special set of elec-
trodes and are combined in order to subtract the artifacts from contami-
nated EEG records. The subtraction ratios are determined as those that
minimize the variance in the resulting corrected EEG signal. Table 2.1
shows a summary of methods.

2.7.2 Linear Filtering Methods

Linear filtering methods mainly employ the manipulation of frequen-
cies in the composite EEG signal. For example, filtering EEG data allows
for the analysis of brain activity in different frequency bands.24 EOG
artifacts usually have a low frequency profile. Applying a suitable filter
involving the suppression of small frequency components could poten-
tially remove EOG from EEG data. For example, in his paper,25 Gotman
et al. concluded that total elimination of activity above 25 Hz would
eliminate most of the EMG activity, with a minimal risk of eliminating
rhythmic cerebral activity. In this context, a 4-pole analog filter was
designed to remove EMG artifacts.26 Furthermore, an improvement was
achieved by designing a 6-pole digital filter.27 The authors claim that

TABLE 2.1 EEG Artifact Suppression Based on Simple Subtraction Technique

Study Artifact Type Method

20 Ocular artifact Analog method involving a potentiometer

21 Eye movement Circuit-based analog method

22 Eye movement A simple circuit that effectively removes artifacts

23 Eye movement and ECG Analog method involving a potentiometer
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the advantage of a 6-pole switched-capacitor filter is that it does not
require a complex design with high precision RC components.

However, due to the overlapping of artifact and neuronal data, linear
filtering could also remove the actual EEG data representing the under-
lying brain activity. Analog filters are less expensive but more difficult
to design than digital filters. Table 2.2 provides a summary of linear fil-
tering methods used for the removal of EMG artifacts from EEG data.

2.7.3 Regression-Based Methods

Regression-based methods provide some major improvements on
traditional analog methods. Hence, these methods are quite famous for
removing ocular artifacts from EEG data. Initially proposed methods
involve both time-domain methods28 and frequency-domain methods.29

More specifically, the regression function calculates “B,” the proportion
of one variable explained by another variable. For example, the effect of
EOG on EEG can be explained by “B.” In the study,30 a further valida-
tion of regression methods was performed on ERP data with the conclu-
sion that regression provides improved results compared to
conventional rejection of artifact data.

Despite the applications of regression-based methods, there are many
reservations, like the fact that most regression methods are developed
for EOG artifacts. In other words, the regression-based methods are less
accurate for muscular artifacts than for the EOGs. In addition,
regression-based methods require a separate reference signal for the
activity that needs to be corrected from raw EEG data and can be uti-
lized as a regressor because the muscle artifacts cannot easily be used as
reference signals. In some cases, the calculation of B has been added
with random error. Some solutions have been proposed, such as calcu-
lating more than one B and either performing mean, median, or trim-
ming methods, where the lowest and highest 10% of B’s are ignored.30

In addition, regression procedures consider that EOG signals are not
correlated with EEG signals.31 This assumption is generally wrong. A
possible remedy for such a problem is the use of low-pass filtering
before applying a time-domain regression.14 In a later study, it was con-
cluded that ocular artifacts affect the alpha and beta bands as well.32 In

TABLE 2.2 EEG Artifact Suppression Based on Linear Filtering Technique

Study Artifact Type Method

25 EMG Digital filtering

26 EMG Analog filtering

27 EMG Digital filtering
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this context, the application of a low-pass filter will not be a complete
solution. Moreover, regression methods are also confounded due to
bidirectional contamination. The idea of bidirectional contamination is
that EOG and EEG can affect each other, and hence, both should be con-
sidered during artifact reduction with regression techniques. Table 2.3
summarizes various methods involving regression.

TABLE 2.3 EEG Artifact Suppression Based on Regression Methods

Study Artifact Type Comments

28 Eye movement Quilter used the “least squares” regression function.
The regression function calculates B.

29 Eye movement To reduce “correction phase error,” the filtering out of
EOG frequencies above 6 Hz has been suggested.

30 EOG Trimming of B has been proposed, such as discarding
the lowest and highest 10% of B.

33 EOG Gratton mainly proposed that the blink and saccade
voltages propagate differently.

34 EOG correction in
frequency domain

Transfer of eye activity to EEG may have frequency
dependent amplitude; therefore the regression formula
is used in frequency domain.

35 EOG The propagation of ocular potentials across the scalp on
a biophysical basis.

36 EOG Comparison between time and frequency domain
regression methods.

37 EOG In event-related potential, to reduce coherence between
eye-blink activity and ongoing EEG, VEOG and EEG
are averaged on eye blinks. This yields a high reliability
and validity of regression factors, determined per day,
subject, and lead.

38 Muscle artifact The regression method is extended for correction of
muscle artifact correction.

39 EOG Simple and multiple lag regression in time domain and
frequency domain have been compared and found
equally well in reconstructing EEG.

14 EOG Gasser emphasis the use of correction methods instead
of manually selecting the artifact-free epochs.

40 EOG Aligned-artifact averaging (AAA) solution.

41 EOG The validation of the regression method is based on
blind scoring, which is carried out by an expert EEG
analyst.
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2.7.4 Dipole Modeling-Based Methods

Dipole modeling-based approaches involve dipoles with different
locations and orientations for EOG and EMG activities.42,43,44 The idea
is to model either the artifact topography or the brain topography and
perform the subtraction of the artifact from the recorded data in order
to achieve artifact-free data. It involves a head model. Normally, artifact
topography is modeled because it is easier to estimate than brain
activity. However, dipole-based methods are normally confounded by
distortion due to the head model. Berg and Scherg in their paper have
claimed to eliminate this effect.42

The multiple source eye correction (MSEC) method is a variant of
dipole-based methods.45 The method involves modeling eye artifacts that
can be further used to model and correct brain activity. In general, eye
artifacts can be modeled with a simple regression method. Brain activity
is modeled in the presence of eye artifact topography and the choice of a
head model. As the MSEC method may involve PCA for the generation
of artifact topographies; therefore, the artifacted EEG data needs to be
free from linear trends and artifacts due to loose connection problems.
This is because the PCA may not perform efficiently against these kinds
of artifacts and could confound the artifact correction process. The MSEC
approach can be implemented in different versions such as surrogate
MSEC. Surrogate MSEC involves the placement of dipoles at strategic
locations inside the brain. A through discussion on MSEC method and
its variants is out of scope here and can be found else where45.

The preselection and the spatially constrained ICA (SCICA) methods
were proposed by Ille in his papers46,47 and have shown improved
versions that may involve the ICA and PCA techniques. Comparable to
MSEC, artifact topographies are derived from single or averaged artifact
prototypes. To model brain signal topographies, two novel concepts are
introduced: the preselection approach and the spatially constrained ICA
(SCICA) method. In the preselection approach, a relevant number of
eigenvectors is extracted from an artifact-free subset of the data
segment. The subset is obtained by excluding sample vectors from the
original data segment that exceed a certain amplitude or correlation
with the predefined artifact subspace. In SCICA, brain signal topogra-
phies are estimated from the whole data segment. SCICA uses prior
knowledge about the artifact topographies and combines this spatial
information with the temporal-statistical strategy of ICA to estimate
brain signal topographies (see Table 2.4).

2.7.5 Blind Source Separation

Blind source separation (BSS) techniques have been widely utilized
to suppress ocular artifacts and are based on the linear decomposition
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of EEG and EOG recordings into source components. These component-
based methods permit the identification of the sources that cause arti-
facts, and then the reconstruction of EEG recordings without these
sources implicating clean EEG data. In this chapter, different EEG-based
artifact reduction methods are discussed, including principal compo-
nent analysis (PCA), independent component analysis (ICA), and
canonical correlation analysis (CCA).

While comparing different BSS techniques for all types of contamina-
tion, PCA is a strong performer when contamination is greater in
amplitude than the brain signals, whereas other algorithms, such as
second-order blind inference and infomax are generally better for specific
types of contamination of lower amplitude.48

2.7.6 Principal Component Analysis

Lins et al. proposed the use of PCA to remove EOG artifacts.44 More
specifically, PCA transforms a multivariable data set into components
that are spatially orthogonal. However, the main drawback of PCA is the
assumption of orthogonality between neural activity and ocular artifacts
and this is not generally true. For example, PCA-based removal of EOG
activity from EEG is difficult, especially when both have a similar magni-
tude.49 The authors developed a variation of original PCA in which the
factors that reconstruct the modified EEG from the original are stored as
a matrix. This matrix is applied to multichannel EEG at successive times
to create a new EEG continuously in real time, without redoing the time-
consuming SVD. This matrix acts as a spatial filter with useful properties.

PCA assumes that different sources in EEG data are uncorrelated;
however, the condition of independence cannot be met by PCA.
Studies50 compared PCA with ICA and proved that PCA is better than
ICA. Casarotto utilized PCA to reduce ocular artefacts in single trial
ERPs recorded in normal and in dyslexic children.51 Table 2.5 provides
a summary of the method involving PCA.

TABLE 2.4 EEG Artifact Suppression Involving Dipole Model-Based Methods

Study Artifact Type Method

42 EOG Spatio-temporal dipole modeling

43 EOG Source dipoles and source components

44 EOG Source dipoles and source components

45 EOG Multiple source eye correction (MSEC) method

46 EOG Preselection methods and SCICA

47 EOG Preselection methods and SCICA
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2.7.7 Independent Component Analysis

As introduced by Makeig,53 ICA is considered as the most effective
component-based procedure for removing artifacts from raw EEG data.
Regression methods required a clean EOG reference signal to clean arti-
fact contaminated data. On the contrary, the ICA method is based on a
spatial filtering concept that does not need a reference signal.

Many sophisticated techniques have been developed for implementa-
tion, such as JADI, INFOMAX,54 etc. In contrast to PCA, ICA assumes
that the component sources must be uncorrelated and statistically inde-
pendent. These assumptions seem more rational because of the indepen-
dent nature of ocular and neural sources. Initially, manual selection of
artifact contaminated independent components (IC) is challenging and
requires knowledge or expertise and renders the procedure subjective.
To overcome this subjectivity, studies have been carried out using a
completely automatic artifact correction process based on statistical
properties, like kurtosis, entropy, or correlation with EOG channels.55,56

Furthermore, opposite results were obtained: in the former study, the
best performance was obtained with an ICA algorithm,56 while in the
latter, ocular artifact correction methods based on regression and PCA
performed better than ICA-based correction procedures.57 Moreover,
another study defended regression-based methods against BSS when
the number of EEG leads was small.41 In a different study, a reduced
number of electrode configuration or even without EOG leads (where a
linear regression approach and automatic procedures based on correla-
tion with EOG channels are not applicable) have been analyzed.58

However, automatic selection of the ICA component has proven
challenging, which renders the process impractical for large datasets.
More recently, objective criteria were developed to solve this issue. In

TABLE 2.5 EEG Artifact Suppression Involving PCA

Study Artifact Type Method

44 EOG PCA

49 Ocular movement
electrocardiographic artifacts

A variation of original PCA methods
which only employ a matrix that acts as a
spatial filter.

50 Event-related potential components
during correct and incorrect
responses

PCA

51 Ocular artifacts PCA

52 ECG sPCA
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addition, ICA cannot decompose linear trends or data recorded with
lose electrodes. Hence, before applying ICA on raw data, the data
should be clean from linear trends or artifacts due to lose sensor connec-
tions. Table 2.6 has summarized different studies that have utilized ICA
as the main method for artifact correction.

As previously mentioned, a serious drawback of the ICA method is
the manual selection of artifact-related ICA components because the
selection requires knowledge and experience of different artifact types
for their correction. Unfortunately, subjectivity cannot be avoided with
the manual process. Hence, the use of objective criteria for the selection

TABLE 2.6 EEG Artifact Suppression Involving ICA

Study Artifact Type Method

53 EOG ICA for continuous EEG data

59 EOG The ICA algorithm has been extended for event-
related potential (ERP) data.

60 EOG Separation of ICs based on kurtosis of their
amplitude distribution over time, thereby
distinguishing between strictly periodical signals,
regularly occurring signals, and irregularly occurring
signals. The latter category is usually formed by
artefacts.

61 EOG and muscle artifacts Jung employed the infomax algorithm for the
correction of EOG and muscle artifacts.

62 EOG A comparison between ICA and PCA has been
performed, concluding that ICA can effectively
separate and remove contamination from a wide
variety of artifact sources in EEG records with
results comparing favorably to those obtained using
PCA.

63 EOG ICA has been applied for ERP data.

64 Eye movements, eye
blinks, cardiac signals,
muscle noise, and line
noise

ICA has been extended for artifacts such as eye
movements, eye blinks, cardiac signals, muscle noise,
and line noise. The results were compared with
PCA.

31 EOG The clinical applications of ICA have been explored
for 28 healthy controls and 22 clinical subjects while
performing a visual event-related task.

65 EOG ICA has been tested with noisy data and it was
concluded that the performance of the methods were
unaffected by an additive Gaussian noise source, as
long as the signal-to-noise ratio remained above 50.

(Continued)
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of ICA components could improve the situation. In this context,
Winkler and colleagues have proposed an automatic selection based
on a linear programming machine.73 In addition, Chaumon et al. have
provided a good account of the automatic selection of ICs after apply-
ing ICA.74 The machine learning method provides subject independent
removal of artifacts from EEG data. Table 2.7 provides a summary of
all such methods that involve ICA with automatically subtracting com-
ponents representing noise. For example, Yang et al. have proposed an
automated method involving two stages.75 In the first stage, simple
ICA resulted in ICs. A kurtosis-based automatic method helps identify
components that represent artifacts. Empirical model decomposition

TABLE 2.6 (Continued)

Study Artifact Type Method

66 Electrocardiogram
(EKG), eye movements,
50 Hz interference,
muscle artifacts

ICA was tested for artifacts in short EEG samples.
The study concluded that the distortion of the
interictal activity measured by correlation analysis
was minimal.

67 Sleep-related artifacts ICA was applied to remove sleep-related artifacts
and it was concluded that ICA is a useful technique
for the evaluation of these variables with clinical
interest in different sleep stages.

55 EOG An automatic ICA-based method was proposed.

68 Eye, muscle, 50-Hz,
electrocardiogram (ECG),
and electrode artifacts

ICA is useful to remove artifacts from ictal
recordings. When applied to ictal recordings, it
increases the quality of the recording.

69 EOG ICA is efficient at subtracting eye-movement
artifacts, while retaining the EEG slow waves and
making interpretation easier.

70 EOG ICA-based automated method that does not require
the availability of periocular EOG electrodes (SOBI).

16 Muscle artifacts ICA has been extended for removing muscle activity
from sleep EEG recordings. Comparison was
performed for AMUSE, SOBI, infomax, and JADE.

71 EOG Eye movement artifact removal was performed by
ICA and compared with Gratton and Coles’ method.
ICA successfully identified components representing
eye movement artifacts.

72 ECG, pulsation,
respiration

Automated artifact removal as preprocessing refines
neonatal seizure detection.
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(EMD) allows for artifact components to be further separated, which in
second stage are then used as the reference input to an adaptive filter
in order to filter out the noise from EEG data. The second time ICA is
applied EOG information is used; which is why it is known as con-
strained ICA.

EEG artifact reduction methods assume ICA as a standard method to
separate artifacts and brain activity into independent components and
employ ICA as a preprocessing step; this is known as ICA-based hybrid
methods. These methods use ICA components to extract features or
quantities that could help separate artifacts and normal EEG. For
example, Delorme has computed higher components based on the ICA
component.76,80 Castellanos and colleagues have proposed wavelet
enhanced ICA.81 ICA has been integrated with dipole modeling as
well.82 However, the wavelet-based methods suffer from the difficulty
of properly tuning the wavelet parameters. Table 2.8 provides a
summary of different ICA-based hybrid methods.

TABLE 2.7 Automatic Identification of ICA Components

Study Artifact Type Method

76 ICA components that
represent artifacts

Automatic selection of ICA components based on
kurtosis criterion.

73 Artifactual source
components from RT
experiment

A combination of temporal decorrelation source
separation (TDSEP) and a linear programming
machine are used.

77 Artifacts because of head
movements

The method employed an accelerometer to
estimate head movements, which can be
discarded using ICA-based decomposition.

78 EOG The method uses modified multiscale sample
entropy (mMSE) and kurtosis to automatically
identify the independent eye blink artifactual
components, and subsequently denoise these
components using biorthogonal wavelet
decomposition.

75 EOG Spatial constraint independent component
analysis based recursive least squares (SCICA-
RLS) methods.

79 Physiological and
nonbiological artifacts

(1) An event-related feature-based clustering
algorithm used to identify artifacts that have
physiological origins; and (2) electrode-scalp
impedance information employed for identifying
nonbiological artifacts.
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2.7.8 Canonical Correlation Analysis

CCA is another BSS approach that has been used for the reduction of
EEG-based artifacts. In this context, Table 2.9 has summarized different
studies. However, most CCA-based methods only address muscle
artifacts.

TABLE 2.8 ICA-Based Hybrid Methods for EEG-Based Artifact Reduction

Study Artifact Type Method

81 Muscle activity, eye blinks,
and electrical noise

A wavelet threshold is applied to demixed,
independent components as an intermediate step.

80 Muscle activity, eye blinks,
and electrical noise

Higher order statistics and ICA

83 EOG and EMG SVM and ICA

84 EOG REG-ICA, an ICA-based method involving an
adaptive filter, based on a stable version of the
Recursive Least Square (sRLS) algorithm is
applied to isolate the artifact and the actual
neural signal.

85 Muscle activity, eye blinks,
and electrical noise

ICA and SVM

82 Eye movement artifacts An automatic method involving ICA and a dipole
model.

86 EOG SVM and ICA

87 Muscle activity, eye blinks,
and electrical noise, etc.

ICA and wavelet denoising

88 Muscle artifacts ICA and spectral ratio (SR)

89 Muscle and eye activities Automatic wavelet enhanced ICA (AWICA),
(employing kurtosis and Renyi entropy)

90 Muscle artifacts ICA and state space modeling

77 Head movements Accelerometer and ICA

91 Muscle and eye activities Enhanced AWICA

92 EOG ICA and system identification [Auto-Regressive
eXogenous (ARX)]

93 Eye activity Wavelet neural network and ICA

94 EOG FASTICA and discrete wavelet transform (DWT)

95 Head movement Accelerometer and ICA

(Continued)
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2.7.9 Adaptive Noise Cancellation

Adaptive noise cancellation (ANC) is a common process that
employs adaptive filtering concepts. Its applications for EEG-based
artifact reduction have been successful. Despite the need of separate
reference channels, ANC provides online artifact reduction that is
suitable for BCI applications and epileptic monitoring. Various research-
ers have proposed ANC-based EEG artifact reduction methods.
Table 2.10 provides a summary of these methods.

2.7.10 Wavelet-Based Artifact Reduction/Thresholding Methods

EEG data are composite in nature and wavelet decomposition is
suitable for analyzing EEG at multiple levels. After wavelet decomposi-
tion, EEG data can be divided into detailed and approximate compo-
nents at various levels. Each level represents a certain frequency band.
Wavelet-based methods mainly suffer due to manual selection of a

TABLE 2.8 (Continued)

Study Artifact Type Method

96 Muscle activity, eye blinks,
and electrical noise

Automated artifact elimination using linear
discriminant analysis (LDA) for classification of
feature vectors extracted from ICA components
via image processing algorithms.

75 EOG ICA and RLS

97 EOG Outlier detection (OD) and ICA

98 OA ICA and adaptive noise cancellation (ANC)

TABLE 2.9 CCA-Based Methods for EEG-Based Artifact Reduction

Study Artifact Type Method

99 Muscle artifact CCA

100 Muscle artifact CCA

101 Muscle artifact CCA

102 Muscle artifact CCA

103 Eye activity EMD-CCA method

104 Muscle artifact CCA

44 2. ELECTROENCEPHALOGRAPHY FUNDAMENTALS

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



TABLE 2.10 ANC for EEG-Based Artifact Reduction

Methods Artifact Type Method

105 EOG A neural network-based adaptive filtering method
was designed. A real-time recurrent learning
algorithm was employed for training the
proposed neural network for fast convergence.

106 EOG The method uses vertical EOG and horizontal
EOG signals as two reference inputs. Each
reference input is first processed by an FIR filter
and then subtracted from the original EEG

107 EOG The reference signal was then generated by the
data collected from the forehead electrode being
added to the data recorded from the temple
electrode. The reference signal was also
contaminated by EEG. To reduce the EEG
interference, the reference signal was first low-
pass filtered by a moving averaged filter and then
applied to the ANC.

108 Line interference, EOG,
and EEG

A cascade of three adaptive filters based on a
Least Mean Square (LMS) algorithm is proposed.
The first one eliminates line interference, the
second adaptive filter removes the ECG artifacts,
and the last one cancels EOG spikes.

109 Ocular and facial muscle
artifacts

The proposed method uses horizontal EOG
(HEOG), vertical EOG (VEOG), and EMG signals
as three reference digital filter inputs. Real-time
artifact removal is implemented by a
multichannel Least Mean Square algorithm.

110 EOG This study presents a novel ocular-artifact
removal method based on adaptive filtering using
reference signals from ocular SCs, which avoids
the need for parallel EOG recordings.

111 Ocular and muscular
artifacts

This generalized method consists of dividing the
signal into several time-frequency windows, and
in applying different spatial filters to each. Two
steps are required to define one of these spatial
filters: the first step consists of defining artifact
spatial projection using the Common Spatial
Pattern (CSP) method and the second consists of
defining EEG spatial projection via regression.

112 Ocular, muscular, and
cardiac artifacts

A new adaptive filter that involves a radial basis
function as a neural network.

113 Head movements A combination of band-pass filtering and
multichannel adaptive filtering (AF); suitable for
real-time MAR.

(Continued)
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suitable threshold, which renders the process subjective to the underly-
ing data. On the contrary, automatic thresholding methods have been
successfully employed for artifact reduction. Objective thresholding of
wavelet coefficients provides automation to artifact correction methods.
Table 2.11 shows a summary of these methods.

2.7.11 Template Matching Methods (Dynamic Time Warping
and Empirical Model Decomposition)

Template matching methods are based on prior knowledge of the
topography of the distribution of artifacts. The template for artifacts can
be modeled theoretically or can be learned based on underlying EEG
data. However, template matching methods can be subjective and a
function of underlying EEG data. Table 2.12 provides a summary of all
such methods.

2.7.12 Gait-Related Motion Artifacts

The reduction of motion-related artifacts has been considered dif-
ferently than other types of artifacts, such as EOG or EMG. More
recently, emphasis has been placed on motion artifacts, such as EEG
recordings performed during exercise and jogging. Motion-related
artifacts pose a different scenario for artifact reduction. In this context
many studies have been performed. For example, in a study, the
authors concluded that, the subjects’ motion did not significantly
affect their EEG during treadmill walking although precaution should

TABLE 2.10 (Continued)

Methods Artifact Type Method

114 EOG An adaptive method that is based on a
combination of filter banks and an eye tracker.

115 Eye blink The proposed method adopts the Savitzky�Golay
(SG) filter to extract the blink components from
noisy EEG signals. The extracted component is
then employed in an adaptive filter as a reference
input. An adaptive neural fuzzy inference system
(ANFIS) algorithm was implemented in adaptive
filtering for the blink removal process.

116 Eye blinks, eye motions,
amplitude drifts, and
recording biases

ANC based on HN filtering.
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TABLE 2.11 Thresholding Methods for EEG-Based Artifact Reduction

Study

Artifact

Type Method

117 EOG (1) A stationary wavelet transform is applied to the corrupted EEG;
(2) thresholding of coefficients in the lower frequency bands is
performed; and (3) a denoised signal is reconstructed.

118 EOG The method is based on an appropriate threshold limit calculated
from the statistical averages of the contaminated EEG signal and
thresholding function. However, the threshold limit is empirically
selected and is nonadaptive.

119 EOG Automatically identifying slow varying OA zones and applying a
wavelet-based adaptive thresholding algorithm only to the
identified OA zones, this avoids the removal of background EEG
information.

120 EOG A statistical method, i.e., coefficient of variation for removing ocular
artifacts from EEG recordings through wavelet transform.

121 EOG An efficient combination of ICA, mutual information, and wavelet
analysis for fully automatic ocular artifact suppression.

122 EOG The proposed method is primarily based on stationary wavelet
transform and takes the spectral band of seizure activities
(i.e., 0.5�29 Hz) into account to separate artifacts from seizures

TABLE 2.12 Template Matching Methods for EEG-Based Artifact Reduction

Study
Artifact
Type Method

123 Eye blink The method uses a fixed template for singling out the eye blink
component after ICA.

124 The method requires the user to specify the minimum and
maximum firing rates of the neurons. The algorithm iteratively
estimates the morphology of the most prominent action potentials.

125 EOG The method is based on linear predictive coding cepstrum (LPCC):
coefficients of EOG pulses are extracted as feature vectors, which
are used for eye movement pattern matching.

126 Eye blink The method involves three steps: (1) an iterative process in which
blink-events are detected and the blink-artifact waveform of the
analyzed subject is estimated; (2) the generation of a signal
modeling blink-artifact; and (3) suppression of this signal from the
raw EEG.

472.7 ELECTROENCEPHALOGRAPHY-BASED METHOD FOR ARTIFACT REDUCTION

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



be taken when gait speeds approach 4.5 km/h.127 Overall, these find-
ings suggest how MoBI methods may be safely deployed in neural,
cognitive, and rehabilitation engineering applications.127 Table 2.13
provides a summary of these methods.

TABLE 2.13 EEG Artifact Suppression Involving Motion-Related Artifacts

Study Artifact Type Method

128 Artifacts due to
walking and running

This method uses stride time warping to remove gait
artifacts from high-density EEG recorded during a
visual oddball discrimination task performed while
walking and running. Next, ICA is applied to parse the
channel-based noise reduced EEG signals into
maximally independent components (ICs) and then
component-based template regression is performed.

129 Artifacts due to
walking and running

Techniques to detect the presence of motion artifacts in
PPGs given higher order statistical information present
in the data. These data are analyzed in the time and
frequency domains (FDs) and metrics to distinguish
between clean and motion-corrupted data are identified.

130 Motion artifacts A multichannel linear prediction filter.

131 Motion artifacts The method has quantified the similarity between
movement artifacts recorded by EEG electrodes and a
head-mounted accelerometer. The aim is to isolate and
record movement artifacts with EEG electrodes during
walking. The electrophysiological signals are blocked
using a nonconductive layer (silicone swim cap) and an
electrically conductive scalp is simulated on top of the
swim cap using a wig coated with conductive gel.

132 Gait-related movement
artifacts

ICA and dipole fittings are used to localize movement-
related component sources.

127 Gait-related movement
artifacts

The authors investigated the potential contributions of
motion artifacts in scalp EEG during treadmill walking
at three different speeds (1.5, 3.0, and 4.5 km/h) using
a wireless 64 channel active EEG system and a wireless
inertial sensor attached to the subject’s head.

133 Head movements A phantom head device was used to mimic electrical
properties of the human head with three controlled
dipolar sources of electrical activity embedded in the
phantom. The sinusoidal vertical motions were induced
on the phantom head using a custom-built platform
and the EEG signals were recorded with three different
acquisition systems while the head was both stationary
and in varied motion conditions.

(Continued)
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2.7.13 Subspace-Based Methods

Subspace-based methods are based on the concept that noise and
actual neuronal data can be discriminated into different subspaces. As a
result, the noise subspace can be rejected while constructing the EEG
signal. Table 2.14 provides a summary of subspace-based methods.

2.7.14 Hybrid Methods for Electroencephalography-Based
Artifact Reduction

Recently, the trend for EEG-based artifact reduction has been trans-
formed from signal methods to hybrid methods. In this context, a

TABLE 2.13 (Continued)

Study Artifact Type Method

17 Gait-related movement
artifacts

A template correlation rejection as a novel method for
identifying and rejecting EEG channels and
independent components carrying motion-related
artifacts. EEG data from 10 subjects were recorded
during treadmill walking. The template correlation
rejection method consists of creating templates of
amplitude patterns and determining the fraction of
total epochs presenting relevant correlation to the
template.

TABLE 2.14 EEG Artifact Suppression Involving Subspace-Based Methods

Study Artifact Type Method

134 EOG, muscle, etc. Generalized singular-value decomposition is used
to separate multichannel electroencephalogram
(EEG) into components found by optimizing a
signal-to-noise quotient. These components are
used to filter out artifacts.

135 Eye blinks, saccades, and
other eye movements

Based on the concept that all ocular artifact
components exist in a signal component subspace,
the method can uniformly handle all types of
ocular artifacts, including eye blinks, saccades,
and other eye movements, by automatically
identifying ocular components from decomposed
signal components.

136 EOG A deflation algorithm based on generalized
eigenvalue decomposition for separating desired
and undesired signal subspaces for multichannel
EEG data.
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detailed description of each method is impossible; still a brief descrip-
tion is provided in Table 2.15.

2.7.15 Single Channel-Based Separation

Recently, single-channel EEG devices have become attractive because
of their usability for measurement and their portability. The use of only
one channel correction could be possible for BCI applications. Table 2.16
provides EEG-based methods involving a single EEG channel.

TABLE 2.15 Hybrid Methods for EEG-Based Artifact Reduction

Study Artifact Type Method

137 Eye and head
movement

Machine learning and eye tracker (An eye tracker and
motion sensor were also used to measure and provide the
ground truth for the classification experiments.)

138 Subject generated
artifacts

An AR model (parameters as features) and SVM classifier
were used to discriminate among artifact conditions using
the AR model parameters as features.

139 EOG Wavelet neural network (combines the universal
approximation characteristics of neural networks and the
time/frequency property of wavelet transform).

140 EOG High speed eye tracker for removing eye movement and
blinks and adaptive filters (RLS and H^) to remove OA.

141 Eye blink EOG Modeling and Kalman filtering to estimate the true
EEG.

142 Muscle artifact WPT-EMD and WPT-ICA algorithms

143 EOG Neural network and adaptive fuzzy inference system

144 EOG Complete Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) and Renyi entropy (RE) is proposed for
minimizing OAs from corrupted EEG signals.

145 Eye movement The gaze signals, recorded by an eye tracker, share a similar
temporal structure with the artifacts induced in EEG
recordings by ocular movements. The proposed approach
consists of estimating this specific common structure using
multiple measurement vectors which are then used to
denoise the EEG data

146 Eye and mucle
artifacts

A combination of temporal motifs and dynamic time
warping (DTW) methods is used to identify specific types of
artifact segments quickly.
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TABLE 2.16 Single Channel-Based Methods for EEG Artifact Reduction

Study Artifact Type Method

147 ECG The method involves a two-step process: first, ECG
artifact detection using the energy interval histogram
method and then ECG artifact elimination using a
modification of ensemble average subtraction.

148 Eye-blink artifact Two-step nonnegative matrix factorization for
single-channel EEG signals recorded at Fp1.

149 EOG This method is based on a set of information on
brain wave frequencies.

150 Eye blink The method is based on combining digital filters
with a rule-based decision system.

151 EOG Unsupervised WT decomposition was systematically
evaluated for the effectiveness of OA removal for a
single-channel EEG system. Two commonly used
WT methods; discrete wavelet transform (DWT) and
stationary wavelet transform, were applied. Four
WT basis functions, namely, haar, coif3, sym3, and
bior4.4, were considered for OA removal with
universal threshold and statistical threshold (ST).

152 EOG and EMG The algorithm involves wavelet decomposition of
original EEG into coefficients. Next, a surrogate time
series is generated based on original EEG signal and
a threshold is computed and compared with the
coefficient values. Only the coefficients greater than
the threshold value are used to reconstruct the EEG
signal that is found clean from EOG and EMG.

153 Steady-state visual
evoked potential (SSVEP)

STFT was employed to construct time-frequency
images from raw EEG. Then SVD-based
dimensionality reduction was performed to denoise
the EEG data.

154 EOG Maximum likelihood estimation is used to estimate
EOG, which is further subtracted from the raw EEG.

155 EOG A denoising technique is applied only to the OA
zone to keep the critical neural information intact.
The algorithm first detects the eye blinks (OA zone)
using an algebraic approach, and then removes the
artifacts from the OA zone using the discrete
wavelet transform (DWT) decomposition method.

156 Muscle artifacts This method is a combination of the ensemble
empirical mode decomposition (EEMD) and joint
blind source separation (JBSS) techniques.

157 EOG Singular spectrum analysis (SSA) and adaptive noise
canceler (ANC) were used to remove the EOG
artifact from the contaminated EEG signal.
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2.7.16 Miscellaneous Methods

In this section, two studies have been described. In the first study,
the authors claim that the eye-blink artifacts were removed successfully
based on computing signal statistics and utilized the p-values as thresh-
olding parameters.158 The second study has addressed artifacts other
than the EOG or EMG. The method has addressed artifacts caused by
lose electrode connections and machine interferences. The proposed
method employed the minimum mean square method. Table 2.17 pro-
vides a summary of these methods.

2.8 SUMMARY

This chapter provides a detailed description of EEG fundamentals,
including a basic introduction to EEG data, EEG recording techniques,
and the importance of EEG noise removal. Finally, the chapter discusses
different methods for EEG preprocessing. In this chapter it is assumed
that the reader is completely naı̈ve to EEG and the details are explained
accordingly.
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C H A P T E R

3

Electroencephalography-Based
Brain Functional Connectivity

and Clinical Implications

3.1 INTRODUCTION

Electroencephalography (EEG)-based brain connectivity analysis has
shown important research findings. For example, analysis has shown
evidence in the existence of synchronous activity among different brain
structures during various cognitive and problem solving tasks (see e.g.,
Ref. 1). This synchronous activity may represent a successful exchange
of information between different brain areas. Any abnormalities during
synchronous activity may indicate abnormal brain connectivity. In gen-
eral, brain connectivity can be defined in terms of anatomical or struc-
tural connectivity, FC, and effective connectivity (EC). Anatomical
connectivity refers to the physical connections between different brain
structures involving the linking sets of neurons or neuronal elements.2

Anatomical connectivity could be studied with a modality such as diffu-
sion tensor imaging (DTI). On the other hand, FC entails statistical
dependence between signals recorded from spatially located sensors,3

while EC refers to the causal relationship between them.3,4 Both EC and
FC can be studied with EEG, functional magnetic resonance imaging
(fMRI),5 magnetoencephalogram (MEG), positron emission tomography
(PET), and static positron emission tomography (SPECT).

EEG as a standard modality can investigate the brain either during
rest or nonrest conditions such as performance of a working memory
task. As widely established, EEG data are composite in nature and
includes various frequencies such as delta (0.1�4 Hz), theta (4�8 Hz),
alpha (8�12 Hz), beta (12�20 Hz), and gamma (. 20 Hz). These EEG
data bands have shown association with different physiological states,
for example, EEG alpha activity is considered as an index of relaxation
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and can be observed during eyes close (EC) or eyes open (EO) condi-
tions in healthy controls. In addition, the beta band has been associated
with mental activity. The theta band has been reported in healthy con-
trols during sleep. On the contrary, deviation from normal EEG patterns
could implicate a brain pathology. For example, alcoholics have shown
less theta activity when compared to healthy controls.6 Moreover, in
comparison to healthy controls, MDD patients have shown alpha inter-
hemispheric lateralization.7 Furthermore, the precision and accuracy of
these patterns could lead to the discovery of endophenotypes for a par-
ticular mental illness.8

Recently, various EEG-based research studies were performed for the
assessment of brain connectivity.9 Since EEG data have nonlinear
dynamics, several types of methods are required in order to overcome
the shortcomings and challenges faced by previous methods. Hence,
advancement in the development of computationally intensive techni-
ques becomes important. In broader sense, these EEG-based methods
could be categorized as bivariate or multivariate methods.10 Bivariate
methods mainly involved computing the connectivity between two
signals or scalp locations. On the contrary, multivariate methods
involved the whole dataset (more than two signals simultaneously) to
train statistical models.11 Furthermore, various FC methods come in dif-
ferent varieties and categorized accordingly such as linear versus non-
linear methods and parametric versus nonparametric measures. In
addition, these methods can be categorized into several different types
such as classical measures, for example, correlation of EEG data
between two scalp locations or its equivalent in frequency domain, that
is, magnitude square coherence. Different EEG-based methods have
been proposed for the assessment of brain FC, for example, interhemi-
spheric coherence, phase lag index (PLI), mutual information (MI), SL,
phase locking and phase coherence, correlation, and imaginary coher-
ence. The choice of a method depends on the underlying assumptions
and the type of analysis being performed.

Although EEG-based FC analyses show abnormalities associated
with various mental illnesses, a structured review with the latest clinical
updates on these measures is required. Therefore, the aim of this chapter
is to provide information on various aspects of brain connectivity such
as EEG-based quantitative methods, their clinical applications, and
MATLAB toolboxes available for data analysis. Moreover, EEG-based
FC analysis could be confounded due to volume conduction effects,
signal to noise ratio issues, common reference problem, common input
problem, or sample bias problem. A detailed description of these fac-
tors can be found elsewhere.1 This chapter mainly focuses on the clini-
cal findings of EEG-based FC methods. Sections 3.2.1�3.2.6 discuss
the applications of these methods in the context of Alzheimer’s, mild

62 3. ELECTROENCEPHALOGRAPHY-BASED BRAIN FUNCTIONAL CONNECTIVITY

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



cognitive impairment (MCI), schizophrenia, depression, and alcohol-
ism. In this chapter, Section 3.2 explains the clinical applications of FC
measures and Section 3.3 illustrates the available open source tools
used for measuring connectivity. Finally, the chapter is concluded
with the conclusion section.

3.2 CLINICAL IMPLICATIONS OF
ELECTROENCEPHALOGRAPHY-BASED BRAIN

CONNECTIVITY METHODS

This section highlights brain connectivity measures in the context of
various neurological disorders such as epilepsy, schizophrenia, MDD, and
Alzheimer’s disease. In the case of depression, a decreased FC has been
observed when compared with healthy controls.12 Other than depression,
mental illnesses such as schizophrenia, epilepsy, and Alzheimer’s have
shown abnormal FC patterns when compared with healthy controls.13 In
a recent study, it was validated that the connections between the frontal
and parietal regions are modified by anesthesia.14 A detailed description
of the implications of EEG-based FC differences is provided in the rele-
vant sections.

3.2.1 Alzheimer’s

Alzheimer’s has been associated with brain cognitive impairments.
Approximately 200,000 Americans under the age of 65 have younger-
onset Alzheimer’s disease (also known as early onset Alzheimer’s).
Unfortunately, Alzheimer’s is the sixth leading cause of death in the
United States.15 In the literature, EEG-based FC measures such as
coherence, phase locking index (PLI), SL, and MI have been utilized for
discriminating between Alzheimer’s patients and healthy controls.

3.2.1.1 Interhemispheric Coherence

According to the literature, most studies have reported decreased
EEG coherence during Alzheimer’s disease, suggesting decreased inter-
action between brain areas.16,17 In another study, rhythmic coherences
(particularly in the alpha and beta bands) and cumulative mutual infor-
mation (CMI) variables as well as harmonic coherences (particularly
related to 3 Hz PS) were reported to be significantly lower in probable
AD than in control subjects.18 Furthermore, in a study, global correla-
tion dimension and coherence pointed to a decreased functional cortical
connectivity.19 Additionally, coherence in the alpha band was reported
to increase in the control group following a given task, but was not seen
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in the AD group.20 In short, there was increasing evidence of decreasing
coherence in Alzheimer’s patients compared to control subjects.21�24 In
a different study, FC measures (such as correlation coefficients, mean
square and phase coherence, Granger causality, phase synchrony
indices, information theoretic divergence measure, phase space-based
measures, and stochastic event synchrony) were compared for the
diagnosis of Alzheimer disease and Granger causality was found to be
efficient as a diagnostic marker for Alzheimer’s.13 On the contrary, a
study has concluded higher gamma coherence in Alzheimer’s patients
than in healthy controls.25

3.2.1.2 Phase Lag Index

Numerous studies have investigated disease severity utilizing FC
measures. For example, the PLI has been utilized to study connectivity
differences between Alzheimer’s patients and control subjects.26,27 A
slightly different approach involved the quantification of FC with PLI
that resulted into a connectivity matrix. The matirx was utilized to con-
struct the brain network. Further, different network parameters were
considered as features and used to study the differences in cognitive
decline between study groups, including in Alzheimer’s patients.26 In a
study, disease severity was investigated resulting in the conclusion that
the FC decreases with increasing disease severity in the alpha band.27

3.2.1.3 Synchronization Likelihood

Some studies have utilized SL to study connectivity differences
between healthy subjects and Alzheimer’s patients.28,29 Alzheimer’s
patients showed lower levels of synchronization in different frequency
bands: alpha (10�13 Hz), beta (13�30 Hz),28 α (10�12 Hz) and β
(12�30 Hz).29 MI provides statistical dependence between two time
series and has been utilized to study connectivity differences between
healthy subjects and Alzheimer’s patients. According to a study, it was
found to be lower in AD patients when compared with healthy con-
trols.30 Table 3.1 shows EEG-based studies that were conducted for
Alzheimer disease and provides a summary of EEG-based FC measures
and the datasets utilized for the Alzheimer’s disease.

3.2.2 Mild Cognitive Impairment

Mild cognitive impairment (MCI) causes a slight but noticeable and
measurable decline in cognitive abilities, including memory and think-
ing skills. A person with MCI is at an increased risk of developing
Alzheimer’s or another dementia. It is estimated that between 5% and
20% of people over the age of 65 have MCI.31
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TABLE 3.1 EEG-Based Functional Connectivity (FC) Methods for Alzheimer’s Disease

Year EEG-Based FC Measure Data Set Used Finding

201725 Coherence Healthy 5 21 Gamma coherences were significantly higher in AD patients as compared with
healthy controls.

Untreated AD 5 21, treated
AD 5 18

201626 Phase lag index (PLI),
weighted network, and
minimum spanning trees

AD patients 5 69, subjective
cognitive decline (SCD)
patients 5 64

Occipital loss of network organization in AD patients was reported.

201527 Phase lag index (PLI) AD patients 5 318, Healthy
5 133

The AD patients exhibited decreased FC with increasing disease severity in the
alpha band.

201416 Coherence AD patients 5 15 Compared with the control group, the pairwise coherence of the AD group is
significantly decreased, especially for the theta and alpha frequency bands in the
frontal and parieto-occipital regions.Healthy 5 15

201318 Spectral coherence and
mutual information

AD patients 5 16 The coherences were significantly lower in the probable AD than in normal
subjects.

Healthy 5 15

201013 Granger causality and
stochastic event
synchrony

AD patients5 25 The discrimination between AD patients and healthy controls resulted in a
classification accuracy of 83%.

Healthy 5 56

200817 Coherence AD patients 5 21 (10
untreated, 11 treated)

The control group showed higher values of evoked coherence in the left
frontoparietal electrode pair in the theta frequency band (P ,.01) and higher
values of evoked coherence in the right frontoparietal electrode pair in the delta
band (P ,.01) when compared to the treated AD group.Healthy 5 19

200819 Global coherence and
correlation dimension

AD patients 5 15 In AD, global correlation dimension and coherence are changed especially in the
higher frequency ranges, both pointing to decreased functional cortical
connectivity.Healthy 5 21

200720 EEG spectra and
coherence

AD patients 5 14 Coherence in this frequency band increased in the control group following the
given task not seen in the AD group.

Healthy 5 10

(Continued)



TABLE 3.1 (Continued)

Year EEG-Based FC Measure Data Set Used Finding

200521 Coherence AD patients 5 35 The general decrease of AD patients in inter- and intrahemispheric EEG coherence
was more significant than that of the normal controls at resting EEG, with the
most striking decrease observed in the alpha-1 (8.0�9.0 Hz) and alpha-2
(9.5�12.5 Hz) bands.

Healthy 5 33

200528 Synchronization
likelihood

AD patients 5 24 The mean level of EEG synchronization was lower in Alzheimer’s patients in the
upper alpha (10�13 Hz) and beta (13�30 Hz) bands. Spontaneous fluctuations of
synchronization were diminished in Alzheimer’s patients in the lower alpha
(8�10 Hz) and beta bands.

Healthy 5 19

200429 Synchronization
likelihood

AD patients 5 14 The SL was significantly decreased in the upper alpha (10�12 Hz) and beta
(12�30 Hz) bands in AD compared to persons with subjective memory
complaints.MCI patients 5 11

Healthy 5 14

200322 Coherence AD patients 5 10 When compared with normal controls, AD patients had reduced upper alpha
coherence between the central and right temporal cortex.

Healthy 5 10

200323 Coherence AD patients 5 10 This study suggests that coherence is a useful tool for understanding
electrophysiologic change of AD and for correlating with the severity of cognitive
dysfunction. These coherence changes can be interpreted as the effects of neuronal
loss and neocortical disconnection.

Healthy 5 10

200130 Mutual information AD patients 5 15 The local CMI in AD subjects was lower than that in normal controls, especially in
the frontal and anterotemporal regions.

Healthy 5 15

200024 Coherence AD patients 5 11 A decreased coherence at the occipital in the Alzheimer’s group for both alpha
sub-bands was reported.

Healthy 5 5



3.2.2.1 Interhemispheric Coherence

Interhemispheric coherence has been employed for the evaluation of
EEG data from MCI patients.32�34 Studies have reported an increased
coherence in MCI groups during working memory tasks. However, the
same difference cannot be observed during rest state.32 In a study, EEG
has been investigated as a predictor of developing Alzheimer disease from
MCI.33 The study found that frontoparietal midline coherence as well as
delta (temporal), theta (parietal, occipital, and temporal), and alpha-1 (cen-
tral, parietal, occipital, temporal, and limbic) sources were stronger in MCI
Converted than in stable subjects (P, .05). Similarly, MCI patients who
showed an inclination for Alzheimer disease have exhibited baseline alpha
band temporoparietal coherence.34 In a study, patients with mild cognitive
impairment (MCI) were recruited in order to investigate the features of
EEG power and coherence at rest and during a working memory task. The
study concluded that the MCI patients had higher EEG power at rest, and
higher EEG power and coherence during working conditions. In additon,
the study suggested that MCI might be associated with compensatory pro-
cesses at rest and during working memory tasks.35 Finally, using LORETA
analysis, a study reported that occipital delta and alpha-1 sources in parie-
tal, occipital, temporal, and “limbic” areas had an intermediate magnitude
in MCI subjects compared to mild AD and control subjects.36

3.2.2.2 Synchronization Likelihood

SL has been investigated for MCI patients.29,37�39 A study reported
that alpha-1 SL progressively decreased across normal elderly (Nold),
MCI, and mild AD subjects at the midline (Fz�Pz) and right (F4�P4)
frontoparietal electrodes. The same was true for the delta SL at the right
frontoparietal electrodes (F4�P4).37 Similarly, a decreased SL has been
reported in MCI patients when compared with healthy controls.38 In
another study, during working memory tasks, SL was found to be sig-
nificantly higher in MCI patients compared to control subjects in the
lower alpha band (8�10 Hz).29 Finally, SL was reported to be signifi-
cantly decreased in the 14�18 Hz and 18�22 Hz band in AD patients
compared with both MCI subjects and healthy controls.39 Table 3.2 has
presented a summary of EEG-based FC methods for MCI.

3.2.3 Major Depressive Disorder

MDD or depression is characterized by sad mood that persists for at
least two weeks. According to a survey on drug use and health, in 2015,
an estimated 16.1 million adults aged 18 and older in the United States
had at least one major depressive episode in the past year. This number
represented 6.7% of all U.S. adults.40
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3.2.3.1 Interhemispheric Coherence

Studies on depression have used coherence as a feature to investigate
changes in FC between MDD patients and healthy controls.41�46

More specifically, coherence-based graphs were constructed and three

TABLE 3.2 EEG-Based Functional Connectivity Methods for Mild Cognitive
Impairment (MCI)

Year FC Measure Data Set Used Finding

200632 Inter- and
intrahemispheric
EEG coherence

MCI 5 35 During working memory tasks, the
inter-and intrahemispheric EEG
coherences in all bands were
significantly higher in the MCI
group in comparison with those in
the control group (P, .05).

Healthy 5 34

200637 Synchronization
likelihood

MCI 5 88 Frontoparietal coupling of brain
rhythms in MCI: a multicentric
EEG study.AD 5 109

Healthy 5 69

200633 Coherence MCI at baseline 5 69,
at a later stage
MCI 5 45, MCI
converted to AD 5 24

Conversion from MCI to AD is
predicted by sources and
coherences of brain EEG rhythms.

200636 Correlation MCI 5 155, mild
AD 5 193, and
age-matched Nold
subjects 5 126

Sources of cortical rhythms change
as a function of cognitive
impairment in pathological aging: a
multicenter study.

200538 Global field
synchronization

Healthy 5 25 Decreased EEG synchronization in
AD and MCI patients was
reported.Patients 5 183

200535 EEG power and
coherence

MCI 5 35 Study on EEG power and
coherence in patients with MCI
during working memory tasks.Healthy 5 34

200429 Synchronization
likelihood

MCI 5 14 EEG SL in MCI and AD during
working memory tasks.

Healthy 5 11

200339 Synchronization
likelihood

MCI 5 17 SL was significantly decreased in
the 14�18 Hz and 18�22 Hz bands
in AD patients compared with both
MCI subjects and healthy controls.

SCI 5 20

AD 5 10

200034 Coherence MCI 5 14 Quantitative EEG in MCI:
longitudinal changes and possible
prediction of AD.AD 5 15

Healthy 5 16
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graph-based measures were derived: clustering coefficient (C), charac-
teristic path length (L), and small-worldness (S).41

The use of LORETA has revealed that connectivity in the alpha and
theta frequencies of the dorsolateral prefrontal cortex (DLPFC), dor-
somedial prefrontal cortex (DMPFC), and subgenual anterior cingulate
cortex (DLPFC-DMPFC-sgACC) network changed from pre- to post-
treatment between (1) patients and controls and (2) responders and
nonresponders.47

3.2.3.2 Synchronization Likelihood

In the context of SL,48�50 the study48 reported that (1) SL of male MDD
subjects was significantly increased in the theta and beta frequency bands
compared to the control group and (2) SL of male MDD subjects was sig-
nificantly increased in the theta frequency band compared to female
MDD subjects. No significant difference was found between female MDD
subjects and female control group as well as between healthy male and
female subjects. In a different study,49 it was reported that in the
depressed group, the mean SL was lower in the delta, theta, and sigma
frequency bands. Acutely depressed patients showed a significantly
lower path length in the theta and delta frequency bands, whereas the
cluster coefficient showed no significant changes. The study50 reported
that major depressive patients had a significant (P, .05) decrease in the
mean SL compared with that of healthy subjects for delta (0.5�4 Hz)
band and F7, F3, Fp2, F4, and T3 for the alpha (8�13 Hz) band, which
cannot be detected by conventional coherence measures.

3.2.3.3 Partial Directed Coherence

The application of partial directed coherence (PDC) has revealed
direct connectivity.51 Depressed patients showed lower frontal cortical
interdependence in both the resting and mental arithmetic task states.

A study employing a structural synchrony approach52 hypothe-
sized an increase in functional connection in depressed patients. The
study reported that some functional connections have shown positive
correlation with the severity of depression and are thus predictive.
Table 3.3 provides a summary of EEG-based FC studies for MDD.

3.2.4 Schizophrenia

Schizophrenia is a chronic and severe mental disorder that affects a
person’s thinking, feelings, and behavior. People with schizophrenia
may seem like they have lost touch with reality. According to the
National Institute of Mental Health, about 1.1% of the adult population
in the United States suffer from schizophrenia.53
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TABLE 3.3 EEG-Based Functional Connectivity (FC) Methods for Major Depressive
Disorder (MDD)

Year FC Measure Date Set Used Finding

201741 Coherence MDD 5 37 The results of the study indicate that
adding graph theoretical measures to FC
does not significantly increase
classification accuracy for distinguishing
MDD and healthy subjects.

Healthy 5 37

201747 LORETA-based
connectivity
analysis

MDD 5 447 The study emphasized that decreasing
alpha connectivity could potentially serve
as a treatment emergent biomarker in
males only.

Healthy 5 336

201648 Synchronization
likelihood

MDD 5 37 The experimental results indicated that (1)
SL of male MDD subjects was
significantly increased in the theta and
beta frequency bands compared to the
control group and (2) SL of male MDD
subjects was significantly increased in the
theta frequency band compared to female
MDD subjects.

Healthy 5 37

201642 Coherence and
phase
synchronization
index (PSI)

MDD 5 14 Patients with depression showed lower
target-dependent PSI increment in the
frontal-parietal/temporal/occipital
electrode pairs in delta-phase
synchronization than healthy participants.

Healthy 5 19

201143 Coherence,
correlation

MDD 5 108 Connectivity strengths of the right
frontotemporal network at delta and theta
frequencies differentiated responders and
nonresponders at the eighth week of
treatment: the stronger the connectivity
strengths, the poorer the treatment
response.

200949 Synchronization
likelihood

MDD 5 11 In the depressed group, the mean SL was
lower in the delta, theta, and sigma
frequency bands. Acutely depressed
patients showed a significantly lower path
length in the theta and delta frequency
bands, whereas the cluster coefficient
showed no significant changes.

Healthy 5 14

200851 Partial directed
coherence

MDD 5 12 Depressed patients showed lower frontal
cortical interdependence in both the
resting and mental arithmetic task states.
On the other hand, the mental arithmetic
task was found to enhance inter- and
intrahemispheric interactions in both
groups, and such hemispheric
hyperactivation is consistent with the
findings from functional imaging.

Healthy 5 12

(Continued)
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3.2.4.1 Interhemispheric Coherence and Imaginary Coherence

In schizophrenic patients, coherence and imaginary coherence were
utilized for the assessment of connectivity.54�56 The study54 reported
that schizophrenia patients showed coupling abnormalities during an
auditory oddball task compared to healthy controls. In study55, an imag-
inary coherence-based multivariate interaction measure (MIM) was
introduced and utilized to quantify the connectivity between different
brain regions. The study reported that a SZ displayed increased theta-
band resting-state MIM connectivity across the midline, sensorimotor,
and orbitofrontal regions as well as the left temporoparietal junction. The
change was not observed in the healthy control group. Furthermore,56

emphasized that wavelet coherence can capture the temporal profile of
brain dynamics in addition to the frequency domain information.

TABLE 3.3 (Continued)

Year FC Measure Date Set Used Finding

200750 Synchronization
likelihood

MDD 5 12 Major depressive patients had a
significant (P, .05) decrease in the mean
synchronization likelihood compared with
that of healthy subjects for the delta band.

Healthy 5 16

200752 Structural
synchrony
approach

MDD 5 12 The study emphasized that the right
anterior and left posterior brain parts may
discriminate depressive patients from
healthy controls.

Healthy 5 10

200144 Coherence MDD 5 70 Compared with controls, patients
evidenced greater overall relative beta
power and, at bilateral anterior regions,
greater absolute beta power and faster
mean total spectrum frequency.

Healthy 5 23

Interhemispheric alpha power
asymmetry: controls exhibited relatively
reduced left hemisphere activation and
widespread reduced delta, theta, alpha,
and beta coherence indices.

Discriminant analysis correctly classified
91.3% of the patients and controls.

199545 Coherence MDD 5

29Healthy 5 20
Beta power was greater in patients with
anxiety type depression than in normal
controls.

198846 Coherence MDD 5 76 A decreased interhemispheric coherence
in the delta and/or theta frequency bands
was present in depressed patients.

Healthy 5 93
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Gamma band activation during working memory tasks implicated neuro-
nal binding which was found abnormal during schizophrenia assessment.
Similarly, in a study,57 failure of gamma band (40 Hz rang) synchroniza-
tion was reported as a marker for schizophrenia. Connectivity was quan-
tified with phase locking and phase coherence.

3.2.4.2 Generalized Synchronization

Synchronization between different brain regions has been studied
involving SL,58 synchrony of brain activity,59 and global field synchroni-
zation.60 Abnormalities during functional disconnection have been
investigated as a cause of SZ. The study59 resulted in reduced P300
amplitude and delta and theta synchrony in patients. Furthermore, in
the study,60 a novel EEG measure was introduced—global field syn-
chronization (GFS)—that estimates FC of brain processes in different
EEG frequency bands. The study reported that the patients had signifi-
cantly decreased GFS in the theta EEG frequency band, indicating a
loosened FC of processes in this frequency.

Lagged phase synchronization61 concluded that, in addition to dys-
function of the parietal regions that are part of the default mode
network (DMN), resting-state disrupted connectivity of the medial tem-
poral cortex with prefrontal areas that are either involved in the DMN
or implicated in psychopathological dysfunction, it may be critical to
schizophrenia-like psychosis, especially in individuals with temporal
lobe epilepsy.

3.2.4.3 Correlation and Mutual Information

The association between different brain locations can be quantified by
computing correlations between them. As a result, a correlation matrix
can be formed. Further, the matirx can be converted to a weighted graph
that can be utilized for the assessment of connectivity strengths between
different brain locations. The study concluded that graphs in the schizo-
phrenia group displayed lower clustering and shorter path lengths in
comparison to the healthy group. MI62 was employed to assess the FC
and it was concluded that the schizophrenic patients had significantly
higher interhemispheric and intrahemispheric average cross mutual
information (A-CMI) values compared to the normal controls. Table 3.4
summarizes EEG-based FC measures for schizophrenia.

3.2.5 Epilepsy

Epilepsy is a metal disorder characterized by unforeseen occurrences
of severe seizures. The seizures could be harmful to the patient and the
surrounding environment. According to an estimate, epilepsy affects
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TABLE 3.4 EEG-Based Functional Connectivity (FC) Measures for Schizophrenia

Year FC Measure Dataset Used Finding

201754 Coherence (MSC)
and imaginary
coherence (ICOH)

SZ 5 28 Statistically significant modulation
increases in magnitude squared coference
(MSC) and ICOH for healthy controls
with respect to schizophrenia (SCH)
patients in the theta band and a decrease
in ICOH for the beta-2 band.

Healthy 5 51

201663 Lagged phase
synchronization61

SZ 5 20 In patients, significantly increased current
source density was found in the dominant
anterior cingulate cortex. Increased
connectivity between the inferior parietal
lobe bilaterally and between the left
inferior parietal lobe and right middle
frontal gyrus was also found.

Healthy 5 20

201555 Imaginary
coherence-based
multivariate
interaction
measure (MIM)

SZ 5 19 SZ displayed increased theta-band
resting-state MIM connectivity across the
midline, sensorimotor and orbitofrontal
regions as well as the left temporoparietal
junction. High-risk individuals (HR)
displayed intermediate theta band
connectivity patterns that did not differ
from either SZ or healthy controls (HC).
Mean theta band connectivity within the
mentioned network partially mediated
verbal memory deficits in SZ and HR.

Healthy 5 23

201358 Synchronization
likelihood and
graph theoretic
measure

SZ 5 20 Stimulus-specific decrease of path length
in schizophrenia patients.

Healthy 5 20

201161 Lagged phase
synchronization

SZ 5 21 The study participants included 21
patients with focal epilepsy and
schizophrenia-like psychosis of epilepsy
(SLPE) and in 21 clinically-matched non-
psychotic epilepsy controls. The study
computed source current density and
functional connectivity using eLORETA
software. As results, the study founded
an increased theta oscillations in regions
such as the medial and lateral parietal
cortex in the psychotic patients relative to
their nonpsychotic counterparts.
Moreover, patients with psychosis
showed increased beta temporo-prefrontal
connectivity in the hemisphere with
predominant seizure focus.

Controls 5 21

(Continued)
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TABLE 3.4 (Continued)

Year FC Measure Dataset Used Finding

201064 Fronto-posterior
coherence

SZ 5 16 Event-related coherence was significantly
reduced in patients during time intervals
(0�250 ms poststimulus), when controls
showed significant event-related
coherence increases. However, patients
showed significantly higher absolute
coherence during the intertrial interval.

Healthy 5 20

200859 Synchrony of
delta, theta, alpha,
beta, and gamma
activity in a 50 ms
window around a
P300 peak

SZ 5 21 P300 amplitude and delta and theta
synchrony were reduced in patients. Delta
power and synchrony better
distinguished between groups than P300
amplitude did. In healthy controls, but
not patients, gamma synchrony predicted
P300 amplitude. In patients, P300 and
gamma synchrony are affected by
independent factors.

Healthy 5 22

20072 Correlation
matrixes
converted to
weighted graphs

SZ 5 40 Graphs from the schizophrenia group
displayed lower clustering and shorter
path lengths in comparison to the healthy
group.

Healthy 5 40

200656 Coherence SZ 5 20 The study proposed wavelet coherence
analysis in combination with the graph
analysis methodology. The results have
shown significant task differentiation
between the healthy controls and
schizophernia patients. The differences
were observed in gamma band atfrontal,
frontal-central and temporal regions. For
the above values of T (threshold), the
respective L values observed were greater
than those of the control subjects.

Healthy 5 20

200357 Phase locking and
phase coherence

SZ 5 14 Compared with matched control subjects,
schizophrenia patients demonstrated few
differences. First, the absence of the
posterior component of the early visual
gamma band in response to Gestalt
stimuli. Second, abnormalities in the
topography, latency, and frequency of the
anterior component of this response.
Third, delayed onset of phase coherence
changes. Forth, the pattern of anterior-
posterior coherence increases in response
to Gestalt stimuli found in the controls
was replaced by a pattern of
interhemispheric coherence decreases in
patients.

Healthy 5 12

(Continued)
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more than 500,000 people in the United Kingdom. This means that
almost one in every 100 people has the condition.65

3.2.5.1 Interhemispheric Coherence

Coherence-based studies for epilepsy have reported abnormal brain
connectivity during epilepsy.66,67 For example, in study,66 seven differ-
ent measures of quantifying synchronous oscillatory activity were com-
puted. These measures include coherence, a coding-based measure
known as minimum description length (MDL), and the Geweke alterna-
tive68. Additionally, a robust phase coupling measure known as phase
locking value (PLV), a cortical synchrony measure defined from the
embedding dimension in state-space called S-estimator was also com-
puted. Moreover, a reliable way of assessing generalized synchroniza-
tion also in state-space and an unbiased alternative is SL. From the
results on the actual data, higher frequency band gamma2 was mostly
apparent in occipital parietal lobes during fractal tests. In a study,67

mean phase coherence was used as a statistical measure for phase syn-
chronization. The study reported distinct differences in the degree of
synchronization between recordings from seizure-free intervals and
those before an impending seizure, indicating an altered state of brain
dynamics prior to seizure activity. In a different study,69 correlation
was utilized as a measure to quantify the FC. As a result, the study
reported enhanced FC during epilepsy.

3.2.5.2 Synchronization Likelihood

Studies involving SL70,71 consisted of the construction of networks
based on SL matrices. The study71 reported that the neuronal network

TABLE 3.4 (Continued)

Year FC Measure Dataset Used Finding

200262 Mutual
information

SZ 5 10 In the T5 and C3 electrodes, the
schizophrenic patients had lower
complexity compared to normal controls.
The schizophrenic patients had
significantly higher interhemispheric and
intrahemispheric A-CMI values than the
normal controls.

Healthy 5 10

200160 Global field
synchronization

SZ 5 11 In comparison to age- and sex-matched
controls, patients had significantly
decreased GFS in the theta EEG frequency
band, indicating a loosened FC of
processes in this frequency.

Healthy 5 19
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changed during seizure activity, with an increase of clustering coefficient
(C) and shortest path length (L) most prominent in the alpha, theta, and
delta frequency bands during and after the seizure. A similar study70

reported that during the absence of seizures there was an increase of syn-
chronization in all frequency bands, seen most clearly in SL-based net-
works, and the functional network topology was changed to a more
ordered pattern, with an increase of C/C-s and L/L-s. The mean (C-s
and L-s) of these networks were used as a reference value for C and L
(C/C-s and L/L-s). These normalized values were used during the study.

Different topological network metrics such as minimum spanning
tress (MST) and betweenness centrality were computed. The study72

reported that network alterations between groups were only identified
by MST metrics and were most pronounced in the delta band, in which
a loss of network integration and a significant lower betweenness cen-
trality was found in children with focal epilepsies compared to healthy
controls (P, .01).

3.2.5.3 Correlation

The correlation between LORETA sources has been evaluated in dif-
ferent studies.73,74 In a study,73 increased EEG FC was reported while
evaluating the correlation between different LORETA-based current
source time series. In study,74 remote EEG synchronization (intrahemi-
spheric, cortico-cortical EEG FC, EEGfC) was computed using the LSC
(LORETA source correlation) method. The study resulted in individual
results being presented. Abnormal but topographically dissimilar
LORETA and LSC findings were found at the onset of the disease. The
study concluded that EEG-based local and remote connectivity (EEGfC)
are appropriate tools to describe network dynamics in epilepsy. In a
study,75 the detection of epilepsy was performed based on FC features
and resulted in a 92.8% accuracy of classification between the epileptic
group and the healthy controls (Table 3.5)

3.2.6 Alcoholism

According to the 2015 National Survey on Drug Use and Health
(NSDUH), 15.1 million adults aged 18 and older (6.2% of this age
group) had alcohol use disorder (AUD) and an estimated 623,000 ado-
lescents between the ages of 12 and 17 (2.5% of this age group) had
AUD.77 A comprehensive review has been provided.78

3.2.6.1 Interhemispheric Coherence

Coherence has been used for alcoholism.79 The study hypothesized
that acute alcohol intake would increase the FC of the human brain
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TABLE 3.5 EEG-Based Functional Connectivity (FC) Measures for Epilepsy

Year FC Measure Dataset Used Finding

201671 Conventional network
metrics and minimum
spanning tree (MST)
metrics were computed

Epileptic 5 89 A loss of network integration and a
significant lower betweenness
centrality was found in children
with focal epilepsies compared to
healthy controls (P, .01). A
reversed group difference was
found in the upper alpha band.

Healthy 5 179

201672 Correlation of
(LORETA) defined
current source density
time series were
computed between two
cortical areas

Epileptic 5 17 (1) Bilaterally increased beta EEGfC
occurred in the epileptic subjects as
compared to the controls. (2)
Locally increased EEGfC emerged
in all frequency bands in the right
parietal area.

Healthy 5 19

201569 Coherence and
synchronization
likelihood

Children with
the absence
of seizures 5 11

The network became more
regularized in weighted and
unweighted analyses when
compared to a more randomized
pre-ictal network configuration.

201574 This study used
probability of
recurrence and the
correlation between
electrodes

Epileptic 5 14 Performance results show an
accuracy of 92.8% with a sensitivity
of 85.7% and a specificity of 100%
when tested on 14 subjects.

201373 LORETA and LORETA
source correlation

Children
with benign
epilepsy 5 4

Individual results were presented.
Abnormal but topographically
dissimilar LORETA and LSC
findings were found at the onset of
the disease. The disappearance of
the initial abnormalities was found
in Setting No. 2. An unforeseen
finding was the presence of
abnormal EEGfC results in Setting
No. 2.

200868 Correlation mesial
temporal lobe epilepsy
(MTLE), nonmesial
temporal lobe epilepsy
(NMTLE)

Epileptic 5 21 Power spectral density analysis
showed a significant decrease in
the theta frequency sub-band
(P5 .01) in the MTLE group.
Nonlinear correlation (h2) values
were found to be higher in the
MTLE group than in the NMTLE
group (P5 .0014). This effect was
significant for theta, alpha, beta,
and gamma frequencies.

(Continued)
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resting-state network (RSN). The authors calculated coherence using
standardized low resolution electromagnetic tomography (sLORETA)
solutions to form cortical networks over several frequency bands, which
were then analyzed in the context of FC and graph theory. Graph para-
meters were accordingly altered in these bands, quantifying the effect of
alcohol on the structure of brain networks; global efficiency and density
were higher and path length was lower under alcoholism (versus
placebo, P, .05).

3.2.6.2 Synchronization Likelihood

In general, alcoholics have exhibited decreased or abnormal
synchronization during rest conditions. Many research studies have
used SL as a measure for quantification of FC in alcoholics.80�83

Moreover, other studies have utilized phase synchrony84 and synchro-
nized EEG patterns85 for the assessment of the differences in normal
and alcoholic brains. Table 3.6 summarizes EEG-based FC measures
during alcoholism.

TABLE 3.5 (Continued)

Year FC Measure Dataset Used Finding

200770 Synchronization
likelihood

Epileptic 5 7 The neuronal network changed
during seizure activity, with an
increase of C and L most
prominent in the alpha, theta, and
delta frequency bands during and
after seizure.

Clustering coefficient
(C)

Shortest path length (L)

200775 Mean phase coherence
algorithm

Epileptic 5 9 This analysis revealed areas of
elevated local synchrony or
“hypersynchrony,” which had
persistent spatiotemporal
characteristics that were unique to
each patient.

200666 Coherence, MDL, and
PLV S-estimator,
synchronization
likelihood

Epileptic 5 20 The results on the actual data
suggest higher frequency band
gamma-2 was mostly apparent in
occipital parietal lobes during
fractal tests.

Healthy 5 20

200067 Mean phase coherence Epileptic 5 17 It was concluded that phase
synchronization between two EEG
channels as measured by the mean
phase coherence R appears to be
related to pathological findings in
epilepsy patients.
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TABLE 3.6 EEG-Based Functional Connectivity (FC) Measures for Alcoholism

Year FC Measure Dataset Used Finding

201779 Synchronization
likelihood

Alcoholics 5 28 Synchronization for the
alcoholic group was lower in
multiple bands than in the
control group when performing
the same cognitive task.

Healthy 5 28

201680 Synchronization
likelihood

Alcoholics 5 15 Increased absolute and relative
beta power in AUD patients
compared to matched controls,
and reduced FC in AUD
patients predominantly in the
beta and alpha bands.

Healthy 5 15

201278 Magnitude square
coherence (MSC) on
sLORETA solutions

Healthy subjects
(light drinkers) 5 26

MSC was increased (P, .05,
corrected with false discovery
rate [FDR] corrected) in alpha,
beta (eyes open), and theta
bands (eyes closed) following
acute alcohol intake. Graph
parameters were accordingly
altered in these bands
quantifying the effect of alcohol
on the structure of brain
networks; global efficiency and
density were higher and path
length was lower under
alcoholism (versus placebo,
P, .05).

201283 Phase synchrony Alcoholics 5 77 Phase synchrony computed for
2.34 s-long overlapping EEG
fragments was lower for
alcoholics than for controls
when evaluated in alpha-2 and
beta-1 rhythms and for specific
electrode pairs.

Healthy 5 45

200681 Synchronization
likelihood

Both male and female heavy
drinkers displayed a loss of
lateralization in alpha
(8�12 Hz) and slow-beta
(12�20 Hz) synchronization. In
addition, moderately and
heavily drinking males had
lower fast-beta (20�30 Hz)
synchronization than lightly
drinking males.

(Continued)
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3.3 OPEN-SOURCE TOOLBOXES

Recently, there has been a surge of toolboxes that include indexes of
brain connectivity and made publicly available as well as published in
literature.86�89 However, most of them either focus on a special type of
connectivity index (e.g., linear indexes90) and/or only include a subset
of indexes as part of a more general purpose toolbox whose main aim
is, say, the analysis of EEG and/or MEG.86,88,91,92 The availability of
multiple toolboxes allows researchers to perform quick analysis of data.
Usually, the choice of method involves the underlying hypothesis to be
tested. On the other hand, the choice of toolbox can significantly reduce
data analysis time. The aim of this section is to review open-source
MATLAB-based toolboxes that can analyze EEG and ERP data. In addi-
tion, this section details the most cited toolboxes as well as their
limitations.

3.3.1 Extended Multivariate Autoregressive Toolbox

The extended multivariate autoregressive (eMVAR) toolbox is a
freely available Matlab-based toolbox. in addition, it is distributed
under a GNU general public user license.93 The toolbox is based on an
extended multivariate autoregressive concept which is an extension of
the MVAR model. More specifically, the eMVAR model considers the
effects of instantaneous causality in the computation of the causality
measure. Furthermore, the toolbox incorporates methods such as
extended PDC (ePDC), extended DC (eDC), normalized lagged directed

TABLE 3.6 (Continued)

Year FC Measure Dataset Used Finding

200482 Synchronization
likelihood

Light drinkers 5 11 Heavily drinking students had
more synchronization in the
theta (4�8 Hz) and gamma
(30�45 Hz) bands than lightly
drinking students during eyes
closed state, both with and
without a mental-rehearsal task.

Heavy drinkers 5 11

198184 Synchronized EEG
pattern

Alcoholics 5 115
(78 males and
37 females) and
matched controls

Male alcoholics did not differ
from their controls, female
patients showed a shift from the
alpha and theta to the beta
bands of the brain wave
pattern.
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coherence (nDC), and normalized lagged PDC (nPDC). The toolbox
only provides frequency domain causality measures. The online help is
sufficient for using the toolbox for customized datasets; however, the
graphical user interface (GUI) is not developed.

3.3.2 The Granger Causality Connectivity Analysis Toolbox

The Granger causality connectivity analysis (GCCA) toolbox is a
MATLAB-based toolbox and freely available and distributed under a
GNU general public user license.90 The toolbox provides the option to
analyze EEG, ERP, MEG, and fMRI datasets. On the contrary, the tool-
box mainly focuses on the computation of G-causality from data. The
core functions implement G-causality analysis given multivariate time
series data. Other functions test whether the provided data satisfy nec-
essary assumptions, assess the statistical significance and validity of
inferred interactions, generate network-level descriptions of patterns of
causal interactions, and graphically display analysis results. The help
manual is sufficient for using the toolbox for customized datasets; how-
ever, the GUI is not developed.

3.3.3 The Multivariate Granger Causality Toolbox

The multivariate Granger causality toolbox (MVGC) is a MATLAB-
based toolbox and freely available and distributed under a GNU general
public user license.94 The MVGC toolbox is an extended version of the
GCCA toolbox. The MVGC MATLAB toolbox implements numerical
routines for calculating MVGC from time series data, both uncondi-
tional and conditional, in time and frequency domains. The help man-
ual is sufficient for using the toolbox for customized datasets; however,
the GUI is not developed.

3.3.4 HERMES Toolbox

HERMES is a MATLAB-based toolbox and freely available and dis-
tributed under a GNU general public user license that supports multiple
time series analysis.95 The HERMES toolbox offers multiple methods for
the assessment of brain function and EC. For example, it includes the
conventional methods such as correlation, coherence, PLI and Granger
causality methods such as directed coherence, PDC, directed transfer
function, partial directed transfer function. The toolbox provides a GUI.
In addition, it allows the user to provide input EEG data in the form of
pdf files in the form of groups. Group comparisons can be performed
for a single participant or a group of participants. Finally, the results are
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TABLE 3.7 MATLAB-Based Open Source Toolboxes for Quantification of Brain
Connectivity

Reference
Publication

Methods Included in the
Toolbox

Download
Address Limitations

eMVAR92 Extended PDC (ePDC),
extended DC (eDC),
normalized lagged directed
coherence (nDC),
normalized lagged PDC
(nPDC)

http://www.
science.unitn.it/
biophysicslab/
research/sigpro/
eMVAR.html

Relatively smaller
in size than the
HERMES toolbox.

No GUI is
provided.

GCCA
toolbox89

The core functions
implement G-causality
analysis given multivariate
time series data

http://www.
anilseth.com

Relatively smaller
in size than the
HERMES toolbox.

No GUI is
provided.

MVGC
toolbox93

The MVGC toolbox is an
extended version of the
GCCA toolbox

http://www.
sussex.ac.uk/
sackler/

Relatively smaller
in size than the
HERMES toolbox.

No GUI is
provided.

HERMES
toolbox94

Conventional methods
(correlation, coherence, PLI),
Granger causality methods
(directed coherence, partial
directed coherence, directed
transfer function, partial
directed transfer function)

http://hermes.ctb.
upm.es/
downloads/

Although the
toolbox is rich in
the presentation of
various methods,
the outcome of the
toolbox is available
in the form of
figures only; the
output data cannot
be exported as
numbers.

eConnectome95 Directed transfer function
and adaptive directed
transfer function

http://
econnectome.umn.
edu/

Relatively smaller
than the HERMES
toolbox.

BSMART96 Time series data importing/
exporting, preprocessing
(normalization and trend
removal), autoregressive
modeling (multivariate/
bivariate model estimation
and validation), spectral
quantity estimation (auto
power, coherence, and
Granger causality spectra),
and network analysis
(including coherence and
causality networks)

http://www.
brain-smart.org/

Relatively smaller
than the HERMES
toolbox.

82 3. ELECTROENCEPHALOGRAPHY-BASED BRAIN FUNCTIONAL CONNECTIVITY

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER

http://www.science.unitn.it/biophysicslab/research/sigpro/eMVAR.html
http://www.science.unitn.it/biophysicslab/research/sigpro/eMVAR.html
http://www.science.unitn.it/biophysicslab/research/sigpro/eMVAR.html
http://www.science.unitn.it/biophysicslab/research/sigpro/eMVAR.html
http://www.science.unitn.it/biophysicslab/research/sigpro/eMVAR.html
http://www.anilseth.com
http://www.anilseth.com
http://www.sussex.ac.uk/sackler/
http://www.sussex.ac.uk/sackler/
http://www.sussex.ac.uk/sackler/
http://hermes.ctb.upm.es/downloads/
http://hermes.ctb.upm.es/downloads/
http://hermes.ctb.upm.es/downloads/
http://econnectome.umn.edu/
http://econnectome.umn.edu/
http://econnectome.umn.edu/
http://www.brain-smart.org/
http://www.brain-smart.org/


provided as topographic plots that show brain network connections
between electrodes (defined in the sensor location file). The generated
scalp location plots can be saved as pdf files and can be presented as
results.

3.3.5 The eConnectome Toolbox

The eConnectome toolbox is a MATLAB-based toolbox and freely
available and distributed under a GNU general public user license.96

The eConnectome toolbox is a MATLAB-based toolbox that uses EEG
and electrocorticography (ECoG) data as input data. It computes brain
connectivity (EC) using methods such as directed transfer function and
adaptive directed transfer function. Other methods include scalp spatial
mapping, cortical source estimation.

3.3.6 The BSMART Toolbox

The brain system for multivariate auto regressive time series
(BSMART) toolbox is a MATLAB-based and C toolbox and freely avail-
able and distributed under a GNU general public user license.97 The
toolbox includes methods such as time series data importing/exporting,
preprocessing (normalization and trend removal), auto regressive (AR)
modeling (multivariate/bivariate model estimation and validation),
spectral quantity estimation (auto power, coherence, and Granger
causality spectra), network analysis (including coherence and causality
networks), and visualization (including data, power, coherence, and
causality views). Table 3.7 provides a summary of these toolboxes.

3.4 SUMMARY

In this chapter, clinical applications of EEG-based FC methods are
discussed in the context of common mental illnesses such as bipolar dis-
order, epilepsy, MDD, schizophrenia, and Alzheimer. The purpose of
this description is to acquaint readers with the significance of different
FC measures during the diagnosis process. In addition, the most com-
monly used and downloaded open-source Matlab toolboxes are dis-
cussed. Finally, the main challenges faced by different measures are
discussed that can pose a challenge during the interpretation of results
and could lead to false brain connectivity analysis. In short, the chapter
combined various aspects of brain connectivity that should be known to
new researchers aiming to working in this area.
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C H A P T E R

4

Pathophysiology of Depression

4.1 INTRODUCTION

This chapter elaborates on various underlying factors that could
become causes or effects of depression. Specifically, depressed patients
have exhibited brain volume reductions. The literature has implicated
brain regions such as the basal ganglia, frontal cortex, amygdala, and
hippocampus. In addition, brain volume loss could be due to brain cell
death. Details on brain volume abnormalities are presented in
Section 4.2. The literature also shows various factors other than brain
volume loss that include: (1) genetic and nongenetic factors; (2) effects
of stress hormones on depression; (3) effects of different monoamines;
(4) dysfunction in specific brain regions; (5) neurotrophic hypothesis; (6)
lessened GABAergic activity; (7) dysregulations of the glutamate sys-
tem; and/or (8) damaged circadian rhythms. Details of each of these
factors are provided in Section 4.3.

4.2 BRAIN VOLUME ABNORMALITIES DURING
DEPRESSION

In this section, major depressive disorder (MDD)-related research
studies are discussed that have reported a loss of volume in different
brain regions. During MDD, structural changes were mainly related to
volume loss in the Limbic-Cortical-Striatal-Pallidal-Thalamic (LCSPT)
tract. The tract consists of two arms. The first arm involves the limbic-
thalamic-cortical branch composed of amygdala and hippocampus,
mediodorsal nucleus of the thalamus, and medial and ventrolateral pre-
frontal cortex, while the second arm includes the limbic-striatal-pallidal
thalamic branch.

However, even in healthy persons, small structural changes did not
always indicate depression. Hence, a direct correlation between depres-
sion and structural impairments in LCSPT structures were not found.
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More specifically, a subset of people with such structural impairments
showed increased vulnerability to depression. Unfortunately, these
structural impairments could further contribute toward additional
neuronal damages.

According to a meta-review, unipolar depression was found to be
associated with volume reductions in the brain areas such as the frontal
cortex, cingulate cortex, orbitofrontal cortex, striatum, and hippocam-
pus.1 In addition, pituitary enlargement and an excess of white matter
hyper intensities were reported. Brain areas such as the anterior cingu-
late, orbitofrontal cortex, prefrontal cortex, hippocampus, putamen, and
the caudate nucleus were found associated with the pathophysiology of
depression. Moreover, depression has caused volume loss in different
brain areas.2 During MDD, volume loss had been observed in
different brain areas. Each one is explained in Sections 4.2.1�4.2.5.

4.2.1 Frontal Cortex

Numerous studies have reported abnormalities in the frontal cortex
associated with MDD; however a detailed description would be out of
scope here. A few of these studies are selected to provide the notion of
volume abnormalities in the frontal cortex. For example, a reduction in
prefrontal cortex volume was reported in recent literature.3,4 In older
studies, ischemic lesions were localized in the anterior frontal cortex and
found to be correlated with more serious depression.5,6 In addition, a
clearly defined sequence of patients who had previously suffered from
ischemic stroke showed a strong association between lesions and suc-
ceeding depression, effecting the prefronto-subcortical circuits, specifi-
cally on the left.7 Cognitive disability was commonly observed in MDD
patients, particularly involving the frontal cortex. Its volume reductions
were reported as ranging from 7% overall reduction8 to 48% in the sub-
genual prefrontal cortex.9 Another evidence of notable differences from
control subjects was found in diverse prefrontal cortical areas in a post-
mortem study of the prefrontal cortex under major depression.10 In addi-
tion, many studies11�14 have consistently found a volumetric loss of the
complete frontal lobe and/or the OFC involving the more serious
patient’s groups. On the contrary, this volumetric loss could not be found
in less severely ill patients.15,16

4.2.2 Hippocampus

Several studies have examined hippocampal volume in depression.
Some15,17�19 but not all20,21 found significant reductions in hippocampal
volumes in patients with depression. Vakili and colleagues21 also
observed correlations between depression severity and hippocampal
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volumes, although no group differences were reported between the
depressed and control subjects. In a study, white matter abnormalities
were observed; however overall differences in hippocampal volumes
were not observed.22 Moreover, studies that assessed depression sever-
ity in unipolar study participants, including those that utilized high-
resolution MRI techniques, hippocampal volume loss (ranging from 8%
to 19%) is commonly reported during depression.

4.2.3 Amygdala

The amygdala appears to change size based on the duration of
illness. During early onset, its size may increase and afterwards starts
decreasing over time. Although unipolar patients, early in the course of
their illness, tend to have increased amygdala volume,23�26 depressed
patients having a longer illness duration and with a greater number of
MDD episodes tend to show volumetric reductions.13,15,16,27

Changes involving amygdala appear to be a function of gender as
female patients have shown higher amygdala reductions than their
male counterparts. For example, female unipolar patients have exhibited
smaller amygdalae than male patients.16 However, some studies have
reported inconsistent results, such as an increased volume reported to
be associated with the right amygdala.15 Similar findings have been
reported in bilateral amygdala in first episode subjects.22 In addition, a
loss of normal asymmetry (Mervaala et al. 2000) or a reduction in the
bilateral core nuclei has been observed.28 Possible reasons for such types
of abnormalities could be that the amygdala can be considered as a dif-
ficult structure to measure because the cortical amygdala merges with
the surrounding cortex. In addition, the specific boundaries selected for
defining amygdala are significantly varied in different studies.

4.2.4 Basal Ganglia

Multiple scientific literatures have observed a reduced volume of
basal ganglia structures during major depression, specifically during
late-onset depression.29�32 Depressed patients, who were otherwise
physically healthy, have shown negative results involving the caudate
and putamen, a criterion less clearly found in other studies.33 MDD
patients may have abnormal basal ganglia; however it was difficult to
determine the nature of the underlying changes because the characteris-
tics of clinical samples vary from study to study.

Studies involving region of interest methods have generally been unsuc-
cessful in determining abnormalities in basal ganglia volumes.14,15,34
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However, previous evidence from other structural MRI studies has repli-
cated volumetric alterations in these structures successfully.35,36

Shah and colleagues (2002)14 utilized a voxel-based analysis (VBA)
method and reported that treatment-resistant depressed patients had
reduced caudate and putamen tissues compared to healthy controls and
recovered patients. This finding implicated that the more persistent sub-
types of MDD might have particular effects. In addition, this clinical
sample underwent continued electroconvulsive therapy, the effects of
which were largely unknown. Moreover, the hypothesis that illness pro-
gression may affect the left globus pallidus and putamen was supported
by a study.34 Hence, the opposite findings observed15 might be illus-
trated by the fact that they observed a less severe patient sample than
that used in other studies.14,34 These studies suggest that the caudate
nucleus, putamen, and globus pallidus may be impaired during more
severe forms of depression. In short, it is difficult to draw firm conclu-
sions about basal ganglia structures and their involvement in the neuro-
biology of MDD patients because of the lack of research on the basal
ganglia.

4.2.5 Temporal Lobe

Studies involving temporal lobe volumes generally investigated
distinct regions rather than observing the temporal lobe as a whole.
Unfortunately, these studies could not find any profound abnormalities
in unipolar depressed patients when compared with healthy con-
trols.14,15,27,37,38 However, three of these studies investigated the left and
right temporal volumes separately.11,27,38 Only Vythilingam38 reported a
lateralization effect, that is, a smaller left temporal lobe volume in
patients when compared with healthy controls. Particularly, the patients
observed by these researchers had a longer illness duration compared
with other studies.38 As an implication, the left-lateralized temporal
lobe changes may reflect the progression of the disease over time or a
distinct pathophysiological process that affects the risk of relapse.

In comparison to studies investigating the total volume of the tem-
poral lobe, studies involving specific structures such as the basolat-
eral temporal area and superior temporal gyrus (STG) have yielded
contradictory results. For example, the study14 reported volumetric
changes in the STG of depressed patients. On the contrary, Morys
and colleagues39 failed to find such evidence. Moreover, other
research efforts have identified STG volume to be inversely associ-
ated with the total length of illness and the number of depressive
episodes.14,27 This finding implies that volumetric differences may
only become visible in chronically ill patients with recurrent
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episodes. Table 4.1 provides a summary of brain abnormalities that
cause volume loss during depression.

In short, MDD patients have consistently shown abnormal frontal
brain areas such as the prefrontal and anterior cingulate cortex.In addi-
tion, abnormalities in the deep cortical areas, including the hippocam-
pus, striatum, amygdala, nucleus accumbens, and insular cortex, have
also been reported during depression. In summary, Fig. 4.1 shows
abnormal areas (highlighted areas) commonly reported during MDD.40

TABLE 4.1 Brain Abnormalities Causing Volume Loss during Depression

Brain Abnormalities
Affected Brain
Regions Critical Analysis

Ischemic stroke5,6

(Modality: fMRI)
Prefrontal and
subcortical
circuits

There is no direct correlation between
structural impairments in LCSPT structures
and depression. Rather, it appeared that a
subset of people with such structural
impairment had increased vulnerability to
depression and that when it did occur it
may further contribute to additional
damages.
There is no direct method to measure
amygdala volume loss. Hence, different
boundaries were defined by different
researchers. The gender-specific differences
were reported as a cause for contradictory
findings in amygdala-related studies.

Cognitive disability8,9

(Modality: fMRI)
Frontal cortex

Memory loss13,15,16,27

(Modality: fMRI)
Amygdala

Memory loss29�32

(Modality: fMRI)
Basal ganglia

Reduced BOLD
responses14,27

(Modality: fMRI)

Temporal lobe

FIGURE 4.1 Abnormal brain regions during major depressive disorder.40
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4.3 MECHANISMS UNDERLYING THE
PATHOPHYSIOLOGY OF DEPRESSION

It is commonly understood that MDD is of heterogeneous nature.
Therefore, the variance of the underlying pathophysiology of depression
has been explained with different neurobiological theories. In Sections
4.3.1�4.3.6, a brief description of each of these factors is provided.
These mechanisms include (1) genetic and nongenetic factors; (2) effects
of stress hormones on depression; (3) effects of different monoamines;
(4) dysfunction in specific brain regions; (5) neurotrophic hypothesis; (6)
reduced GABAergic activity; (7) dysregulations of glutamate system;
and/or (8) diminished circadian rhythms.

4.3.1 Genetic and Nongenetic Factors

Vulnerability to MDD can be explained through genetic and nonge-
netic risk factors. It is observed that genetic factors contribute between
30% and 40%, whereas nongenetic factors explain 60�70% of the
vulnerability of developing MDD. These factors may include adverse
childhood events of which the effects are still persistent, including
childhood sexual abuse or other life trauma, low social support, marital
problems, and divorce.41 Both male and female are equally sensitive to
adverse life events. However, their response may change subject to the
kind of stressor. For example, men are more vulnerable to depression
after having a divorce, separation, and work-related difficulties. On the
other hand, women are more sensitive than men to incidents in their
proximal social network such as trouble getting along with an individ-
ual, serious illness, or death.42 Therapies other than antidepressants
such as psychotherapies can be a solution for cases where MDD is
caused by nongenetic factors.

4.3.2 Hypothalamic-Pituitary-Adrenal Axis Dysfunction

The hypothalamus releases the corticotropin-releasing hormone (CRH)
in reaction to the perception of psychological stress by the cortical brain
region. MDD is considered as a stress disorder. Most subjects treated for
MDD have no evidence of dysfunction of the hypothalamic-pituitary-
adrenal (HPA) axis,43 except a few subjects who have shown abnormali-
ties in the extra hypothalamic CRH system.44 On the other hand,
depressed participants with a background of childhood trauma have
shown aberrant stress hormone secretion.41 In addition, an increased cor-
tisol level may be a liaison between MDD and its long-term implications
such as type II diabetes, coronary heart disease, and osteoporosis.45
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In short, HPA axis disruption may mediate abnormalities in cortisol
levels and may become a source of MDD in some cases.

According to the monoamine deficiency theory, the pathophysiology
of MDD includes a deficiency of neurotransmitters such as norepineph-
rine, serotonin, or dopamine in the central nervous system (CNS). For
example, defects in the neurotransmitter/hormone system may cause
the development of MDD. Moreover, during MDD, the assessment of
cerebrospinal fluid chemistry, neuroendocrine changes because of
pharmacotherapy, and neuroreceptor and transporter binding have
demonstrated several abnormalities in the serotonergic, noradrenergic,
and other neuropeptide systems. In addition, serotonin and norepineph-
rine are controlled by biochemical effects associated with different
antidepressants.

Monoaminergic neurotransmitter systems are commonly studied for
MDD. The monoaminergic neurotransmitter system is spread over the
brain and is commonly found in the limbic and anterior subgenual cor-
tex region. Serotonin, norepinephrine (vigilant concentration), and
dopamine (cognitive alertness) are monoamine neurotransmitters. The
endocrine system is a collection of glands that secrete hormones based
on their interaction with the neurotransmitter systems. Hypothalamus is
the portion in the brain that contains cells responsible for various func-
tions; its most important task is to make connections between the
nervous system and the endocrine system.

4.3.3 Neurotrophic Factors of Depression

The risk factors or vulnerabilities to having a depressive episode
keep changing during MDD. For example, the first episode is generally
“reactive,” that is, stimulated by profound physiological stressors such
as death of a loved one or a severe accident. The subsequent depressive
episodes become vulnerable to minor stressors.46 For example, any sad
news on television such as a road accident may mediate a second
depressive episode. During MDD, the hippocampus has been less con-
sistently reported with a reduced volume,47 suggesting increased stress
sensitivity48 and increased risk of reoccurrence.49

4.3.4 Defects in Intracellular Signaling Pathways

Cellular signaling pathways communicate at different levels, thereby
establishing complex networks that permit neurons to accept and process
information. These signaling pathways are certainly part of the neuroplas-
tic phenomenon that manages complex cognitive and psychological
operations as well as numerous vegetative operations such as wakefulness
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and appetite. Lithium and antidepressants influence cellular pathways
that can manage cell survival and neuroplasticity.

Fig. 4.2 shows various influences on cellular resilience and neuroplas-
ticity during mood disorders.50 The development of depression might
effect cellular resilience, and may cause volumetric contractions, and
cell death/atrophy. Normally, these symptoms are noticed during
mood disorders. Stress and depression probably cause abnormalities of
cellular resilience through various mechanisms, including contractions
in the brain-derived neurotrophic factor (BDNF) levels, by supporting
glutamatergic transmission through N-methyl-D-aspartate (NMDA) and
non-NMDA receptors, and by minimizing cells’ energy levels.

FIGURE 4.2 The cellular neurobiology of depression50: cyclic AMP responsive element
binding protein (CREB); glucocorticoid receptor (GR); glucogen synthase kinase (GSK-3).
Reactive oxygen species (ROS); Bcl-2 and Bcl-x—antiapoptotic members of the Bcl-2 fam-
ily; BAD and BAX—proapoptotic members of the Bcl-2 family; nerve growth factor (NGF);
ribosomal S-6 kinase (Rsk-2.); tyrosine kinase receptor for BDNF (trkB); Ras, Raf, MEK,
ERK, components of the ERK�MAP-kinase pathway; brain-derived neurotrophic receptor
(BDNF); pregenual anterior cingulate (PAC), subgenual prefrontal cortex (SGPFC), dor-
somedial/dorsolateral and dorso anterolateral anterior cortex (DM/DALPFC), ventrolat-
eral prefrontal cortex (VLPFC), ventral striatum.

96 4. PATHOPHYSIOLOGY OF DEPRESSION

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



Neurotrophic factors such as BDNF increase cell survival by
mediating two different signaling pathways: the ERK�MAP-kinase
pathway and the PI-3�kinase pathway. One of the main mechanisms
through which BDNF boost cell survival is by enhancing the expres-
sion of the major cytoprotective protein Bcl-2. Bcl-2 diminishes cell
death through various mechanisms, including damaging the excretion
of calcium and cytochrome, confiscating preforms of death-inducing
caspase enzymes, and increasing mitochondrial calcium uptake. The
persistent administration of various types of antidepressants enhances
the expression of BDNF and its receptor TrkB. Lithium and VPA
strongly upregulate the cytoprotective protein Bcl-2. In addition,
lithium and VPA impede GSK-3β, which induces biochemical effects
having neuroprotective nature. VPA also stimulates the ERK�MAP-
kinase pathway inducing effects that may have neurotrophic effects
and stimulates the neurite outgrowth. Operations that cause volume
reductions involve glucocorticoid neurotoxicity, lessened brain-
derived neurotrophic factor (BDNF), diminished neurogenesis, and
loss of plasticity.

4.3.5 Altered Glutamatergic and GABAergic
Neurotransmission

According to the GABA hypothesis of depression, concentrations of
GABA were found in the frontal and occipital cortex during depres-
sion.51 The concentration of GABA found was due to critical stress
effects because psychological stress appears to influence presynaptic
downregulation of prefrontal GABAergic neurotransmission.52 There
was evidence that acute stress may decrease GABA-A receptor opera-
tion by altering neuroactive steroid synthesis.53

4.3.6 Circadian Rhythms

Table 4.2 shows the diagnostic criteria of MDD that include sleep
disturbances and daytime fatigue. This indicates abnormal sleep�wake
regulation during depression. A group of depressed people have exhib-
ited circadian rhythm disorder.54

4.4 ELECTROENCEPHALOGRAPHY CORRELATES FOR
DEPRESSION

As electroencephalography (EEG) data are considered direct repre-
sentations of underlying brain activities, researchers have reported
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MDD-specific brain regions based on EEG analysis only. These findings
were observed while comparing a group of MDD patients with healthy
controls. For example, changes in EEG frequency bands that are specific
to certain brain regions and exhibited by the MDD group only were
reported. In this context, a study56 has reported an increase in the theta
and delta power over the right hemisphere of the brain observed in 20
depressed patients. However, this observation could not be found in
healthy controls.

Low resolution electromagnetic tomography (LORETA)-based studies
have revealed that the anterior cingulate cortex (ACC),57 lateral orbito-
frontal cortex, and dorsolateral prefrontal cortex (DLPFC)58 are corre-
lated with depression. A further description of EEG-based abnormalities
has been shown in Table 4.3. The table summarizes EEG changes or

TABLE 4.2 Mechanisms Underlying Pathophysiology of Depression

Abnormal Neural

Mechanism Proposed Causes/Effects Critical Analysis

Genetic and
nongenetic factors41,42

Stressors such as life trauma,
low social support, marital
problems, and more.

HPA axis dysfunction may
mediate abnormalities in
cortisol levels and may become
a source of MDD in some cases.
However, HPA axis
dysfunction is mainly
associated with patients
affected by acute stress.

HPA axis
dysfunction43�45

Corticotropin-releasing
hormones.

Hormonal
deficiencies

Deficiency of neurotransmitter
norepinephrine, serotonin, or
dopamine in the central
nervous system (CNS).

Neurotrophic factors
of depression46�49

News of the death of a loved
one. Later, any sad news such
as a road accident may
mediate a second depressive
episode.

Intracellular signaling
pathways50

Neuroplasticity and cellular
resilience contribute toward
the development of mood
disorders.

Altered
glutamatergic-
GABAergic
neurotransmission51,52

Concentration of GABA in
frontal and occipital cortex
was found during depression.

Disturbances in
circadian rhythms54,55

Sleep disturbances and
daytime fatigue could be
either causes or effects during
depression.
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patterns that have been associated with MDD-specific brain regions
commonly manifested in depressed patients.

It is important to note that EEG and event-related potentials (ERP)
changes related to MDD could be utilized for diagnosis and treatment
of MDD.

For example, abnormal alpha and theta band activities have shown
association with cognitive and memory performance, which could be
associated with the hippocampus. As mentioned in Tables 4.2 and 4.3,
the hippocampus has been seen to be affected during MDD which
implies that a depressed individual may show abnormal cognitive and
memory performance. This finding may help in the effective treatment
of depressed patients, for example, the theta and alpha ratio could be
improved by adopting neurofeedback techniques that may ultimately
improve MDD.68

The administration of antidepressants such as SSRIs has profound
positive effects on the human brain and could be observed with EEG
data acquired from MDD patients under pharmacological treatment.
For example, an elevation in theta and reduction in alpha activity has

TABLE 4.3 Major Depressive Disorder -Specific EEG Changes and Related Brain
Regions

MDD-Specific Brain
Regions Changes in EEG Bands Specific to MDD

Right hemisphere
abnormalities56

Elevated theta over the right hemisphere was observed
only in depressed patients when compared with healthy
controls.

Anterior cingulate cortex
(ACC)57

LORETA analysis disclosed increased delta, theta, and beta
power.

ACC, DLPFC, lateral
orbitofrontal cortex58

LORETA analysis revealed increased alpha power in MDD
patients.

Parietal and occipital
electrode sites59

MDD patients show elevated theta and alpha activity.

Left frontal region,60

DLPFC61
Left frontal alpha activity was reported in depressed
patients when compared with controls.

Frontal region cortical
activity62,63

Depression has been characterized as functional
asymmetric cortical activity.

Frontal regions64 Depressed patients have shown frontal alpha asymmetry.

Posterior and
temporoparietal regions65,66

Depressed patients have shown alpha asymmetry in these
regions with relatively lessened right cortical activation.

Right anterior and left
posterior regions67

Depressed patients have shown impaired functional
connectivity at EEG alpha and theta bands.
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been observed in healthy individuals while buspirone was adminis-
tered.69�72 In addition, the localization of buspirone-related effects with
LORETA has revealed a profound elevation in theta activity in the
hippocampus and neighboring cortical areas. These findings have sug-
gested that EEG changes of power in theta bands could be utilized to
study the effects of antidepressants on the human brain.

4.5 ELECTROENCEPHALOGRAPHY-BASED
DIAGNOSIS OF DEPRESSION

Abnormal neuronal activities were found in MDD patients’ EEG
and ERP data when compared with healthy controls. For example,
differences in power spectrum, lateralization of power asymmetries,
and larger intensities or lower amplitudes of P300 components were
found in MDD patients. On the other hand, some studies utilized
machine learning (ML) techniques to automatically detect aberrant
EEG/ERP patterns associated with the disease’ conditions. Sections
4.5.1�4.5.3 describe studies based on EEG- and ERP-derived features
to differentiate between depressed patients and healthy controls.
Such investigations have provided a basis for diagnosing MDD using
EEG and ERP.

4.5.1 Electroencephalography Frequency Bands

The EEG signal is of composite nature and can be decomposed
into its constituent frequency bands such as delta (0.5�4 Hz), theta
(5�8 Hz), alpha (8�12 Hz), beta (12�30 Hz), and gamma (frequencies
greater than 30 Hz). Power computations of particular frequency
bands have shown association with the pathophysiology of depres-
sion. For example, in an earlier study, elevated EEG activity (less
alpha) was observed during resting condition73�76 and increased
relative power was also reported.77,78 The elevation in EEG activity
was found to involve the parietal,79 occipital,80 and frontal brain
regions. Moreover, the early stages of depression were identified by
increased alpha activity.59 However, some studies could not observe
alpha activations as significantly different between MDD patients
and healthy controls.81,82 Increased beta band activations were
reported in depressed individuals.83,84

EEG alpha interhemispheric asymmetry has been studied as a vulner-
ability marker for depression. Davidson and colleagues85, had hypothe-
sized that the depression could cause hypoactive left and hyperactive
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right prefrontal cortex. In 1983, the researchers found a relative hyperac-
tivation of the right prefrontal cortex.85 In a later study, the researchers’
supposed “approach” and “withdrawal” were as orthogonal to each
other and as fundamental to EEG asymmetry, which may become a vul-
nerability measure for depression.86 The approach system facilitated
appetitive behavior with positive results and the withdrawal system
motivated aversive and negative emotions.87 Reduced left-sided frontal
EEG activation was associated with a decrease in the approach system.
These findings implicated that study participants with such symptoms
were at risk of negative emotional states and depression in response to
environmental stress.

Unfortunately, studies based on EEG alpha interhemispheric asym-
metry have exhibited conflicting implications. For example, in a recent
study, asymmetry was observed to be profoundly increased in
depressed patients than the healthy controls.88 However, other stud-
ies89,90 reported a decreased right frontal activity relative to the left side.

4.5.2 Event-Related Potentials Component: P300

The ERP component (P300) had been associated with cognitive
abilities and is commonly studied for MDD as well. For example,
auditory-evoked potentials (AEP) have shown positive associations
with cognitive abilities.91,92

Regarding EEG frequency bands, depression has been associated
with elevated EEG activity (less alpha). Elevated alpha was associ-
ated with antidepressant treatment response. In the context of EEG
alpha asymmetry, hypoactive left frontal cortex and hyperactive right
frontal cortex were observed during depression. Decreased left-sided
frontal activations can be a vulnerability indicator for depression.
With focus on the ERP component such as P300, depressed partici-
pants manifested larger P300 latency and smaller P300 amplitudes
compared to healthy controls. Further critical analysis is provided in
Table 4.4.

In general, MDD patients were considered to have low cognitive abil-
ities due to the illness. Such abnormalities were observed with a change
in P300 intensity and the occurrence or latency of a P300 peak. For
example, depression was associated with a delay in the occurrence of a
P300 peak93 and only found in MDD patients when compared with
healthy controls.94�96 In addition, a decreased P300 intensity in the right
hemisphere was observed based on the LORETA analysis.97 Moreover,
longer P300 latency was observed in a study involving visually evoked
stimuli.98

1014.5 ELECTROENCEPHALOGRAPHY-BASED DIAGNOSIS OF DEPRESSION

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



4.5.3 Machine Learning Methods to Diagnose Depression

Automatic selection of EEG patterns specific to MDD is possible
using ML techniques. EEG data mining has been gaining importance in
diagnosing various mental illnesses.99 EEG data in combination with
ML techniques have been utilized for diagnosing MDD.100�102 These
studies utilized EEG-based features such as Katz’s and Higuchi’s fractal
dimension (HFD).100 In addition, a combination of spectral asymmetry

TABLE 4.4 EEG/ERP Data to Discriminate Major Depressive Disorder Patients from
Healthy Controls

Brain Dynamics Fundamental Results
Comments and Critical
Analysis

EEG frequency bands73�76

(activations in alpha and
beta bands)

Depression has been
associated with elevated
EEG activity (less alpha).
Elevated alpha was
associated with the
response to antidepressant
treatment.

The aberrant patterns
observed in different EEG
bands have shown promises
during depression. However,
they were not specific to
either the patients or
controls. Hence, interstudy
comparisons are mandatory
to enhance future research
outcomes and to formalize
methodological procedures.

EEG alpha
asymmetry85�87,89,90

(changes in alpha
activation between left and
right hemispheres)

Hyperactive right frontal
cortex and hypoactive left
frontal cortex manifested
during depression.
Decreased left-sided frontal
activations can be a
vulnerability indicator for
depression.

Factors such as increasing
the sample sizes and
balancing the gender
distributions of the studies
involving EEG alpha
asymmetry could improve
low specificity of the
findings. In order to have
common evaluation criteria,
the results should include
the classification
sensitivity and specificity
values.

P30091�98 (P300
amplitudes and delayed
P300 peak)

In general, depressed
patients have exhibited
larger P300 latency and
smaller P300 amplitudes
when compared with
healthy controls.

Many researchers believed
that P300 is an index of
cognition. However, not all
patients have exhibited
common changes in the
latency and amplitudes of
P300 because of the
administration of
antidepressants.
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and HFD were utilized as well.103 In addition to EEG, ERP features
such as P600 have shown association with MDD.104

In summary, these features derived from EEG and ERP data have
shown promising results in diagnosing depression. However, due to
limitations associated with the studies, their findings cannot be trans-
lated into clinical applications. The contradictions in the findings of var-
ious studies have posed major questions for the development of
objective methods that could be confidently used in psychiatry clinics.
Table 4.5 provides a detailed description of the ML method for the diag-
nosis of depression.

TABLE 4.5 ML Methods for Diagnosing Depression

Study Year
Sample
Size Classification Results

EEG power, frequency, asymmetry, and
coherence in depressed males83

2001 70 MDD
23
Controls

Accuracy 5 91.3%

Evaluation of an SVM-based computer-
aided diagnosis (CAD) system to
classify MDD patients from healthy
controls involving the P600 ERP signal
component104

2004 25 MDD
25
Controls

Accuracy 5 94%

EEG features such as spectral
asymmetry and Higuchi’s fractal
dimension103

2010 25 MDD
25
Controls

True detection rate of 88%
for patients and 82% for
controls

Diagnosis of psychiatric disorders using
EEG data and applying a statistical
decision model105

2010 64 MDD
207
Controls

Accuracy 5 85%

Unsupercised classification of MDD
using functional connectivity MRI106

2014 24 MDD
29
Controls

Accuracy 5 92.5%

Computer-aided diagnosis of depression
using EEG signals107

2015 25 MDD
25
Controls

Accuracy 5 91%

Classifying depressed patients and
normal subjects using machine learning
techniques and nonlinear features from
EEG signals101

2015 45 MDD
45
Controls

Accuracy 5 90%

Data mining EEG signals in depression
for their diagnostic value108

2015 53 MDD
43
Controls

Accuracy 5 80%
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4.6 SUMMARY

This chapter elaborates on the pathophysiology of depression from
different perspectives such as pathophysiology caused by brain volume
abnormalities or various other mechanisms that could become a cause
or effect of depression. In addition, the pathophysiology of depression
has been explained from an EEG perspective. For example, different
correlates of EEG with depression have been discussed. EEG-based
findings form the basis for automatic diagnosis of depression termed as
EEG-based diagnosis. This last point shall be further elaborated in detail
in the subsequent chapters.
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C H A P T E R

5

Using Electroencephalography
for Diagnosing and Treating

Depression

5.1 INTRODUCTION

This chapter provides a review regarding electroencephalography
(EEG)-based studies that point to objective measures for diagnosing
depression and assessing its treatment efficacy. Recently, EEG-based
diagnosis of depression has emphasized the use of machine learning
(ML) methods, also termed as computer-aided diagnosis (CAD)-based
solutions.1 On the other hand, EEG-based studies for antidepressant
treatment efficacy assessment often provide measures that show correla-
tion specific to either treatment responder or nonresponder groups.
Details on such studies are also provided.

The literature has evidenced many EEG-based studies to quantify the
differences between depressed and healthy controls.2 Differences can be
determined based on the extraction of useful EEG-based features such
as EEG signal power in distinct frequency bands, EEG alpha asymme-
try, and connectivity measures (coherence, phase delay, synchronization
likelihood, etc.). These distinct features form the basis for developing
and training models to perform classifications on new EEG data in clini-
cal settings. This idea forms the basis of EEG-based diagnosis and treat-
ment selection. For example, a ML model trained on EEG data has
shown correlation with clinical assessment questionnaires,3 implicating
its capability to be used as a diagnosis tool. During such studies, ques-
tionnaires are considered as gold standard because questionnaires can
provide information about physiological conditions and could be uti-
lized for comparison purposes during EEG analysis.

More recently, there is growing interest in health information tech-
nology involving evidence-based approaches in clinical decision

111
EEG-Based Experiment Design for Major Depressive Disorder

DOI: https://doi.org/10.1016/B978-0-12-817420-3.00005-9 © 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-817420-3.00005-9


support systems. The purpose of this is to achieve “precision medicine”
using “interventional informatics.” However, evidence-based
approaches show less sustainability; therefore interventional informatics
using data-driven interventions is required to achieve evidence-based
clinical decision support.4

5.2 ELECTROENCEPHALOGRAPHY-BASED
DIAGNOSIS FOR DEPRESSION

From a clinical perspective, early diagnosis of depression has funda-
mental importance in treating this condition, as early diagnosis can
decrease the incidence of mortality in patients with depression. Hence,
improvement in the quality of life of depressed patients could be possible.

5.2.1 Electroencephalography Frequency Bands

The EEG signal is composite in nature and decomposes into distinct
frequency bands such as delta, theta, alpha, beta, and gamma.
Therefore, the EEG features can be computed in the frequency domain.
For example, the EEG power spectrum, interhemispheric asymmetry
(the mathematical formula for asymmetry is based on the computation
of power), and coherence (coherence is a frequency-domain counterpart
of correlation) are computed involving different frequency bands.
Researchers have computed signal power, asymmetry, and coherence to
investigate the differences of these measures among depressed male
and female subjects.5 The study examined the utility of EEG-based abso-
lute and relative power, frequency, asymmetry, and coherence measures
as classification-based univariate analysis and discriminant analysis.
The study concluded with the differences of these measures between
healthy and depressed patients and reported a classification accuracy of
91.3%. According to these findings, frequency-domain analysis of EEG
data shows significant results for discerning between healthy and con-
trols subjects.

Similarly, differences between healthy female controls and unmedi-
cated depressed female patients were observed using low-resolution
electromagnetic tomography (LORETA)-based analysis of cerebral activ-
ity.6 By definition, LORETA provides localization of EEG activations
based on EEG power and EEG asymmetry in different frequency bands.
The differences of these activations can be studied both at the individual
and group levels. In conclusion, the comparison of spectral power
between groups indicated lessened activity in the right middle temporal
gyrus in the depressed group.
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In a different study,7 LORETA-based analysis reported that regions
of significantly increased current density in depressed patients com-
pared to controls were generally right hemispheric, while regions of sig-
nificantly decreased current density were generally frontal and left
hemispheric. A within-group comparative study involving depressed
subjects during two cognitive challenges reported left anterior func-
tional hypoactivation in depression.

5.2.2 Electroencephalography Alpha Interhemispheric
Asymmetry

EEG alpha interhemispheric asymmetry has been accounted as a bio-
marker for depression,8,9 as many studies have reported EEG alpha
interhemispheric asymmetry as significantly associated with depression.
For example, left frontal hypoactivation is reported in depressed sub-
jects only when compared with healthy controls.10

In study,11 the aim was to investigate relationships among nonclinical
depression/anxiety and lateralized frontal/parietotemporal activity by
categorizing participants (N 5 428) on the basis of both negative mood
and alpha EEG. The term lateralization, in relation to brain function,
means the tendency for some neural functions or cognitive processes to
be specialized to one side of the brain or the other. The study investi-
gated relationships among nonclinical depression/anxiety and latera-
lized frontal/parietotemporal activity. The study supported the finding
that depression is associated with the frontal region of the brain but not
the posterior regions.

The effect of lateralization has been observed and reported by the
study.12 Other findings show no significant differences in frontal activa-
tion between depressed and nondepressed participants.

Last,13 a study addressed the question of whether resting anterior
EEG alpha asymmetry could be considered a trait marker for depression
or not. The authors concluded, “The increased variability of anterior
EEG asymmetry may be a characteristic feature for depression, and, if
so, this would challenge the notion that anterior EEG alpha asymmetry
is a trait marker for depression.”

5.2.3 Electroencephalography-Based Computer-Aided
Diagnosis for Depression

This section elaborates on various ML models involved in the diagnosis
of depression over the past decade. The objective is to review and elabo-
rate on the importance of ML methods. This EEG-based research aims to
investigate distinct EEG-based features (e.g., frequency bands) and their
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localization (e.g., the brain regions) that show association with depression.
In addition, a suitable integration of feature selection methods and classifi-
cation algorithms is required which could be utilized for depression detec-
tion. More recently, there has been a surge of studies utilizing ML
concepts to automatically find the relationships between different EEG
variables and disease outcomes.14 The utilization of ML models allows for
the discovery of nonlinear relationships as well. On the contrary, statistical
methods are usually confounded with limited variable handing capability
and can often be vulnerable to EEG signal nonlinearities.

5.2.3.1 Year 2018

More recently, a deep learning model has been employed for the pur-
pose of automated screening of depression involving the convolutional
neural network (CNN).15 The authors have claimed that CNN has a
profound advantage over the conventional ML model because it can
automatically identify the most relevant features in EEG data. There is
no need for the explicit use of the feature extracting and feature selec-
tion stages. The study has also claimed a classification accuracy of
93.54% using left hemisphere EEG data and 95.49% using right hemi-
sphere EEG data. In conclusion, high classification results are encourag-
ing and may be interesting for clinicians as well.

When compared with deep learning networks, convention ML models
concluded with an explicit feature extraction stage, also termed as hand-
crafted features. In general, a ML model includes feature extraction, fea-
ture selection, classification, and validation stages. The feature extraction
stage may have different features extracted from EEG data sets. For exam-
ple, EEG-based functional connectivity,16 three-channel bandwidth-dura-
tion localized wavelet filter bank,17 discrete wavelet transformation and
adaptive predictor filters,18 spectral asymmetry index, alpha power vari-
ability and relative gamma power, nonlinear methods, Higuchi’s fractal
dimension, detrended fluctuation analysis and Lempel�Ziv complexity,19

peak, variance, inclination, kurtosis, and Hjorth parameter.14

5.2.3.2 Year 2017

In study,20 EEG-based features such as EEG alpha interhemispheric
asymmetry and the power of different EEG frequency bands are com-
puted and subjected to feature selection based on ROC criterion. As an
implication, the most significant features are classified with a logistic
regression (LR) classifier; support vector machine (SVM); and naı̈ve
Bayesian classifier. The study resulted in 98.4% accuracy, achieved with
a SVM classifier.

The study,21 aimed at designing a real-time depression monitoring
system involving real-time signal filtering, artifacts removal, and power
spectrum visualization. The authors claimed to develop a system that
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could assist clinicians during clinical decision-making. In a study,22 a
novel multiobjective particle swarm optimization (MOPSO) for depres-
sion detection is proposed. In a similar study,23 the authors emphasized
early detection and treatment of depression using the objective mea-
sures extracted from EEG data.

In study,24 a simple method involving single channel EEG data was
presented. Two different methods were compared such as the asymme-
try index (SASI) and detrended fluctuation analysis (DFA). According
to the results, SASI has superior discrimination ability with a classifica-
tion accuracy of 76.5% compared to DFA which concluded with a classi-
fication accuracy of 70.6%. The integration of features resulted in
improved accuracy, for example, the linear combination of SASI and
DFA resulted in 91.2% classification accuracy.

Another study14 utilized only three EEG channels namely Fp2, Fpz,
and Fp1, making diagnosis more accessible and widespread. The feature
extraction involved linear features: peak, variance, inclination, kurtosis,
and the Hjorth parameter. Moreover, the nonlinear features included
the Shannon, Kolmogorov, and power spectrum entropies, C0 complex-
ity, and the correlation dimension. In addition, classification involved
different classifiers such as the k-nearest neighbor (KNN), SVM, LR,
decision tree (DT), and random forest (RF). The study reported the high-
est classification accuracy as 76.4%.

5.2.3.3 Year 2016

In the context of investigating different ML recipes, the study25 com-
pared combinations of different classifiers, including LR, KNN, RF,
BayesNet (BN), and SVM. At the feature selection level, various feature
selection methods were tested and named as the Greedy Stepwise
(GSW), Genetic Search (GS), Best First (BF), Linear Forward Selection
(LFS), and Rank Search (RS) based on Correlation Features Selection
(CFS). Finally, the study indicated that a combination involving the fea-
ture selection method, GSW based on CFS and the classifier KNN, for
the beta frequency band produced optimal classification results. The
study has reported classification accuracies such as 92.00% and 98.00%.
In addition, the AUCs were reported as 0.957 and 0.997. The study indi-
cated that few EEG electrodes (FP1, FP2, F3, O2, and T3) integrated
with linear features may be proficient candidates for utilization in
portable systems for detecting mild depression.

For portability of EEG-based equipment, a smaller number of EEG
electrodes are required. A similar system that aims for portability as
well as for efficiency of EEG-based diagnostic system has been pro-
vided.26 In this study, EEG data were collected from Fp1, Fp2, and Fpz,
as these are considered closely related to emotions.
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In study,27 two different algorithms such as the neuro-fuzzy and an
artificial neural network were utilized to develop an EEG-based diag-
nostic system for depression. Psychiatrists and scholars in Tabriz, Iran,
employed a neuro-fuzzy classifier while utilizing a convenience sam-
pling method. The study found that the neuro-fuzzy classifier was bet-
ter than the artificial neural network with an achieved accuracy of
76.88%. Furthermore, the study implicated that by using EEG recorded
from the electrode “F4” and the alpha peak frequency, the prediction
and explanation of depression scores involving the Beck Depression
Inventory (BDI) could be possible with a classification accuracy of 87%.

In study,28 a SVM classifier with a Radial Basis Kernel Function
(SVM RBF) were used. Feature extraction involved the decomposition of
the EEG signal with two levels of wavelet decompositions based on dis-
crete wavelet transform (DWT). EEG-based features such as skewness,
signal energy, kurtosis, standard deviation (SD), mean, and entropy
were extracted at various detailed coefficient levels of the DWT. The
selection of features involved the use of the Student’s t-test to determine
the significance of differences between healthy and control subjects.
Finally, the classification accuracy achieved was 88.92%. Hence, this
proposed method has shown merit as a useful diagnostic tool for
depression.

5.2.3.4 Year 2015

In study,29 SVM was utilized for automatic identification of depres-
sion. The authors claimed a novel depression diagnosis index that was
based on a combination of nonlinear features, including largest
Lyapunov exponent, sample entropy, fractal dimension, Hurst’s expo-
nent, detrended fluctuation analysis, higher order spectra, and recur-
rence quantification analysis. The authors reported that the SVM
classifier provided the greatest classification performance with a mean
classification accuracy of about 98%, sensitivity of about 97%, and speci-
ficity of about 98.5%.

A previous study investigated the importance of nonlinear features
for EEG data analysis. In study,1 the authors claimed that nonlinear
methods have significant advantages over linear methods of EEG-based
feature extraction. In this study, chaos theory and nonlinear dynamic
methods were widely used for extracting EEG signal features for CAD
of depression.

In addition to EEG-based detection of depression, event-related
potential (ERP)-based methods have shown utilization as well. For
example, in a study,30 P300 intensities and latencies were used as fea-
tures to discriminate between depressed patients and healthy controls.
The study utilized the SVM classifier to discriminate between depressed
and healthy groups based on features such as P300 intensity values and
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latencies. The method resulted in a classification accuracy greater than
80%, which has promising implications for ERP-based methods as diag-
nostic tools for depression.

In study,31 EEG data were decomposed using the discrete cosine
transform (DCT), because the reconstruction of the EEG signal and fea-
ture formation can be performed by the DCT coefficients. Hence, the
authors decomposed normal and depression patients’ EEG signals into
different frequency sub-bands. Moreover, feature extraction was based
on the use of nonlinear methods, including sample entropy, correlation
dimension, largest Lyapunov exponent, fractal dimension, Hurst expo-
nent, and detrended fluctuation analysis. In addition, the authors per-
formed feature ranking using t-test criterion. Moreover, DT, SVM,
KNN), and naı̈ve Bayes (NB) classifiers were used. Finally, the study
reported the highest accuracy with the SVM classifier utilizing radial
basis function (RBF), which resulted in a classification accuracy of
93.8%, a sensitivity of 92%, and a specificity of 95.8%.

In study,32 the authors proposed a new feature selection method
based on the fact that the most discriminant features could improve the
classification ability of a classifier in a given setting. The authors
improved on the standard Ant Colony Optimization (ACO) and termed
it as improved ACO (IACO). The feature extraction involved the com-
putation of coherence. The study utilized SVM to compute a ML model.
Finally, an 80.19% overall classification accuracy was observed.

In study,33 the possibility of a cost-effective, wearable, ubiquitous
system for doctors to monitor their patients with depression was
explored. The authors had used a KNN classifier to discriminate
between depressed versus nondepressed individuals. The authors
reported an accuracy of 99.1%.

5.2.3.5 Brain Connectivity During Depression

Human brain connectivity plays a vital role during normal proces-
sing of activities such as cognitive and decision-making tasks. In this
context, various studies have highlighted the fact that depression exhi-
bits abnormal brain connectivity, for example, an altered EEG functional
connectivity was reported during an emotional face-word Stroop task.34

A similar finding was reported in a different study.35 In another study,
brain connectivity was quantified using coherence involving 37 partici-
pants during the processing of facial expression stimuli.36

The study37 proposed an automated EEG-based depression diagnos-
tic and management tool based on the quantification of EEG through
channel ERPs, power spectra plots, and cross-coherence. The study
found an increased frontal delta (0.5�4 Hz) and alpha (8�13 Hz)
power/coherence during depressed and normal/relaxed states accord-
ingly. In addition, the study had found that devotional music (relaxed
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state) facilitated depression elimination. Last, the results showed statisti-
cal significance across all subjects with minimal P-values. In conclusion,
the proposed model showed the potential to aid in early and accurate
diagnosis of depression.

5.3 ELECTROENCEPHALOGRAPHY-BASED
ANTIDEPRESSANT TREATMENT SELECTION

In the literature, related studies about the prediction of treatment
outcomes included EEG-derived quantities such as relative and abso-
lute power in the alpha and theta bands, QEEG theta cordance, and
the antidepressant treatment response (ATR) index. Sections
5.3.1�5.3.6 provide further descriptions of these quantities. Table 5.1
illustrates studies involving electrophysiological-based scientific pre-
dictions/evidences known as EEG-based biomarkers. In addition,
biomarkers show two distinct categories: (1) spontaneous/resting-
state EEG predictive biomarkers and (2) ERP-based predictive
biomarkers.

5.3.1 Electroencephalography Frequency Bands

EEG is a composite signal with different frequency bands, including
delta, theta, alpha, beta, and gamma. However, specific bands have

TABLE 5.1 EEG Biomarkers for Antidepressant Treatment Selection

Biomarkers
Class

Physiological
Conditions Derived EEG/ERP Features

EEG
biomarkers

Eyes closed (EC) and
open (EO)

EEG alpha band activity38,39

EEG theta band activity40,41

Antidepressant treatment response (ATR)
index42,43

EEG theta cordance44

Referenced EEG (rEEG)45

ML-based methods46,47

ERP
biomarkers

Visual 3-stimulus
oddball task

ERP component: P30048,49

Loudness dependence auditory evoked
potential (LDAEP)50,51
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shown correlation with depression. For example, researchers have
emphasized the use of EEG alpha power and EEG alpha interhemi-
spheric asymmetry due to the relative ease of their computations. In the
case of alpha power, changes in the absolute and relative powers were
associated with treatment response and nonresponse. For example,
Ulrich and colleagues treated 40 MDD patients with tricyclic antidepres-
sants (TCA). They found that study participants with lateralization of
alpha power at baseline were treatment responders after 4 weeks of
treatment. In addition, the responders also exhibited a decrease in abso-
lute alpha power at baseline.52 In studies,38,39 researchers found that
early changes in the alpha band were associated with responders only.
In this study, 43 depressed patients were treated with Clomipramine
and Maprotiline. In a study involving 41 controls and 41 unmedicated
MDD patients,53 less alpha current source density was reported to be
correlated with nonresponders when compared with both the treatment
responders and the healthy controls. For the depressed patients, antide-
pressant treatment involved the use of SSRIs, a serotonin-
norepinephrine reuptake inhibitor (SNRI), and a combined therapy with
SSRI and norepinephrine-dopamine reuptake inhibitor (NDRI). On the
contrary, a study found that elevated alpha power was correlated with
treatment responders in 29 MDD patients treated with Imipramine for a
duration of 6 weeks.54 However, the study could not show any statisti-
cal results. Moreover, the study also reported an elevation in alpha
power in combination with a reduction in theta power among treatment
responders as compared with treatment nonresponders. In this study,
50 MDD patients had gone through treatment with paroxetine for a
period of 6 weeks.40

EEG alpha interhemispheric asymmetry is defined as the alpha
power differences between the left and right hemispheres. Alpha asym-
metry has shown association with antidepressant treatment outcome.
For example, Bruder and colleagues observed alpha asymmetry among
52 MDD patients treated with fluoxetine for 12 weeks.55 They
highlighted the presence of EEG alpha asymmetry which could differ-
entiate between responders and nonresponders. In addition, the authors
reported greater activations in the left hemisphere at baseline as com-
pared to nonresponders. Moreover, EEG alpha asymmetry exhibited
profound discriminations between female responders and female nonre-
sponders. However, this behavior was absent in the male participants.
In addition, the same medication (fluoxetine) was administered by
Bruder and colleagues using 36 participants (18 controls and 18 MDD
patients).56 The authors reported 11 responders with greater baseline
EEG alpha power in the occipital region as compared to nonresponders.
In responders, the left hemisphere showed elevated alpha power as
compared to nonresponders.
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However, the generalization of results involving EEG alpha power
and alpha interhemispheric asymmetry seems to be missing. There
could be many reasons for this: first, because the causes of treatment
efficacy are not yet clear, These could be either medication specific or
individual specific; second, the studies did not provide quantitative
analysis in terms of the sensitivity and specificity of the results; last,
contradictory results among the studies poses a hindrance to their clini-
cally reliability. This situation requires further investigation. Although
these changes in EEG frequency bands have shown correlations, there is
a need to replicate them before making a decision regarding their clini-
cal utility.

Generally, increased EEG theta band power, also termed theta band
activation, was found to be correlated with antidepressant treatment
outcomes. For example, MDD patients with greater theta and lower
beta band activations were declared as treatment responders when com-
pared with treatment nonresponders.40 Furthermore, elevated left fron-
tal theta activity compared with the baseline was observed after
electroconvulsive therapy (ECT).41 A further follow-up, after a fourth
ECT treatment, resulted in treatment response being correlated with
theta activity.

In addition to theta band powers, frontal theta relative power was
also investigated using 82 MDD patients treated with SSRIs for 8
weeks.42 The results indicated significant correlation of EEG relative
power at baseline and at the first week after treatment outcome. Hence,
relative power was declared as a predictor of treatment outcome.
Another study resulted in positive association of elevated absolute theta
band power at baseline with changes of Hamilton depressive rating
scale (HAM-D) scores after 8 weeks of treatment.57 The study employed
25 MDD patients treated with SSRI, SNRI, and TCA.

However, limitations of these studies include the absence of placebo
effects; therefore the ability to discriminate between medication specific
and nonspecific effects is less clear and undocumented. In addition, pre-
vious studies failed to report standard results, including sensitivity,
specificity, and accuracy. Hence, there is a need to validate these stud-
ies’ findings.

5.3.2 Antidepressant Treatment Response Index

Numerous studies have illustrated the ATR index as a
suitable predictor for antidepressant treatment response and remission
involving EEG data acquisition at two times: (1) at baseline before start-
ing the treatment and (2) at 1 week after starting treatment.42,43 It is
defined as a nonlinear fusion of three frontal QEEG parameters as
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described in Eq. (5.1).42 The ATR index could have an integer value
between 0 (low probability of treatment response) and 100 (high proba-
bility of treatment response):

ATR5maxð0; minð100; A3 ðAlphaB2AlphaAÞ
1B3RelativeThetaPlusAlpha1CÞÞ (5.1)

where AlphaB represents the absolute power in the frequency band
(9�11.5 Hz) at week 1, AlphaA corresponds to the absolute power in the
frequency band (8.5�12 Hz) at baseline, and RelativeThetaPlusAlpha
describes relative combined theta and alpha power (3�12 Hz/2�20 Hz)
at week 1. However, the seminal work did not mention any exact values
of the constants A, B, and C.

In the literature, the ATR index has been evaluated for its accuracy.
For example, the ATR index implicated into 70% correct predictions,
including 82 MDD patients undergoing SSRIs treatment.42 The study
“Biomarkers for Rapid Identification of Treatment Effectiveness in
Major Depression” (BRITE-MD) has replicated the ATR index in a larger
sample size, that is, 220 MDD patients.42,43 The study concluded with
74% correct treatment predictions. In this study, patients underwent
treatment with escitalopram for 1 week. After that, the patients were
divided into three subgroups: (1) the first group continued taking the
Escitalopram; (2) the second group changed medication to Bupropion;
and (3) the third group utilized both the Escitalopram and Bupropion.

The ATR index’s capability to prognosticate differential response to
Escitalopram, Bupropion, and their combination was investigated.43

According to this study, an index value greater than the threshold (ATR
index5 52) revealed association with the Escitalopram responders. An
ATR index value smaller than the threshold (ATR index ,52) was
found to be associated with the Bupropion responders. However, the
ATR failed to predict differential response to both Bupropion and
Escitalopram. In a different study, the placebo effect for the ATR index
was investigated using 23 MDD patients. Twelve of the patients were
treated with Fluoxetine and 11 were treated with placebo for a duration
of 8 weeks.58 The ATR index (threshold value 5 47.3) has predicted the
treatment outcome with 100% sensitivity, 66.6% specificity, 75% positive
predictive value, and 100% negative predictive value.

However, the studies discussed so far have limitations. First, the
ATR index had utilized relatively larger sample sizes than traditional
studies. This could be a reason for better performances. Second, the
studies involving the ATR index had utilized different threshold values
mainly selected empirically with less scientific justification. Third, due
to the simplified EEG montages (smaller number of electrodes), the
studies cannot be compared with traditional ones because of the
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different number of electrodes. Last, the ATR index formula was less
clear, for example, the relative combined theta and alpha powers in the
formula could not be associated with the neurobiology of depression.

5.3.3 QEEG Theta Cordance

QEEG theta cordance is a mathematically computed quantity as
described by Eqs. (5.2)�(5.6).44 In the literature, EEG absolute and rela-
tive power at different frequencies and scalp locations were utilized to
compute the QEEG theta cordance as:

CORDANCEðs;fÞ 5 6 ð aNORMðs;fÞ 2 0:5
�� ��1 rNORMðs;fÞ 2 0:5

�� ��Þ (5.2)

Ts 5
X
f

as;f (5.3)

rs;f 5
as;f
Ts

(5.4)

aNORMðs;fÞ 5
as;f

AMAXf
(5.5)

rNORMðs;fÞ 5
rs;f

RMAXf
(5.6)

where as;f is the absolute power at recording site s in the frequency
band f; Ts is the total power summed up at recording site s; rs;f is the rel-
ative power at site s with frequency band f; AMAXf is the maximum
absolute value in frequency band f; RMAXf is the maximum relative
value in frequency band f.

In the literature, many studies have found that a decreased prefrontal
QEEG theta cordance shows a correlation with treatment response.59�64

For example, a prefrontal decrease in theta cordance 48 hours after
intaking antidepressants was observed.59,60 In addition, the decrease
was found associated with treatment response when compared with
treatment non-response. In these studies, response was observed 8
weeks after SSRIs and SNRIs treatment. However, in a different study, a
decrease in prefrontal theta cordance after the first week of treatment
(fluoxetine/venlafaxine versus placebo) was found to be associated
with treatment responders only.61 Moreover, the changes in prefrontal
QEEG theta cordance at week 1 profoundly discriminated the medica-
tion responders from the medication nonresponders and the placebo
responders from the nonresponders. As a result, a prediction accuracy
of 72% was achieved.65 Furthermore, accuracy was improved to 75%
through treatment with other SSRIs for 8�10 weeks.62

The prediction ability of theta cordance was studied and resulted in
similar findings. The QEEG feature such as a decrease in QEEG theta
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cordance observed at week one had a predicted treatment response
with 88% accuracy.63 In a separate study, 25 depressed participants
were treated with venlafaxine. Treatment responders revealed lessened
QEEG theta cordance values compared to nonresponders.64,66 In addi-
tion, the study reported positive and negative predictive values as 0.7
and 0.9, respectively.

However, there are limitations associated with these studies. First,
the studies involved small sample sizes that warrant replication of the
findings in larger populations. Second, like the ATR index, theta cor-
dance could not well explain the underlying neurobiology of
depression.67

5.3.4 Referenced Electroencephalography

Referenced EEG (rEEG) uses a well-organized database. The data-
base involves a patient’s medical records regarding treatment success
and failure and the associated EEG patterns. In this study, it involved
observations of 1700 patients and 18,000 antidepressant treatments.45

Recorded EEG patterns in the database allow for comparisons with a
new patient’s EEG patterns. Based on similar pattern matching found
during previous successful treatments, the most suitable antidepres-
sants are identified for the new patient. On the contrary, medicines
with unsuccessful treatments are not selected automatically. Hence,
these comparisons with the database results guided the selection or
reselection of the most suitable antidepressants for individuals.

Mainly, the usefulness of rEEG-guided treatment was investigated
using two groups.45 The first group (seven subjects) was administered
with rEEG-guided treatment and the second group (six subjects) was
treated with normal treatment. As a result, high rates of response (six
out of seven) for the rEEG-guided group were found and the second
group displayed much less response (one out of six). Furthermore, the
authors68 showed improved response of rEEG-guided treatment as com-
pared to the sequenced treatment alternative to relieve depression
(STAR*D) treatment involving 114 participants. However, the studies
failed to provide performance metrics in terms of sensitivity and speci-
ficity. In addition, the use of relatively smaller sample sizes requires fur-
ther investigation.

5.3.5 Rostral Anterior Cingulate Cortex Activations

EEG is a modality the can record electric potentials from the human
scalp; however it cannot localize the actual brain sources responsible for
scalp recordings. Brain source localization (BSL) techniques such as
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LORETA and its variants, including standardized LORETA (sLORETA),
standardized shrinking LORETA-FOCUSS (ssLOFO), and more, are
used to localize brain regions. Studies based on BSL have identified acti-
vations of brain areas that are associated with treatment outcomes as
either treatment responders or nonresponders. For example, in stud-
ies,69,70 18 MDD patients were treated with Nortriptyline, Citalopram
and Reboxitine for 16 weeks. Both studies resulted in increased pretreat-
ment resting delta activity in the rostral anterior cingulate cortex
(rACC). The activity was associated with treatment response. In another
study, higher theta activity in the rACC and the orbitofrontal cortex
was found to be associated with response to medication.71

Table 5.2 summarized these studies. EEG biomarkers have shown
correlations with treatment outcomes for depression. Neurobiology in
support of this association has been less clear and is described in the
respective summary tables.

TABLE 5.2 EEG Studies Involving Treatment Selection for Depression

EEG Biomarker Brain Dynamics
Critical Analysis and
Limitations

Alpha power and
asymmetry (alpha power
and alpha asymmetry
lateralization of alpha
power)38�40,52�56

Treatment responders
showed decreased
lateralization and alpha
power.

Moreover, less current
source density was found to
be correlated with treatment
nonresponse.

Increased alpha power was
correlated with treatment
response only.

According to the literature,
EEG power measurements
are considered reliable. In
addition, changes
associated with alpha
asymmetry could
discriminate between
treatment responders and
nonresponders.

Theta band activations
(theta band powers)40�42,57

The studies reported an
association between
treatment response and
increased theta activation.

Decreased alpha activity
was associated with
treatment response.42,54 In
addition, increased theta
band activity has also been
reported.40

rACC activations (EEG
power computations and
their LORETA-based source
localization)

Activation in rACC was
associated with treatment
response only.

rACC activations were
found to be consistent
during depression.
However, more effort is
needed to justify the
empirically adjusted
thresholds.

(Continued)

124 5. ELECTROENCEPHALOGRAPHY FOR DIAGNOSING AND TREATING DEPRESSION

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



5.3.6 Machine Learning Methods for Treatment Selection

ML techniques involving antidepressant selection performed an auto-
matic identification of the most suitable patterns specific to either the
disease conditions or the healthy controls. In general, ML methods
include subprocesses such as feature extraction, feature selection, classifi-
cation, and validation. More specifically, feature extraction has funda-
mental importance that aims to derive information after analyzing either
EEG or ERP data.72,73 Moreover, the purpose of ML methods is to intro-
duce automation during the diagnosis and treatment selection for MDD
patients. For example, a ML method was developed named “Psychiatrist
in the Machine.”74 The system could assist MDD patients in getting
suitable treatment according to their EEG data. Furthermore, a different
study has shown improved results while performing treatment outcome
prediction for MDD patients. The method has provided high classification
results (sensitivity 5 94.9%, specificity 5 80.9%, accuracy 5 87.9%).75

In addition, a similar study was performed for schizophrenia patients
that concluded with a classification accuracy of 85%.76 Table 5.3 sum-
marizes further details on the latest ML methods for depression.

TABLE 5.2 (Continued)

EEG Biomarker Brain Dynamics

Critical Analysis and

Limitations

QEEG theta cordance
(absolute and relative
power in theta
bands)44,59�64

Decreased QEEG theta
cordance was found to be
correlated with treatment
response.

Decreased QEEG theta
cordance was declared as a
predictive biomarker.
However, associated low
specificity values restricted
their application for clinical
purposes.

ATR index (relative theta
and alpha power)42,43,58

The high classification
accuracy implicated better
predictions involving the
ATR index.In addition, the
ATR index can be a
differential indicator for
different kinds of
antidepressants.

The ATR index was utilized
with empirically adjusted
threshold values. These
adjustments involved
experimental observations
and may need further
validation for clinical
applications.

Referenced EEG (rEEG)45,68 rEEG-guided treatment
showed improvement over
the STAR*D study. Hence,
it implicated improvement
of evidence-based therapy
over the sequential
treatment strategy.

rEEG had performed better
than STAR*D. However, the
database was specific to one
geographical area. For
generalization, patterns
from other geographical
areas should be included.
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5.4 EVENT-RELATED POTENTIAL-BASED
ANTIDEPRESSANT TREATMENT SELECTION

ERPs involve the responses of the human brain to sensory stimuli
(visual and auditory). Various research studies48,51,79�81 have observed
P300 and the loudness-dependence of the auditory evoked potential
(LDAEP) as predictive biomarkers for depression.

5.4.1 P200 and P300

P200 and P300 are ERP components based on the computations of
grand averages of ERP data associated with certain stimuli types. For
example, P300 could be computed for either targets or nontargets.
Morphological quantities involving P300 have been associated with
treatment outcome for depression. The quantities may be either P300
amplitudes or P300 latencies. Normally, peak P300 intensity occurs
between 300 and 700 ms with a prominent amplitude after the occur-
rence of stimuli. Abnormalities associated with P300 could include low
P300 intensity and delayed P300 peak, termed as less amplitudes and
more latencies accordingly. Since P300 has association with cognitive
abilities, in depressed participants, any abnormalities in P300 could
implicate cognitive dysfunctions and may be associated with depres-
sion. In the literature, studies involving P300 show correlation with
treatment outcome involving depression. For example, P300 peak ampli-
tudes at the occipital electrodes were found to be associated with treat-
ment response during a dichotic listening task.79 In study,48 49 MDD
patients and 22 controls were recruited. The study reported that

TABLE 5.3 ML Methods for Treatment Selection During Depression

Brain Dynamics Year

Sample

Size

Classification

Accuracy (%)

Using pretreatment EEG data to predict responses
to SSRI treatment for MDD.77

2010 22 85

The authors investigated a pilot study fusing ML
methodologies with EEG to predict symptomatic
responses to clozapine therapy.76

2012 23 85

Various EEG features were computed, including
EEG-based coherences.75

2013 22 87.9

Wavelet-based decomposition of EEG data was
performed and the coefficients were utilized as
EEG biomarkers.78

2017 33 87.5
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depressed patients with larger P300 latency at baseline failed to remit
after 6 weeks. On the other hand, remitted patients along with healthy
controls exhibited normal latencies. In addition, 23 out of 24 remitted
MDD patients were identified by P300 with a specificity of 65.9% and a
sensitivity of 95.8%.

In an observational study,80 treatment response at baseline was found
to be associated with higher P200 slopes compared with nonresponse.
Moreover, in a 12-week study based on 28 MDD patients treated with
sertraline, longer latencies were reported in nonrespondents (10) as
compared with both respondents (18) and controls (28).49 However, no
correlations were found between P300 intensities and treatment
response. In an early study,80 17 MDD patients (11 respondents and 6
nonrespondents) were recruited for 4�8 weeks and treated with
Fluoxetine, Bupropion, or Desipramine. As a result, larger P200 slopes
at baseline were reported in respondents only when compared with
nonrespondents.

5.4.2 Loudness Dependence Auditory Evoked Potential

Studies involving loudness dependence auditory evoked potential
(LDAEP) have reported association with treatment outcome. For exam-
ple, higher LDAEP slopes were observed to be associated with treat-
ment respondents only.50 In a different study, lower LDAEP slopes at
baseline were correlated with treatment response to Reboxetine.51

Furthermore, higher values of LDAEP in respondents were observed as
compared to nonrespondents.81

LDAEP is capable of being a differential marker for two types of
medications with different mechanisms-of-action (MOA): serotonergic
and nonserotonergic. In Ref. [82], 20 of the depressed patients were
administered with Citalopram (an SSRI) and another15 depressed
patients were treated with Reboxetine (an NRI). The former group of
patients showed higher LDAEP slopes at baseline in contrast to the
Reboxetine respondents. Similar results were replicated by.83 In Ref.
[84], low LDAEP at baseline was found in an MDD patient (only one
patient) with severe side effects to SSRI treatment. Moreover, medica-
tion with a different neurochemical profile, named Tianeptine, showed
usefulness instead.

However, P300-based studies had limitations: the studies had utilized
distinctive features, for example, P300 amplitude or latency. Due to
these differences, it is impossible to compare them with each other.
Hence, the generalization of results was not possible. Moreover, the
studies failed to report sensitivity and specificity values. LDAEP
showed a link with serotonergic activity, but it was not fully
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demonstrated that LDAEP might differentiate between the response to
serotonergic and nonserotonergic antidepressants. The clinical utility of
LDAEP needs further validation. Table 5.4 shows a summary of the
studies.

5.5 INTEGRATING NEUROBIOLOGICAL AND
ELECTROPHYSIOLOGICAL DATA

The literature has evidenced that integrating various EEG parameters
could enhance the diagnosis and treatment selection for depression. For
example, fusing alpha spectral power (sensitivity 73% and specificity 58%)

TABLE 5.4 ERP Studies for Treatment Selection During Depression

ERP Biomarker Key Findings Limitations

Neurobiological

Description

P300 (amplitude
and latencies),
P200 (slopes)49,79,80

Treatment
responders have
shown correlation
with higher P300
amplitude as well as
higher P200 slopes.
Nonresponders
have shown larger
P300 latencies.

Comparison within
studies was not
possible because the
studies discussed
different ERP
parameters. In
addition, the studies
did not report
standard results
such as the
classification of
sensitivities and
specificities.

The exact
neurobiological basis
of P300 is unclear.
However, a study
associated P300
latency with
response to 5-HT
agonist Flesinoxan.85

This finding is
significant because
the 5-HT receptor
plays an important
role in the
therapeutic actions
of antidepressants.

LDAEPEPR
component (N100/
P200) changes with
increasing
loudness of
auditory
stimulus82,84

Responders have
shown higher
LDAEP slopes.
LDAEP is a
differential
predictor for two
distinct drugs.

Studies found
thresholds mainly
based on empirical
findings, which
needs further
validations.

LDEAP is
hypothesized to link
with 5-HT activity.86

Higher levels of 5-
HT were found to be
related to ERP
suppression
involving
responsiveness to
auditory tone
intensity. On the
other hand, low 5-
HT levels facilitate
ERP.
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and alpha interhemispheric asymmetry (sensitivity 64% and specificity
71%) gives an overall sensitivity of 83% and specificity of 68%.56 In
ddition, integrating theta activity localized to the rACC with LORETA
and the LDAEP technique have shown positive improvements.87 More
specifically, the integration of the two techniques has proven to pro-
foundly differentiate both treatment responders and nonresponders.

Furthermore, the inception of powerful techniques based on ML
has resulted in powerful knowledge-based systems. EEG features such
as EEG alpha power, alpha asymmetry, ACC theta power, LDAEP,
and connectivity measures between different brain regions may all
have the potential to diagnose and predict treatment efficacy for
depression. One possible integration technique is to concatenate differ-
ent EEG-derived features into a common data matrix. The matrix would
be used as the input data for pattern recognition techniques. After
proper training of the ML model, automatic identification of disease-
specific patterns could be possible. Similarly, the identification of EEG
patterns specific to either treatment responders or nonresponders could
be possible as well.

Many studies have posited that features based on EEG and ERP
data were capable for diagnosing and predicting treatment outcome
for depression. Conventional methods of diagnosing MDD involve
symptom assessments based on clinical questionnaires. These
methods follow the procedure as described in the Diagnostic and
Statistical Manual of Depression-V (DSM-V), which is considered
as standard. However, some symptoms may overlap with other
mental illnesses such as bipolar depression and schizophrenia. Hence,
unipolar depression could be misdiagnosed, for example, as bipolar
depression.

More than 20 different antidepressants are available under the cate-
gory of SSRIs. However, their selection for a patient is subjective and
based on professional expertise. Improvement in the selection process is
possible based on objective evidence generated by neuroimaging modal-
ities such as EEG and ERP. Hence, both for diagnosis and treatment
selection, objective measures based on EEG and ERP modalities are
required. These modalities may provide additional evidence to perform
more accurate and valid diagnosis and assessment of antidepressants’
efficacies.

In this context, features such as power computations of various EEG
frequency bands and the computation of EEG alpha asymmetries have
provided enough evidence to discriminate MDD patients from controls.
In addition to EEG, ERP features such as P300 intensities and latencies
show promise. A further improvement could be an integration of EEG
and ERP features. This integration could possibly result in robust ML
models.
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5.6 SUMMARY

In this chapter, various EEG and ERP studies have shown promise in
discriminating and predicting the treatment outcome for depression.
During the literature review, the clinical utility of these methods has
revealed a lack of clarity due to certain limitations: the study samples
are heterogeneous because MDD is heterogeneous in nature. For the
sake of generalization, more studies should involve homogenous study
samples. Moreover, the studies did not present their results in standard
metrics such as accuracy, sensitivity, and specificities. Hence, a common
conclusion was impossible, as comparison among studies was not possi-
ble. In general, EEG-based methods have been less successful in
explaining the whole variance of depression.
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C H A P T E R

6

Neural Circuits and
Electroencephalography-Based
Neurobiology for Depression

6.1 INTRODUCTION

Depression is a debilitating and recurrent mental illness and plays a
key role in functional disability. It constitutes the number one source of
“years lived with disability” (YLDs).1 However, until recently, its patho-
genesis was less explored and remained unclear. There could be two
possible reasons for this: (1) major depressive disorder (MDD) has not
been associated with whole brain pathology and (2) there is an absence
of clear animal models for specific mood episodes. However, the devel-
opment of neuroimaging technologies has helped during in vivo charac-
terization of neurochemistry, physiology, and anatomy in human
subjects with mental disorders. In addition, these technologies have
enhanced the advancement toward elucidation of the pathophysiology
of various mental disorders. However, the interpretation of these abnor-
malities is mainly based on collateral descriptions of anatomical net-
works that explain emotional behavior.

This chapter has two main sections: the first part discusses the neuro-
anatomy of neural circuits implicated during depression based on a
synthesis of findings from nonhuman primates and human subjects
referred from clinical studies. The techniques are mainly based on post-
mortem, lesion analysis, and neuroimaging methodologies. The patho-
physiology of depression involves a dysfunction in the network,
including the medial prefrontal cortex (mPFC) and anatomically related
striatal, limbic, basal, and thalamic forebrain structures.

Section 6.2 elaborates on the neurobiology of EEG-based predictive
biomarkers for depression It refers to the underlying brain mechanisms
that could be associated with the EEG-based biomarker for depression.
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EEG-based biomarkers such as the QEEG theta cordance, alpha power,
alpha asymmetry, and the antidepressant treatment response (ATR)
index were explained in Chapter 5, Using Electroencephalography for
Diagnosing and Treating Depression.

6.2 NEURAL CIRCUITRY IMPLICATED DURING
DEPRESSION

This section explains anatomical structural changes which could
cause or become effected during depression. In addition, abnormal
connections between brain regions that occur because of depression are
discussed in detail. In general, connections between cortical areas,
mainly the frontal cortical areas such as the anterior cingulate cortex
(ACC) and midbrain regions such as the amygdala, hypothalamus and
related brain regions, have been reported in many studies and
mentioned in Sections 6.2.1�6.2.6.

6.2.1 Clinical Phenomenology of Depression

The clinical phenomenology of depression implies the identification
of risk factors that could cause it. The clinical phenomenology of major
depression has identified the brain systems involved in reward proces-
sing, anxiety, mood, fear, motivation, attention, and stress responses.1

In addition, either anhedonia or a depressed mood could become a
cause to establish the diagnosis of a major depressive episode.1 The
term anhedonia refers to the inability to experience pleasure.2

According to the Diagnostic and Statistical Manual V (DSM-V),1 anhedo-
nia is defined as diminishing interest or pleasure in response to reward-
related stimuli. Anhedonia is common among depressed individuals, it
has been reported that between one-third and half of MDD patients
experience clinically notable anhedonia.2

Many studies have supported the fact that the depressed subjects
show insensitivity to reward stimulus. For example, studies based on
reinforcement paradigms to investigate anhedonia during depression
reported that study participants with depressive symptoms failed to
achieve a response bias toward reward stimuli.3�5

As with anhedonia, neuropsychological and cognitive impairments
are characteristics of major depression. In the DSM-V, it is reflected as
“an inability to think or concentrate.”1 However, conflicting results can
be found as some studies have reported wide-ranging deficits such as
impairments in early information processing, attention, memory, and
executive functions. On the contrary, other studies could not report
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such findings.6,7 These contradictions may be due to heterogeneity with
the study participants and medication status. For example, impairment
of spatial memory and delayed matching is found in unmedicated
MDD patients as compared to medicated MDD patients.8,9

A study concluded that depressed subjects exhibit a mood congruent
processing bias, meaning a tendency toward biased stimulus processing,
particularly to negative information as compared to positive or neutral
information.10�12 Similar findings were reported in other studies, for
example, in studies on memory or attention, biasing stimulus informa-
tion toward sad information is confirmed by enhanced recall for nega-
tively versus positively balanced information on memory tests.12,13 In
the stroop test, depressed subjects show greater interference from
depressed-related negative words versus happy or neutral words.14,15

Further findings were presented on speedy responses to sad versus
happy words during affective attention shifting tasks.16 During face
dot-probe tasks, preferential attentiveness to faces with sad versus neu-
tral expressions was reported.17,18 Furthermore, during probabilistic
reward tasks, depressed subjects showed oversensitivity to negative
feedback.7,8

6.2.2 Neural Substrates of Mood Disorders

Imaging, histopathological, and deep brain stimulation studies in
humans have revealed that related medial prefrontal cortical areas and
amygdala are involved during mood disorders.19 As shown in Fig. 6.1,
experimental anatomical evidence from animals supported the findings
reported in human studies. In Fig. 6.1, according to animal studies, the
connectional network involves several areas in the medial mPFC and
the amygdala.19,20

As shown in Figs. 6.2 and 6.3,9, 22�24 brain regions such as the amyg-
dala, hippocampus, and the “limbic” system are considered as the
central parts of the emotional brain. In addition, studies based on axonal
transport have identified it as a system that links the mPFC and a few
related cortical areas to the amygdala, the pallidum and ventral stria-
tum, the hypothalamus, the medial thalamus, and the periaqueductal
gray and other parts of the brainstem. In addition to animal studies,
evidence from human studies confirm a similar system, including func-
tional and structural imaging and the analysis of lesions and histological
materials. Figs. 6.2 and 6.3 focus on various aspects of brain structure
such as the Fig. 6.2 has elaborated the prefrontal cortex. On the other
hand, Fig. 6.3 focuses more on the midbrain connections.

In Fig. 6.2, brain networks are shown that connect the medial net-
work and amygdala with other cortical areas, as seen in the medial and
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anterior temporal cortex and the posterior cingulate cortex. Anatomical
evidence provided by animal studies (monkeys) suggest a connectional
network, including those seen in several areas in the mPFC and the
amygdala.20,25 Also, connections were found with subcortical structure
in the ventral striatum and pallidum, the hypothalamus, medial thala-
mus, and brainstem. These regions were termed as the limbic-cortical-
striatal-pallidum-thalamus (LCSPT) circuit.

As seen in Fig. 6.3, it was found that degenerative basal ganglia dis-
eases and lesions of striatum and orbitofrontal cortex increase the risk
of developing MDD.25 Due to neurological disorders, synaptic transmis-
sion along the LCSPT circuit was seen to be affected in multiple ways.
Multiple types of dysfunctions in LCSPT circuits may cause depression.

FIGURE 6.1 Maps of the human and monkey brain (frontal cortex). Reproduced from the
reference Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders.
Trends Cogn Sci. 2012;16:61�71.21
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6.2.3 Limbic Structures

The amygdala plays a central part in understanding emotion-related
circuitry involving the limbic structure. Animal studies, including those
performed on cats, rats, and monkeys, have elucidated that the medial
prefrontal network has reciprocal connections to the amygdala, orbital
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FIGURE 6.2 Brain areas implicated during MDD. Reproduced from Price JL, Drevets WC.
Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci.
2012;16:61�71.
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FIGURE 6.3 Brain areas identified from animal and human studies for MDD.
Reproduced from Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood
disorders. Trends Cogn Sci. 2012;16:61�71.
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network, insular and cortical areas, ventromedial striatum, and thalamic
nucleus (please see Figs. 6.2 and 6.3 for illustration).26

Abnormalities associated with the glucose metabolism appear to be
more specific to MDD subgroups. For example, the resting metabolism
was found abnormally elevated in the left amygdala, specifically in
depressed subjects diagnosed with bipolar depression (BD), familial
pure depressive disease (FPDD), or the melancholic subtype.9 In
depressed subjects, amygdala showed exaggerated hemodynamic
responses to stimuli such as explicit or implicit presentation of sad faces
and backwardly masked fearful faces and blunted responses to masked
happy faces.22,23 Similarly, amygdala abnormalities were observed in
unmedicated-remitted subjects with MDD.22,24 However, antidepressant
treatment shifts emotional processing biases toward positivity.22,27,28

These evidences suggest that the amygdala and related circuitry are
involved in the control of response biases during MDD.

6.2.4 Prefrontal Cortex

Axonal studies conducted during the 1990s thoroughly elucidated
the subcortical and cortical circuits as related to the amygdala and orbi-
tomedial prefrontal cortex (OMPFC). As shown in Fig. 6.1, the medial
and dorsolateral prefrontal networks have similar connections with
other cortical regions recognized within the OMPFC.20 Similarly, in
monkeys, three regions have been defined: the ventrolateral region ven-
tral to the principal sulcus (VLPFC; related to the orbital prefrontal net-
work), the dorsal prefrontal region dorsal to the principal sulcus (DPFC;
like the medical prefrontal network), and a caudolateral region rostral
to the arcuate sulcus (CLPFC).29

In an emotional go-no-go study, the hemodynamic activity of normal
subjects was increased in the subgenual anterior cingulate cortex
(sgACC) in response to stimuli such as sadness induction, exposure to
traumatic reminders, and the selection of sad and happy targets.10 On
the contrary, remitted MDD subjects showed a decrease of coupling
between the rostral superior temporal gyrus, hippocampus, hemody-
namic responses of the sgACC, and the medial frontopolar cortex dur-
ing guilt versus indignation.

The ventral pregenual anterior cingulate cortex (pgACC) and the
ventromedial prefrontal cortex (vmPFC) have been implicated in MDD
patients with anhedonia symptoms. In addition, the ventral pgACC
showed increased activity in response to dopamine-inducing drugs dur-
ing preference judgments.30 On the other hand, depressed subjects
exhibited reduced blood oxygen-level dependent (BOLD) activity dur-
ing higher resting EEG delta current density and reward learning in
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association with anhedonia ratings.30 In the supragenual ACC, attenu-
ated BOLD responses were associated with a depressed state during the
recall of autobiographical memories. In addition, these deficits were cor-
related to diminished activity in the parahippocampus and
hippocampus.31

6.2.5 Cortical Projections to the Hypothalamus and Brainstem

According to animal studies, the medial prefrontal network connects
with the hypothalamus, the periaqueductal gray, and different visceral
control centers.20 The subgenual cortex provides the heaviest projections
terminated in the lateral and medial hypothalamus. The origins of the
projections extend beyond the prefrontal network, including area nine
in the DPFC and the rostral superior temporal gyrus.

According to observations in humans, activity in the mPFC correlates
with visceral activation in response to emotional32,33 and nonemotional
stimuli.34 In another study,35 lesions in the mPFC were linked with
severe or complete deficits in visceral responses to emotionally compe-
tent stimuli. These deficits have been linked to the absence of “somatic
marker” provided by visceral activation. The overactivation of this vis-
ceromotor system may contribute to depression.

6.2.6 Cortico-Striatal-Thalamic Circuits Related to the
Orbitomedial Prefrontal Cortex

As shown in Fig. 6.3, the PFC has specific connections with the thala-
mus and striatum. A well-known example is the cortico-striato-pallido-
thalamic loops. The medial prefrontal network is connected to the
medial segment of the ventromedial part of the striatum and the medio-
dorsal thalamic nucleus (MDm).36,37

In humans, neurophysiological activity involving the subcortical
structures extensively connected with the medial prefrontal network
was found to be correlated with depressive symptoms. For example, an
elevation of metabolism in the accumbens area showed positive correla-
tion with increasing anhedonia ratings.38 In addition, hemodynamic
responses of the ventral striatum to rewarding stimuli were found to
decrease in depressed participants when compared with healthy con-
trols. Moreover, increased levels of anhedonia were linked with blunted
ventral striatal responses to rewarding stimuli in both healthy30 and
depressed subjects. Last, depressed participants exhibit impaired
reward (but not punishment) reversal accuracy correlated with the
attenuated ventral striatal BOLD response to unexpected reward.39
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6.3 NEUROBIOLOGY OF
ELECTROENCEPHALOGRAPHY-BASED PREDICTIVE

BIOMARKER FOR DEPRESSION

This section elaborates on the meanings associated with EEG changes
observed in the pretreatment and after medication. More specifically,
neuronal mechanisms were observed that could elucidate or associated
with such changes. More information on EEG-based predictions of treat-
ment responses to antidepressants, termed as EEG-based biomarkers,
can be found in Chapter 5 (“Using Electroencephalography for
Diagnosing and Treating Depression”).

6.3.1 Changes in Alpha Band Activity

Many studies have reported an increase in EEG alpha power because
of treatment with tricyclic antidepressants (TCAs; including clomipra-
mine and imipramine) and SSRIs (such as paroxetine and fluoxetine)
which help differentiate between treatment respondents and non-
respondents.40�43 In this context, an increase in EEG alpha power has
been termed as biomarker for ATR. In this section, what these changes
in alpha frequency mean in the treatment of depression shall be
addressed.

In the study,44 an increase in EEG alpha power has been reported in
depressed individuals who are treated with SSRIs. The authors assumed
that elevated pretreatment alpha activity may be a marker of the resem-
blance between low arousal and low serotonergic activity. Low seroto-
nergic activity could be caused by the diminished activity of the cortical
afferents and mesencephalic raphe nuclei. A different study45 has
reported a biological mechanism that plays a key role in both increased
alpha asymmetry and alpha power. The study has linked depression
with an impairment of temporoparietal mechanisms that cause emo-
tional arousal as well.

6.3.2 Electroencephalography Theta Band Activity

The review46 has declared the existence of a robust connection
between ATR and resting rACC activity. In addition, a neurobiological
mechanism has been explained as well. The researchers declared rACC
as a principal hub within the default network (DN) of the brain
involved in self-focus processes.47 In addition, the DN includes brain
regions such as the dorsal medial PFC, ventromedial prefrontal cortex
(PFC), retrosplenial cortex, posterior cingulate, lateral temporal cortex,
lateral parietal cortex, and hippocampal formation. The study48
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associated elevated resting state activity with these DN regions, focus-
ing on remembering, planning, and reflective thought, or task-
independent introspection such as rumination. In particular, rumination
is a mechanism of distress response.49 Rumination is comprised of two
components: brooding and reflective pondering.50

Reflective pondering is considered as an adaptive process that helps
during cognitive tasks. On the contrary, brooding is analytic and
involves self-focus. Ultimately, it is destructive and adds negative
effects to depressive symptoms.51 The study46 has linked treatment
response with elevated resting rACC activity through self-focus and
adaptive self-referential functions (such as mindfulness). While han-
dling external stimuli, not all brain regions are active. More specifically,
the DN showed reduced activity. The resulting network is termed as
the task negative network (TNN).52 On the other hand, goal-oriented
tasks involve cognitive control activities and attention that excites the
task positive network (TPN), including the dorsal ACC, dorsolateral
PFC, the middle temporal area, and the intraparietal sulcus.

During MDD, the relationship between the TPN and DN is impaired
leading to brooding and maladaptive rumination and disrupted self-
focus.46 Because the DN has a functional connection with the limbic and
paralimbic regions, impaired functional connection leads to impaired
amygdala activity. Based on these facts, Pizzagalli46 proposed that ele-
vated rACC activity that corresponded with treatment response to anti-
depressants may play a major role in reconstructing the functional
connections between the TRN and DN. In short, significant fronto-
cingulate dysfunction has been reported in many areas of the study,
including neuroimaging, neurophysiology, and neuropsychology.

6.3.3 Alpha Interhemispheric Asymmetry

Interhemispheric asymmetry is considered as a marker for depres-
sion. More specifically, alpha band asymmetry characterized by left lat-
eralization has been reported during treatment response involving
TCAs and SSRIs.40,44,53 These studies have commonly reported alpha
asymmetry as a predictor of treatment outcome at 4�12 weeks post-
treatment. There is an opposite relationship between cortical activity
and alpha power; for example, reduced alpha implicates increased
activity and increased alpha means reduced cortical activity.

Treatment response has been linked with substantial left rather than
right hemispheric activation. On the contrary, nonresponders have
shown opposite patterns, that is, pronounced right rather than left acti-
vations in posterior and frontal regions.44 In the study,54 reduced left
frontal activity was reported that is in conflict to the finding of left
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lateralization. In a study,55 Bruder et al. has explained this conflict by
recommending that lessened left prefrontal activation may disinhibit
left temporoparietal regions manifesting as increased left hemisphere
advantage in treatment (fluoxetine) responder.

Studies56,57 have supported this hypothesis of inhibitory association
between temporoparietal and frontal regions. In a study,58 Devidson
and Henrique suggest that left frontal hypoactivation can be explained
as a shortfall in approach mechanisms and right frontal hypoactivation
may indicate deficits in withdrawal mechanisms.

In treatment responders, alpha asymmetry can be trait-dependent
because it is found in euthymic patients as well as in depressed adoles-
cents and adults.59�61 In addition, asymmetry has been found in both
adult and young descendants of depressed parents.62,63 In conclusion,
the alpha interhemispheric asymmetry could implicate the underlying
pathophysiology as a trait marker for depression. In addition, it could
be implicated as the vulnerability to inherite depression that responded
to serotonergic agents.44

There are few attempts to explain alpha asymmetry in the light of
treatment response. For example, Bruder theorized that the distribution
of the 5-HT neurotransmitter system may have a lateralized nature inside
the brain and could be asymmetrically distributed in depressed patients
or a subtype of depressed patients.40 The 5-HT asymmetric distribution is
an important finding because it is not only implicated in mood disrup-
tion, but is also affected by medication, including antidepressants.

A few studies have replicated the theory that 5-HT pathways are
asymmetric for opposite sides of the brain,64,65 however, others could
not replicate this finding.65,66 Another hypothesis proposed by Bruder
stated that alpha asymmetry in SSRI responders may be due to low
arousal associated with low serotonergic activity.44 Based on these
evidences, Alhaj et al. have suggested that gene polymorphisms of the
5-HT1A receptor may have association with alpha asymmetry.67 Hence,
5-HT1A receptor polymorphisms largely corresponded with the patho-
physiology of depression. Moreover, the 5-HT transporter is one of the
primary targets of antidepressant medication.68,69

6.3.4 Theta Cordance

Theta cordance provides a mathematical formula that combines infor-
mation from both relative and absolute power involving the EEG theta
spectra.70 Theta cordance (a combination of both absolute and relative
power) has shown more association with regional cerebral perfusion
than absolute and relative power alone.71 In addition, cordance is
robust against factors such as age, gender, and severity of baseline
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depression.72 Studies73�75 have reported that the decreased frontal cor-
dance measured from depressed patients over 48 hours to 1-week post-
treatment have shown prediction of treatment response with an
accuracy of 72%�88%. While the study participants were treated with
both serotonin-norepinephrine reuptake inhibitors (SNRI) (venlafaxine)
and SSRIs (fluoxetine).

Although theta cordance has shown association with treatment
outcome, its associated brain mechanism remains unclear. Most EEG-
derived biomarkers for depression previously mentioned have demon-
strated dissimilarities in brain activity at baseline prior to treatment; the
cordance does not. Significant differences can be observed for 2�7 days
posttreatment. This was explained as early changes in brain activity
because of antidepressant medication.76

Unfortunately, no clear brain mechanism has been proposed for theta
cordance. One possible explanation could be the fact that theta cordance
involves theta band activity; therefore the explanation of theta band pro-
vided by Pizzagalli46 could be a possibility in this context as well.

6.3.5 Antidepressant Treatment Response Index

Like QEEG theta cordance, the ATR index is a mathematical combina-
tion of frontal EEG alpha and theta power. Observations of frontal alpha
and theta powers are performed at pretreatment and at 1-week after
treatment starts. The Biomarkers for Rapid Identification of Treatment
Effectiveness in Major Depression (BRITE-MD) study77 examined the util-
ity of the ATR index as a biological marker of treatment response for
depression treatment. In this study, depressed patients were treated for 1
week with escitalopram (ESC) and then randomized to continue ESC or
switch to either bupropion (BUP) or its augmentation with ESC. The
study concluded with an accuracy of 74% in predicting response and
remission. The study also explored the capability of the ATR index as a
differential response predictor to either ESC or BUP monotherapy.

The ATR index works by setting an empirically derived threshold; for
example, the ROC curve for predictive accuracy was drawn and an opti-
mal threshold of 58.6 was chosen. The importance of this threshold was
demonstrated by the fact that those patients having high ATR values
(above the threshold value) showed 2.4 times higher likelihood to
respond to ESC than those having lower ATR values (below the thresh-
old value). The accuracies were 68% and 28%, respectively (P5 .001).

In addition, patients with ATR values lower than the threshold were
converted to BUP treatment and were 1.9 times more responsive to BUP
alone when compared with those patients who remained on ESC treat-
ment. The prediction accuracies were 53% and 28%, respectively
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(P5 .034). Hence, it was concluded that the ATR index may be a useful
tool in predicting the treatment outcome and could be used in guiding
the treatment decision. However, from a machine learning point of
view, accuracies such as 53% are considered low and that could explain
why the ATR index cannot be utilized further for clinical applications.
Like QEEG theta cordance, the ATR index has showed promise as a
marker for treatment outcome prediction for depression; however
there remains a gap in explaining the biological mechanisms associated
with it.

Due to this reason, researchers have questioned the practical implica-
tions of the ATR index.78 In response to such concerns, Leuchter79

explained a possible mechanism that could be associated with it.
According to Leuchter and his team and in accordance with the BRITE-
MD study, it has been theorized that both the QEEG theta cordance and
the ATR index reflect activity arising from frontal rhythmic activity.
This activity is assumed to originate from the PFC and ACC, which are
also involved in the pathophysiology of depression.80

In short, the ATR index and QEEG theta cordance were associated
with early functional changes in both the ACC and PFC. The ATR index
is based on a combination of both the theta and alpha activities.
Therefore, the neurobiology explained by theta and alpha frequencies
could also be refered to explain the neurobiology of the ATR index.
Unfortunately, the differential responses reported during ATR-based
studies largely remain unexplored and unexplained. This warrants fur-
ther investigation.

6.3.6 The P300

The P300 is an event-related potential (ERP) that is computed based
on grand averaging various epochs related to either targets or nontar-
gets in visual or audio stimulus tasks. Because of the grand averaging,
a positive peak termed as P300 computed and appeared at 300 ms after
the experimental visual stimulus. Researchers have linked attention
and auditory processes with the P300 index.81,82 During depression, a
delayed P300 component (also known as latency) has been observed.83

On the contrary, delayed latency was reported to normalize with antide-
pressant treatment after 4 weeks.84 The relationship between P300 and
antidepressant treatment was further studied with these conclusions.
For example, the higher P300 amplitudes at occipital sites were associ-
ated with treatment response while the patients were treated with fluox-
etine and TCA.85 In addition, a study involving elderly MDD patients
reported association of longer P300 latency with patients who did not
remit.86
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The exact neurobiology associated with P300 latency and amplitude
is unknown except for a few explanations such as P300 latency being
correlated with prolactin response to the 5-HT1A agonist flesinoxan.87

This explanation seems interesting because the 5-HT1A receptor is vital
during the therapeutic action of antidepressants.

6.3.7 LDEAP

P300 shows a positive peak before 300 ms after the occurrence of audi-
tory stimuli. In addition, N1 and P2 manifest negative peaks at 100 ms
and a positive peak at 200 ms accordingly. LDEAP involves N1/P2 com-
ponents observed in response to auditory stimuli. The LDEAP amplitude
changes due to increases in the volume of the stimulus. According to a
study, the neurobiology of LDEAP has been associated with the 5-HT
neurotransmission system, observed in the auditory cortex.88

In the study,89 a larger slope of P2 amplitude as a function of stimu-
lus intensity at baseline was correlated with treatment response to
SSRIs. Similar findings were replicated for bupropion as well.90

Empirical findings based on LDAEP suggest dividing the study samples
into the top 50% range (higher slopes; “strong” LDAEP) and the bottom
50% range (lower slopes; “weak” LDAEP) based on median split mid-
point. These studies determined an association of strong LDAEP at
baseline with response to SSRIs such as citalopram, paroxetine, and
fluoxetine.91�93 On the contrary, weak LDAEP at baseline was corre-
lated with response to reboxetine; the norepinephrine reuptake inhibitor
(NRI).92,94,95

In short, LDAEP may be a differential marker for ATR with distinct
mechanisms of action (SSRIs and NRIs). As LDAEP has a hypothesized
link with 5-HT activity, it could be considered as a differential bio-
marker for depression. In their study,96 the amplitude of the slope of a
plot of N1/P2 against loudness (the amplitude/stimulus intensity func-
tion [ASF-slope]) was inversely associated with serotonergic activity. In
other words, the suppression of ERP responsiveness to auditory tone
intensity was because of the high level of 5-HT, whereas the facilitation
of ERP responsiveness was due to low 5-HT. In addition, the ASF-slope
has been negatively correlated with plasma 5-HT concentration follow-
ing administration of SSRI (fluvoxamine).88 This finding was reported
in depressed patients only.

A review by O’Neill97 concluded that the LDAEP may not be a good
index for 5-HT. Overall, the review supported the idea of using LDAEP
as a biomarker for treatment response for depression. Table 6.1 sum-
marizes the key points of EEG-based biomarkers and their predictive
relationship with treatment response of antidepressants.
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TABLE 6.1 EEG-Derived Biomarkers and Their Correlation with Antidepressant Treatment Response

EEG Biomarkers

Response

Type Time of Treatment Antidepressant Type Biological Implications

Activation of the alpha
band

Elevated Pretreatment SSRI and TCA Right temporoparietal region; low 5-HT

Activation of the theta
band

Elevated Pretreatment NRI, SSRI, SNRI, and
TCA

rACC and DN

Asymmetry of the alpha
band

Left
Lateralization

Pretreatment TCA and SSRI HT1A polymorphismLateralized 5-HT system;
low 5-HT

Theta cordance Decreased 2�7 days posttreatment SNRI and SSRI ACC and PFC

The ATR index High Pretreatment and 1
week PT

SSRI ACC and PFC

Low Pretreatment and 1
week PT

NDRI

P300 High
amplitude

Pretreatment SSRI and TCA 5-HT1A receptor

LDEAP High
amplitude

Pretreatment SSRI and NDRI 5-HT activity in the CNS

Strong LDAEP Pretreatment SSRI

Weak LDAEP Pretreatment NRI



6.4 SUMMARY

Correlations between depressive symptoms and neurophysiological
activities have been found to be common in subcortical structures and the
medial prefrontal network. In the accumbens area, a rise in metabolism
under catecholamine depletion was positively correlated with anhedonia
ratings.38 In addition, depressed subjects showed decreased hemodynamic
responses to reward stimuli in the ventral striatum. High levels of anhedo-
nia were correlated with blunted ventral striatal responses to reward sti-
muli in both depressed and healthy subjects.30 Depressed subjects showed
impaired reward processing during probabilistic reversal learning.
Moreover, the learning was found correlated with attenuated ventral stria-
tal BOLD response to unexpected reward stimuli.39 Table 6.2 provides a
summary of anatomical abnormalities found during depression.
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C H A P T E R

7

Design of an
Electroencephalography

Experiment for Assessing Major
Depressive Disorder

7.1 INTRODUCTION

This chapter elaborates on the experimental design involving electro-
encephalography (EEG) data acquisition. A properly designed experi-
ment is fundamental and holds a central position in clinical studies. On
the contrary, a poorly designed experiment may result in low quality
results and false inferences. This could be more critical in the case of
clinical studies than in normal scenarios. In this chapter, the experimen-
tal design of an EEG-based study is explained by designing an experi-
ment for EEG-based diagnosis and prediction of treatment outcomes
involving depression.

In general, an EEG-based experiment involves the design of study
protocol, sample size calculation, recruitment criteria for study partici-
pants, the selection of appropriate questionnaires utilized for clinical
assessment (e.g., depression), and EEG/ERP experimental procedures.
EEG/ERP experiment design has been explained in detail in this chap-
ter, including the experimental setup, the hardware system utilized, and
the recording software.

In addition, the chapter elaborates on methods such as the construc-
tion of topographic maps. Maps were constructed to visualize abnor-
malities caused by depression. The localization of abnormalities was
possible based on the significant differences between study groups.
Moreover, to investigate the interrelation between clinical measures and
EEG features, the Pearson correlation was performed.
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The rest of this chapter explains the design of study protocol, includ-
ing sample size calculation, recruitment criteria, selected clinical
questionnaires for quantitative analysis, and experimental setup for
EEG data acquisition as well as the study’s participant information
gathering which could be helpful during EEG analysis. Finally, the
chapter explains EEG localization techniques such as topographic plots,
EEG/ERP differences between major depressive disorder (MDD)
patients and healthy controls.

7.2 DESIGN OF STUDY PROTOCOL

This section describes the design of study protocol, including sample
size calculation, recruitment criteria for study participants, question-
naires for clinical data acquisition, and EEG/ERP experiment design. In
this study, experimental data collection involved human subjects as
participants. Therefore, to ensure safety and confidentiality, standard
scientific methods were adopted such as the design of study protocol,
including sample size calculation, design of recruitment criteria, and
experiment for EEG/ERP data acquisition. The approval of ethics for
this study is attached in Appendix D. A brief description of each step is
provided in Sections 7.2.1�7.2.4.

7.2.1 Sample Size Calculation

In this study, a group of 34 MDD patients were recruited based on
the mathematical formula provided in Eq. (7.1)1,2:

n5
Pð12PÞ � ðZ12α=2Þ2

e2
(7.1)

where P is the expected proportion (e.g., the expected diagnostic sensi-
tivity), e is the error limit which is one half of the desired width of the
confidence interval, and Z1-α/2 is the standard normal z-value corre-
sponding to a cumulative probability of 1�α/2. The investigator must
specify the best estimate for the proportion that is expected to be found
after performing the study.2

Table 7.1 shows parameter values used to calculate the sample size
for this study. The significance value (α) was assigned a value of 5%
because it should be small as it indicates the probability of making an
error. In addition, it implies a 5% chance of making an error due to mis-
classification. Furthermore, the power of the test (β) should be 80%, as
this was considered fair enough to prove confidence in the decision of a
correct classification. In this study, the value of P was assigned as 90%
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because a relevant study published previously had reported a classifica-
tion accuracy of 87.5%.3 Finally, the expected error was set to 10%,
which showed that the method trained with the computed sample size
may show a deviation of accuracy. After sample size calculations, the
sample size is 34 MDD and 34 healthy controls.

7.2.2 Recruitment Criteria

Participation for this study was voluntary and each participant had
agreed to participate willingly by signing a consent form of participa-
tion. In particular, MDD patients with a confirmed diagnosis were
included and those MDD patients who could sign the consent form of
participation. The MDD patients and healthy controls were well-
informed regarding the study protocol and could leave the study any
time during its progression without any written notification. The safety
and security of the information regarding each study participant was
ensured and intact.

In this study, participants from all ages were included because the
MDD prevails in all ages starting from 18 to 65. The reason for the
exclusion of people of other ages was that infants and older people
would have been unable to perform the EEG experiment, which
required frequent visits to the clinic. Only those MDD patients who had
not yet started their medication were included. Based on expert opinion,
MDD patients who switched their medication from one class of antide-
pressants to another class were also able to participate. In such a case, it
was ensured that the MDD patients recruited for this study would have
a washout time of at least 2 weeks. In addition, MDD patients with non-
psychotic symptoms were excluded as to keep a low variability among
the study participants. To further decrease variability due to external
factors, patients with drug abuse, pregnant patients, and those with
epilepsy were excluded. Table 7.2 summarizes exclusion and inclusion
criteria for this research work.

TABLE 7.1 Parameters for Sample Size Calculation

Parameters and Assigned Values Sample Size Calculation

Significance α5 .05 (alpha) P5 :90;α5 0:05; e5 0:10;Z12α=2 5 1:96

Power of test5 80%, β5 .2 (beta) n5 ð0:90Þð0:10Þð1:96Þ2
ð0:10Þ2 D34

Expected diagnostic accuracy P5 90%,4

expected error e5 10%
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7.2.3 Clinical Questionnaires

In this study, clinical assessments of the MDD patients were per-
formed based on two clinically relevant questionnaires, that is, the
Hospital Anxiety and Depression Scale (HADS) and the Beck
Depression Inventory-II (BDI-II). During this process, numeric scores
were achieved and were considered as gold standard. For the sake of
convenience, translated Malay and English versions of the question-
naires were used (also attached in Appendix A), as the study was con-
ducted in Malaysia and the local language was Malay. The Malay
versions of the HADS5 and BDI-II6 used were standard clinically proven
questionnaires to rate MDD severity. Furthermore, the questionnaires
were self-administrated. However, to improve the quality and to main-
tain the accuracy of the process, the questionnaires were administered
under the supervision of an experienced nursing staff.

In this study, a response to treatment was defined as a 50% improve-
ment in clinical symptoms.7,8 In the literature, the response to SSRI
treatment was consistently reported to range from 50% to 60%.9�13 In
this study, the response criterion involved pre- and posttreatment BDI-
II scores. Response to treatment was defined as a 50% improvement in
clinical symptoms assessed with the BDI-II scores, that is, a 50%
improvement in pre- versus posttreatment BDI-II scores.

After the fourth week, the study participants were labeled as respon-
dents (R) or nonrespondents (NR) according to their scores based on the
questionnaires: BDI-II and HADS. Response to treatment was defined as
a 50% improvement in clinical symptoms.7,8 According to the BDI-II, a
patient’s condition was considered normal if the accumulated score ran-
ged between 0 and 10; as mildly depressed for scores ranged between
11 and 20; as moderately depressed between 21 and 30; as severely
depressed between 31 and 40; and as extremely severely depressed
between 41 and 63. In addition, according to the HADS, cumulative
scores greater than 7 are considered abnormal.

TABLE 7.2 Study Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

1. Able to provide a written informed consent
2. Patients within the age limit (18�65 years)
3. Patients diagnosed with MDD (DSM-IV)

a. Newly diagnosed (new cases)
b. Newly started (old cases):

i. Restarted on antidepressants (2-week
washout) (31 pax.)

ii. Switched to a new antidepressant (3 pax.)

1. Patients having psychotic,
cognitive disorders

2. Patients with a history of any
other drug abuse

3. Pregnant patients
4. Patients with epilepsy
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7.2.4 Experimental Setup for EEG/ERP Data Acquisition

Fig. 7.1 shows an experimental setup for EEG/ERP data acquisition.
The sole purpose of the experiment design was to record a quality
dataset as data quality is considered as a core factor to experiments
performed with EEG equipment. Factors such as the correct size of EEG
cap and proper cap setup are important for maintaining data quality.

Fig. 7.2 shows the hardware setup for EEG data acquisition. The EEG
cap is connected to a Brain Master amplifier, which amplifies the EEG
signal for reliable recording of data. A computer system runs the Brain
Master Discovery software.

Fig. 7.3 shows a snapshot of the home screen of the Brain Master
Discovery software used to setup the parameters for EEG/ERP data
recordings. The home screen is used when entering information regard-
ing participants such as identification number (ID), name, any com-
ments, and session number. In addition, the home screen is used when
setting up to assess more parameters shown in a separate window: the
“setup options” window.

FIGURE 7.1 Experimental setup for EEG data acquisition.

Computer system installed
with Brain Master software

Brain Master
amplifier

EEG cap with
EEG sensors

FIGURE 7.2 Block-level representation of EEG/ERP data acquisition.
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Fig. 7.4 shows the setup options window of the Brain Master
Discovery software. In the setup options window, different parameters
can be adjusted according to the experiment design, for example, a new
name can be given to the data file. A limited number of channels can be
selected, for example, only 8 channels or less can be selected from a list
of 19 available channels. In addition, the frequency range of different
frequency bands can be adjusted accordingly. This option is especially
used in neurofeedback experiments. The training protocol needs to be
set to either simulation or training mode. A real EEG data recording
requires a training mode setup. Simulation mode helps in recording
simulated data only.

Fig. 7.5 shows a flow chart of EEG/ERP recordings divided into four
steps, including three experimental physiological conditions. In Step 1,
an experimental setup was performed using EEG cap, amplifier, and
computer system. An EEG cap suitable for recording the data was
selected according to the head measurements (using a measuring tape)
of each study participants head size. The cap setup took 20 minutes.
Step 2 was an eyes closed (EC) session: patients were required to sit in a
chair with their eyes closed and in a maximal possible alert state. EC
recordings were based on 5 minutes. Step 3 was for EEG data recording
in an eyes open (EO) condition: the study participants were required to
look at a fixed point (“1 ”) on a computer screen in front of them with
minimum eye movements and blinks. This task required 5 minutes.

Step 4 was a visual three stimulus oddball task: the study partici-
pants were exposed to a random sequence of shapes displayed on a

FIGURE 7.3 Home screen for the Brain Master Discovery software.
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Start 

Step 1: Cap setup  
(20 min) 

Step 2: EC 
(5 min) 

Step 3: EO 
(5 min) 

Step 4: Oddball task 
(10 min) 

Finish 

FIGURE 7.5 EEG experiment design.

FIGURE 7.4 Setup options for the Brain Master Discovery software.
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computer screen in front of them. Only one shape was displayed at a
time. There was a total of three shapes (Table 7.3):

1. Target: a blue circle 5.0 cm in size.
2. Standard: a blue circle 4.5 cm in size.
3. Distractor: a checker board 18.0 cm in size.

The study participants had to respond to the Target shape by press-
ing the SPACE key on the keyboard and take “NO” action for other
shapes. The recordings were performed for 10 minutes.

In general, the MDD patients were considered to have low cognitive
abilities due to the illness. Such abnormalities were observed with a
change in P300 intensity and the occurrence or latency of a P300 peak.
For example, depression was associated with a delay in the occurrence
of a P300 peak15 and was found in MDD patients when compared with
the healthy controls.16�18 In addition, decreased P300 intensity in the
right hemisphere was observed in MDD patients based on low resolu-
tion electromagnetic tomography (LORETA) analysis.19 Moreover,
longer P300 latency was observed in a study involving visually evoked
stimuli.20

7.3 STUDY PARTICIPANTS INFORMATION

In this study, two distinct groups of participants were recruited: (1)
MDD patients and (2) healthy controls. Thirty-four MDD patients, (17
males and 17 females) with a mean age of 40.33 and standard deviation
of 6 12.861, meeting international criteria for MDD diagnoses according
to Diagnostic and Statistical Manual-IV (DSM-IV)21 were recruited. In
addition, the second group included 30 healthy participants (21 males
and 9 females) with a mean age of 38.277 and standard deviation
of 6 15.64, termed as the control group. The recruitment of both groups
strictly followed the study inclusion and exclusion criteria, as described
previously.

TABLE 7.3 Visual 3-Stimulus Oddball Task14

Stimuli Name Number of Occurrences Shape of Stimuli

Standard 314

Distractor 45

Target 41
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Table 7.4 summarizes demographic information available about the
MDD patients. According to the table, the responders (R) and nonre-
sponders (NR) were enlisted separately. This discrimination between
responders and nonresponders was based on clinical questionnaires. In
this study, the HADS and BDI-II were considered as the gold standard
for determining the clinical conditions of the MDD patients.

TABLE 7.4 Clinical Characteristics of the MDD Patients, Mean (6SD)

Information Responders Nonresponders Total

Age (years) 40.733 (6 13.0245) 41.176 (6 12.47) 40.33 (6 12.861)

Gender (female/male) 8/8 9/8 17/16

Pretreatment BDI 18.444 (6 7.384) 22.8235 (6 12.476) 20.633 (6 8.582)

Pretreatment HADS 11 (6 1.581) 10.454 (6 3.297) 10.727 (6 2.439)

SSRI treatmenta E:9, F:2, S:4, Fl:1 E:4, F:7, S:4, Fl:2 E:13, F:9, S:8, Fl:3

Sample size calculation A group of 34 MDD patients were recruited based on the formula1,2:

n5
Pð12PÞ � ðZ12α=2Þ2

e2

where P is the expected proportion (e.g., expected diagnostic
sensitivity), is the error limit which is one half of the desired width of
the confidence interval, and Z12α=2 is the standard normal Z-value
corresponding to a cumulative probability of 12α=2. The investigator
must specify the best guess for the proportion that is expected to be
found after performing the study.2 For the research project study,
the parameter values were:

• significance α5 .05 (alpha),
• power of test5 80%, β5 .2 (beta),
• expected diagnostic accuracy P5 90%,4

• expected error e5 10%.

P5 0:90;α5 0:05; e5 0:10;Z12α=2 5 1:96

n5 ð0:90Þð0:10Þð1:96Þ2
ð0:10Þ2 D34

Inclusion criteria 1. Written informed consent
2. Patients between the age of 18 and 65 years
3. Patients diagnosed with MDD (DSM-IV)

a. Newly diagnosed (new cases)
b. Newly started (old cases)

i. Restarted on antidepressants (1-week washout)
ii. Switched to new antidepressant

Exclusion criteria 1. Patients having psychotic, cognitive disorders
2. Patients with a history of any other drug abuse
3. Pregnant patients
4. Patients with epilepsy

a SSRI medication administered: E, escitalopram; F, fluvoxamine; S, sertraline; Fl, fluoxetine.

1637.3 STUDY PARTICIPANTS INFORMATION

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



7.4 ELECTROENCEPHALOGRAPHY-BASED
LOCALIZATION FOR DISEASE PATHOLOGY

EEG and ERP data contain information regarding physiological pro-
cesses inside the human brain. Abnormal physiological processes due to
MDD may show aberrant EEG/ERP patterns. Based on EEG recordings,
brain activities were visualized as topographical maps. In addition,
sLORETA analyses were performed to construct 3D maps of activations.

7.4.1 Topographic Maps of Activations

Fig. 7.6 shows the locations of 19 EEG sensors for measuring data
from the scalp. Information regarding the locations of sensors was
required to construct brain topographic maps and the required informa-
tion was saved in a separate file location.22

In this study, brain topographic maps were constructed based on
scalp EEG/ERP data in a 2D circular view by performing interpolation
(biharmonic spline) on a fine Cartesian grid. On the topographic maps,
each location was assigned a color.

Fig. 7.7 shows an example topographic plot. While constructing each
topographical map, the value assigned to each scalp location was com-
puted based on statistical tests. The test computed statistics that showed
differences of values between two groups at a specific location.
According to the test results, the statistically quantified differences

Fp1 Fp2

F7

F3
Fz

F4

F8

T3 C3
Cz

C4

P3
Pz

P4

T5 T6

T4

O1 O2
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FIGURE 7.6 The 10�20 standard locations of 19 EEG sensors.
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between two groups were subjected to color assignments at each scalp
location. For example, to determine the differences between the MDD
patients and the healthy controls, a t-test was performed and the
P-values were computed. According to a t-test, differences between two
groups (MDD patients and the healthy controls) are significant if the
P-value is less than .05. On the other hand, if the P-value is greater than
.05, the difference is not significant, and the two groups have similar
distributions.

The P-values were computed at each location and, to produce a
visual representation, topographic maps were generated by assigning
different colors to each EEG sensor location according to the P-values.
In this case, topographic maps were constructed based on hypothesis
values, that is, H5 0 and H5 1. Blue was assigned for H5 0 and red
was assigned where H5 1. In other words, red indicated that the identi-
fied areas have a statistically significant difference, while blue indicated
the absence of significance.

7.4.2 sLORETA Analysis

sLORETA analyses can be used to construct 3D maps of current den-
sity due to volume conduction inside the brain while utilizing EEG
data.23 The 3D maps help estimate neuronal sources deep inside the
brain. Estimated neuronal sources deep inside the human brain are con-
sidered as generators of electric potentials that are observed on the
scalp. sLORETA analysis provides for the localization of neuronal
sources at different frequencies.

FIGURE 7.7 An exam-
ple of topographic plot.
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Fig. 7.8 shows an example of topographical plots generated by
sLORETA analysis. In this study, 3D maps of MDD patients and the
healthy controls were compared in order to analyze differences of these
localizations that may illustrate the association of normal or diseased
conditions. Similarly, topographic maps were used to investigate the
associations between the clinical characteristics of depression and EEG-
based topographical maps generated by different EEG features (e.g.,
power, asymmetry, and coherences).

In comparison to sLORETA analysis, topographical maps of activa-
tions were generated with customized EEG-based features. For example,
topographic maps were constructed based on coherence, asymmetry,
and power. However, in the case of sLORETA analysis, the 3D maps
were based on computed current densities only.

Clean EEG data were used to construct 3D topographic maps of acti-
vations that show the differences between MDD patients and the con-
trols. Differences between the groups were quantified with distinct
colors, for example, red, blue, and gray were used. Let us assume that
there were two groups, that is, group A and group B. While construct-
ing a 3D plot, the difference between A and B was assigned a red color
if it was positive; a blue color was assigned in cases where a negative
value was achieved; and the gray color was used in cases where the

FIGURE 7.8 Example sLORETA plots.
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difference was equal or zero. The objective of performing a sLORETA
analysis was to localize brain areas that showed significant differences
between the two groups. This, in turn, will be helpful during the reduc-
tion or selection of noteworthy features in EEG data. Brain areas that
are affected due to depression were discovered as mentioned in the lit-
erature as well. However, the replication of results was performed by
EEG data with specific features.

7.5 LOW-DIMENSIONAL REPRESENTATION

In this study, kernelized principal component analysis24 was used to
visualize clustering behavior. Here, Nr-dimensional feature space was
reduced to a two-dimensional subset of the feature space, so it could be
represented on a two-dimensional plane. This procedure was rotated
and nonlinearly transformed the coordinate axes of the feature space to
render the view giving the most compact representation. This provided
an insight into the clustering and discriminating performance of the fea-
ture set and aided in the identification of outliers.

7.6 EEG/ERP DIFFERENCES BETWEEN MAJOR
DEPRESSIVE DISORDER PATIENTS AND HEALTHY

CONTROLS

In this study, the EEG data showed aberrant patterns for MDD
patients, which could not be observed for healthy control subjects.
Hence, the differences of EEG (absolute power and interhemispheric
asymmetry) and ERP (P300 component) data were computed involving
the MDD patients and healthy control groups.

7.6.1 Event-Related Potential Component: P300

In this study, P300 was computed by taking grand averages of seg-
mented EEG data relevant to target shapes. For the MDD patient group,
averages were performed over different target trails across all 34 MDD
patients. For the control subjects, averages were performed over differ-
ent target trails across all 30 healthy control subjects. Finally, grand
averaged data for the two groups were plotted on the same scales for
comparison. The value of P300 peaks and the occurrence times for the
two groups were investigated.
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7.6.2 Absolute Power and EEG Alpha Interhemispheric
Asymmetry

In this study, absolute values were computed for delta, theta, alpha,
beta, and gamma bands for the frontal, temporal, occipital, and parietal
regions. The values were averaged across different channels in one
region. For example, the frontal region included seven electrodes.
Therefore, an average value was computed that reflected the overall
value of absolute power for the frontal region. Finally, the absolute
values were plotted for MDD patients and healthy controls. The
final values were compared in order to investigate the increased or
decreased values for the respective study group.

7.7 SUMMARY

In this chapter, the design of study protocol has been explained,
which has vital importance for the study and to record quality EEG
data. Study protocol includes sample size calculation, recruitment
criteria, clinical questionnaires, and the procedure for EEG/ERP data
acquisition. In addition, the procedure for localization of disease pathol-
ogy based on topographical maps and sLORETA was elaborated on as
well. The computation of P300 peaks and the comparison of absolute
power and EEF alpha interhemispheric asymmetry was performed. The
purpose was to investigate the significant differences of measure for
MDD patients.
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11. Ruhé HG, Huyser J, Swinkels JA, et al. Switching antidepressants after a first selective
serotonin reuptake inhibitor in major depressive disorder: a systematic review. J Clin
Psychiatry. 2006;67(12):1836�1855.

12. Carvalho AF, Machado JR, Cavalcante JL. Augmentation strategies for treatment-
resistant depression. Curr Opin Psychiatry. 2009;22(1):7�12.

13. Entsuah AR, Thase ME. Response and remission rates in different subpopulations
with major depressive disorder administered venlafaxine, selective serotonin reuptake
inhibitors, or placebo. J Clin Psychiatry. 2001;62(11):1,478�877.

14. Polich J, Criado JR. Neuropsychology and neuropharmacology of P3a and P3b. Int J
Psychophysiol. 2006;60(2):172�185.

15. Bruder GE, Towey JP, Stewart JW, et al. Event-related potentials in depression: influ-
ence of task, stimulus hemifield and clinical features on P3 latency. Biol Psychiatry.
1991;30(3):233�246.

16. Blackwood D, Sharp C, Walker M, et al. Implications of comorbidity for genetic stud-
ies of bipolar disorder: P300 and eye tracking as biological markers for illness. Brit J
Psychiatry. 1996;Supplement(30):85�92.

17. O’donnell B, Vohs J, Hetrick W, et al. Auditory event-related potential abnormalities
in bipolar disorder and schizophrenia. Int J Psychophysiol. 2004;53(1):45�55.

18. Souza VB, Muir WJ, Walker MT, et al. Auditory P300 event-related potentials and
neuropsychological performance in schizophrenia and bipolar affective disorder. Biol
Psychiatry. 1995;37(5):300�310.

19. Kawasaki T, Tanaka S, Wang J, et al. Abnormalities of P300 cortical current density in
unmedicated depressed patients revealed by LORETA analysis of event related poten-
tials. Psychiatry Clin Neurosci. 2004;58(1):68�75.

20. Zhu Y, Chen X-S, Qiu J-Y. Study on visual P300 evoked by facial expression stimulus
in patients with depression. J Shanghai Jiaotong Univ. 2012;10:014.

21. A.P. Association. Diagnostic and Statistical Manual of Mental Disorders. DSM-IV-TRs:
American Psychiatric Pub; 2000.

22. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. J Neurosci Methods.
2004;134(1):9�21.

23. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography
(sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24(Suppl D):5�12.

24. Muller K-R, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms.
Handbook of Neural Network Signal Processing. CRC Press; 2001.

169REFERENCES

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER

http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref6
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref6
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref6
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref6
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref7
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref7
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref8
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref8
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref8
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref9
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref9
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref9
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref9
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref9
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref10
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref10
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref10
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref10
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref11
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref11
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref11
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref12
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref12
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref12
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref12
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref13
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref13
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref13
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref14
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref14
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref14
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref14
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref15
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref15
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref15
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref15
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref16
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref16
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref16
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref17
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref17
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref17
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref17
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref18
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref18
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref18
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref18
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref19
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref19
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref20
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref20
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref20
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref21
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref21
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref21
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref21
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref22
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref22
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref22
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref23
http://refhub.elsevier.com/B978-0-12-817420-3.00007-2/sbref23


This page intentionally left blank



C H A P T E R

8

Electroencephalography-Based
Diagnosis of Depression

8.1 INTRODUCTION

This chapter presents an ML scheme—the Intelligent Treatment
Management System (ITMS)—that can automatically classify a study sam-
ple as either a depressed patient or a healthy control. The description
involves efficient identification of the most relevant and discriminant
features that could be potential candidates for efficient classification. In
this context, Fig. 8.1 shows the block-level representation of ITMS
including the feature selection and classification for unipolar depressed
patients. The ITMS presented in this chapter inherently involves sub-
processes such as noise removal from the electroencephalography (EEG)
data, EEG-based feature generation, and selection of the most
suitable features along with the supervised classification and validation,
including 10-CV. Moreover, the ITMS has two versions. First, the ITMS
diagnosis intends to perform EEG-based diagnoses of depression by
identifying the depressed patients and healthy controls recruited for
this research study. Second, the ITMS treatment selection performs an
EEG-based estimation of treatment efficacy for antidepressant therapy
while classifying the major depressive disorder (MDD) patients as either
treatment respondents (R) or nonrespondents (NR) involving the pre-
treatment EEG data recorded from the depressed patients in the study.

The scheme for ITMS diagnosis involves an integration of EEG-
derived features, including absolute power of distinct EEG bands, the
EEG alpha interhemispheric asymmetry, and synchronization likelihood
(SL). On the other hand, ITMS treatment selection involves the integration
of features computed from wavelet transform (WT) analysis, including
wavelet energy, wavelet-based sample entropy (WSE), wavelet-based
composite permutation entropy index (WCPEI), and wavelet-based
fractal dimension (WFD). In addition, this chapter elaborates on the
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EEG-based localization of the abnormal brain areas affected due
to MDD (as identified in Chapter 2: Electroencephalography
Fundamentals). Specifically, this chapter provides the technical details
of the ITMS diagnosis while Chapter 9, Electroencephalography-Based
Treatment Efficacy Assessment Involving Depression, elaborates on the
ITMS treatment selection.

True labels

Train data

EEG feature
extraction

Test data

Z score
standardization

Z score
standardization

Features ranking

Selecting the top-ranked
features

(One-by-one)
e.g., top 1, top 2 …
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Feature indices of the selected
features (Test data)
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parameters

Computing
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FIGURE 8.1 The ITMS with innovative feature selection method.
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The ITMS diagnosis method offers validation using the EEG data
acquired from the depressed patients and healthy controls in the study.
The details of the EEG data recording procedure and recruiting
study participants are provided in Chapter 7, Design of an
Electroencephalography Experiment for Assessing Major Depressive
Disorder. The recorded data were termed as the raw EEG data and were
confounded with background additive noises. Usually, these noises
should be removed before performing EEG analysis. Therefore, the
removal of noises from the raw EEG data is an essential preliminary
step, often termed preprocessing. The preprocessing included the cor-
rection of EEG data from artifact types such as eye movements (hori-
zontal and vertical), blinks, and muscular and heart activities. See
Chapter 7, Design of an Electroencephalography Experiment for
Assessing Major Depressive Disorder for a discussion of the details on
the EEG preprocessing.

According to Fig. 8.1, the EEG-derived features provide input data to
the ML-based method. More importantly, the extracted features should
be specific to the target classes that helped identify the most relevant
patterns. After feature extraction, the derived features were arranged
columnwise in the EEG data matrix. The columns represented individual
features whereas the rows corresponded to the observations, including
each study participant (both the MDD patients and healthy controls). In
this study, the features extraction included both eyes closed (EC) and
eyes open (EO) conditions and concatenated; hence, the EEG data matri-
ces constructed include features corresponding to both the EC and EO
datasets.

Because the data comes from different study participants and may
require normalization, the EEG data matrix underwent z-score standardi-
zation. In addition, the subsequent statistical methods could be con-
founded if applied on the data without performing any a priori data
standardization or noise reduction. Therefore, data normalization/stan-
dardization was necessary before performing any subsequent analysis.
The process was repeated for each feature, for example, in the EEG data
matrix, Xi represented each feature with “i” as a feature index. The
z-score was computed featurewise by subtracting each value of the fea-
ture by the feature mean and divided by the feature standard deviation.
A further detail on the z-score standardization is provided in the rele-
vant Section 8.4.

In this chapter, the validation of the trained classifier models [logistic
regression (LR) classifier, support vector machine (SVM) classifier, and
Naı̈ve Bayesian [NB] classifier] required the independence of training
and testing sets which was achieved with 10-CV. According to 10-CV,
during an iteration the observations (rows) in the EEG data matrices
were randomly chosen as part of either the training or testing sets. The
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10-CV was performed to ensure that the operations such as the data
normalization/standardization, feature selection, and classification
(Fig. 7.1) were performed separately for the training and testing sets
(these processes will be explained in this chapter).

For each fold of the 10-CV, the performance measures such as the
classification accuracies, sensitivities, specificities, and the F-measures
were computed. The classification models were built independently
based only on the training data and the testing was performed sepa-
rately. Therefore, the computed efficiencies were termed as the test effi-
ciencies (accuracies, sensitivities, specificities, and the F-measures). The
remainder of this chapter explains the importance and technical details
of each subblock of the ML scheme (Fig. 7.1).

8.2 ELECTROENCEPHALOGRAPHY PREPROCESSING

During EEG recordings, noises are usually added due to multiple fac-
tors such as power line noise, eye blinking, heartbeats, and yawning.
For example, a 50 Hz signal due to power supply line induces noise and
is a source of artifact. Eye blinks could be identified with relatively
higher amplitude than the normal EEG signal. On the other hand, mus-
cle artifacts could be identified as high frequency bursts. To achieve
artifact-free EEG data, the artifacts must be identified and removed
while keeping the relevant information intact. However, it is obvious
that the rejection of EEG segments with artifacts could also result in the
loss of useful information regarding neural activity. Hence, in this
study, the correction of the artifacts was preferred over rejection or
deletion.

In this chapter, noise removal was performed on 5 minutes of EC and
5 minutes of EO data to achieve at least 2 minutes each of clean EEG
data corresponding to EC and EO conditions as per study participant,
respectively. A 2 minutes length of clean EEG segments ensured a valid
representation of the underlying neural activity.1

In Fig. 8.2, a snapshot of the eye blink artifact is shown. In the EEG
data, it could be identified by relatively higher amplitudes than a nor-
mal EEG activity. The eye blink artifacts normally appear in the frontal
sensors, that is, the Fp1 and Fp2, because of their spatial locations near
the eyes. As shown in the figure, occurrence of high amplitude involv-
ing Fp1 and Fp2 signals causes distortion in the other signals as well
(such as F7 and F3, etc.) and corrupts the whole EEG segment. Hence,
the eye blink artifacts can be identified easily during a visual inspection
of EEG data recordings.
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In this chapter, the artifacts (eye blinks, muscular activities, 50 Hz
line noise) were removed using BESA software. The raw EEG data were
imported in the European data format (EDF). In BESA, cleaning EEG
data from artifact types, namely eyes blinks, muscle activity, line noise,
and heart activity, was based on a semi-automatic procedure. First, the
researcher should define an artifact type such as eye movements, eye
blinks, or muscular and heart activities. Second, the researcher should
mark a few portions of the EEG data that were corrupted by the artifact
type defined in the previous step so that the software can learn the arti-
fact shape. Based on this learning, the software automatically marks
such artifacts in the rest of the EEG recording by automatically travers-
ing the whole recording of the EEG data. As a result, an artifact tem-
plate was constructed while averaging the marked artifacts. The
template corresponded to only one of the artifact types (eye movements,
eye blinks, or muscular and heart activities) and could only be learned
for one type of artifact at a single time. Furthermore, the noise topogra-
phy corresponding to the artifact type was automatically estimated and
constructed by BESA. Third, the noise topography accompanied with an
appropriate user-dependent head model (selected in BESA) were used
to autocorrect the artifacts at the marked places in the whole EEG data
recording. This technique of artifact correction is called the multiple
source eye correction (MSEC) method.2 Finally, the procedure was

Eye blink artifact 

FIGURE 8.2 Example dataset with eye blink artefact.
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repeated by generating the corresponding noise topographies for all
possible artifact types observed in the recorded EEG data. After the nec-
essary artifact corrections, the data can be exported to the MATLAB for
further processing.

8.3 FEATURE EXTRACTION

The feature extraction results in different EEG data matrices. In the
case of ITMS diagnosis, the computed features were absolute power of
each frequency band, EEG alpha interhemispheric asymmetry, and SL.
On the other hand, the ITMS treatment selection included features,
including WCPEI, WSE, and WFD. A detailed description of each fea-
ture is provided next.

8.3.1 ITMS Diagnosis

The classification of MDD patients and healthy controls involved
EEG spectral power, EEG alpha interhemispheric asymmetry, and SL.
Fig. 8.3 shows the feature extraction stage (FES) of ITMS diagnosis. The

Clean EEG data

Absolute power
(delta, theta, alpha,

beta, gamma 

EEG alpha inter-
hemispheric
asymmetry

Preprocessing
stage

Feature
extraction

stage

Synchronization
likelihood (SL)

EEG data
matrix for SL

EEG data
matrix for
asymmetry

EEG data
matrix for

Power

Classification
& validation

Integration of features

Classification, 10-CV

Rank-based feature selection

FIGURE 8.3 Feature extraction stage (FES) for ITMS diagnosis.
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clean EEG data were subjected to the extraction of features. As a result,
the EEG data matrices were constructed based on individual feature
values and on the integration of absolute power, EEG alpha interhemi-
spheric asymmetry, and SL. Finally, most noteworthy features were
selected from the EEG data matrices and were used to perform classifi-
cation and validation.

8.3.1.1 Significance of the Features (ITMS Diagnosis)

The ITMS diagnosis advocates integrating EEG absolute power, EEG
interhemispheric asymmetry, and SL. This section provides justifications
for this claim. The use of EEG spectral power (EEG activity) as a feature
is, in accordance with the literature, termed as the marker for the vul-
nerability of depression. For example, the EEG activity localized in fron-
tal and temporal areas has been correlated with cognitive deficits and
functional impairments that are common characteristics of depression.3,4

Moreover, according to a recent review, decreased left frontal activity
(measured as increased alpha power/amplitude) has been associated
with depression.5

MDD patients exhibit various abnormalities in the spectral power of
different EEG bands. Therefore, this study hypothesized that the analy-
sis of spectral power for MDD and healthy control subjects could result
into higher classification results. Furthermore, the association of abnor-
mal EEG activities with the depressed patients could be translated into
clinical applications. Hence, the EEG spectral power is the main part for
ITMS diagnosis.

Numerous studies have shown the significance of EEG alpha inter-
hemispheric asymmetry during depression diagnosis.6�8 For example,
a research study involving the EEG alpha interhemispheric asymmetry
has shown association with the psychomotor retardation during
depression6; another study has declared the EEG frontal asymmetry as
a vulnerability marker for depression.7 In addition, depression has
been associated with decreased alpha waves,8 while another study
found that the altered structure of an EEG oscillatory pattern corre-
lated with depression.5 Hence, EEG alpha interhemispheric asymmetry
could be considered as a biomarker for automatic diagnosis of
depression.

In addition to the alpha band, activity in other bands such as the
theta band has shown relevance during depression such as a decreased
frontal theta activity.9�11 Moreover, depressed patients have exhibited
hypoactivation of the left frontal12,13 and hyperactivation in the right
frontal regions.9 However, the clinical implications of the frontal EEG
alpha interhemispheric asymmetry and frontal midline theta activity
have been largely unclear.14 Hence, this situation further warrants an
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investigation on the applications of EEG features such as EEG alpha
interhemispheric asymmetry and EEG spectral power of different fre-
quency bands for diagnosing depression. In addition, fusion of these
features could provide more robust features for the ML model for
depression diagnosis.

The literature has evidenced that the EEG-based assessment of func-
tional connectivity (FC) between different brain regions could poten-
tially become biomarkers to diagnose depression.15�18 For example, the
aberrant FC between different brain regions have been associated
with MDD. In another study, the SL was used to diagnose Alzheimer’s
disease19; however, the SL was not investigated as a feature in a
ML-based scenario. Therefore, in this study, the quantification of FC
was performed by computing SL values between different sensor
pairs at sparse locations.20 Table 8.1 summarizes EEG features and the
significance of absolute power, EEG interhemispheric asymmetry, and
the SL. The next section provides a mathematical description of these
features.

TABLE 8.1 Features for ITMS Diagnosis

EEG features Significance

Absolute power The EEG alpha band has shown relevance
with MDD patients. Based on the findings, it
was hypothesized that these features may
show relevance to the proprietary data
acquired in this study.

EEG alpha interhemispheric asymmetry The EEG alpha interhemispheric asymmetry
has shown strong association with MDD.
Hence, it was hypothesized that the EEG
patterns may show a strong association with
MDD and ultimately used for classification
purposes.

Synchronization likelihood (SL) Due to the abnormalities reported in the
functional connectivity of a depressed brain, it
was hypothesized that the SL could be utilized
as a feature to classify MDD patients from
healthy controls.

Integration of absolute power, EEG
alpha interhemispheric asymmetry,
and SL

The integration of significant features from
individual features was performed based on
the hypothesis that the integration of these
features will significantly improve the
classification accuracy over the accuracy
achieved from individual features.
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8.3.1.2 Computing Power for Different Electroencephalography
Bands

Fig. 8.4 shows a block-level representation describing the EEG filter-
ing and power spectral density (PSD) computations. The filtering impli-
cates into individual frequency bands such as delta (0.5�4 Hz), theta
(4�8 Hz), alpha (8�12 Hz), beta (12�30 Hz), and gamma (30�70 Hz). In
this study, the absolute power computation involves 19 EEG channels.
The power values are averaged according to the number of channels
corresponding to each brain lobe such as frontal (Fp1, Fp2, F3, F4, F7,
F8, Fpz), temporal (T3, T4, T5, T6), parietal (P3, P4, P7, P8), occipital
(O1, O2), and central (C3, C4).

The EEG signal power was estimated using the Welch periodogram
method21 using the Hanning window function.22 According to this
method, the EEG signal was segmented into eight segments with 50%
overlap. The number and overlaps between segments is a variable and
adjustments can be done. The PSD was computed for each segment.
Finally, an average was performed over all the segments to achieve the
absolute power of the observed EEG signal [as described in Eq. (8.1)].
Eq. (8.1) shows the average of the Fourier transform of the windowed
EEG signals (periodograms) segmented according to the Welch periodo-
gram method:

ŜxxðkÞ5
1

N

X
xðnÞe2ð2πjkn=NÞ

��� ���2 (8.1)

where N is the number of segments and n is data samples. Finally, the
EEG power in different frequency bands and scalp locations become
features during the ML process.
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FIGURE 8.4 Filtering and power computation of EEG data.
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8.3.1.3 Computing Electroencephalography Alpha Interhemispheric
Asymmetry

EEG alpha interhemispheric asymmetry shows the difference of
power computed between the left and right hemispheres. More specifi-
cally, the EEG alpha interhemispheric asymmetry is the difference of
spectral power in alpha band.23 Eqs. (8.2) and (8.3) show the relative
EEG signal power in the left and right hemisphere, respectively:

W 0
Lmn 5

Pf2
f5f1

sLmnP30Hz
f50:5Hz sLmn

(8.2)

W 0
Rmn 5

Pf2
f5f1

sRmnP30 Hz
f50:5 Hz sRmn

(8.3)

where f1 and f2 represent the lower and upper frequency limits of the
selected EEG frequency bands, respectively. In addition, the sLmn and
sRmn implicate the left and right hemispheric spectral power densities,
respectively. Furthermore, WLmn and WRmn denote the left and right sig-
nal power individually.

The computation of the EEG alpha interhemispheric asymmetry
involves each study participant for the 16 scalp locations. The odd EEG
sensors named Fp1, F7, F3, T3, T5, C3, P3, and O1 represent the left
hemisphere. Similarly, the even electrodes termed Fp2, F8, F4, T4, T6,
C4, P4, and O2 represent the right hemisphere. Finally, Eq. (8.4) pro-
vides the mathematical description of the interhemispheric asymmetry:

Amnðf1; f2Þ5
W 0

Lmn 2W 0
Rmn

W 0
Lmn 1W 0

Rmn

3 100 (8.4)

where WLmn and WRmn represent the left and right signal power, respec-
tively. The EEG alpha interhemispheric asymmetry is denoted by
Amn(f1, f2).

The computation of EEG alpha interhemispheric asymmetry involves
each channel pair for brain lobes such as the frontal (Fp1, Fp2, F3, F4,
F7, F8), temporal (T3, T4, T5, T6), parietal (P3, P4, P7, P8), occipital (O1,
O2), and central (C3, C4). Hence, the EEG alpha interhemispheric asym-
metry computation for the channel Fp1 involved channel pairs such as
Fp1�Fp2; Fp1�F4; Fp1�F8; Fp1�T4; Fp1�T6; Fp1�P4; Fp1�P8;
Fp1�O2; and Fp1�C4.

8.3.1.4 Computing Functional Connectivity With Synchronization
Likelihood

SL is a FC measure that is normally computed for all possible elec-
trode combinations in an EEG recorded dataset. Since EEG data could
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have multiple channels, the number of combinations depends on the
number of electrodes. This section provides the mathematical represen-
tation for computing the SL measure.

The multiple EEG channels are represented as M simultaneous time
series xk,i, where k implicates number of channels such as k5 1, 2, 3, . . .,
M, and i represents time points such as i5 1, 2, 3, . . ., N. In step 1 for
computing the SL, the EEG data are used to represent in a high-
dimensional space involving the time delay embedding method.24 As
shown in Eq. (8.5), a channel of EEG data is used to construct embed-
ding vectors Xk,i:

Xk;i 5 ðxk;i; xk;i1l; xk;i12l; . . .; xk;i1ðm21ÞlÞ (8.5)

where l is lag and m is the embedding dimension.
In step 2 for computing the SL, for each channel k and time point i, a

probability Pε
k;i is calculated according to Eq. (8.6). More specifically, a

comparison is performed between the difference of the embedding vec-
tors and a threshold value. According to the following equation, the dis-
tances less than a threshold value contribute toward the probabilities:

Pε
k;i 5

1

2ðω2 2ω1Þ
XN

j51

ω1 , i2j
�� ��,ω2

θ ε2 Xk;i 2Xk;j

�� ��� �
(8.6)

where |.| represents the Euclidean distance and θ represents the
Heaviside step function, θ(x)5 0 if x# 0 and θ(x)5 1 for x. 0. In addi-
tion, ω1 and ω2 implicate two windows such that ω1 is the Theiler cor-
rection for autocorrelation effects and should be at least of the order of
the autocorrelation time.25 Moreover, the ω2 represents a window that
sharpens the time resolution of the synchronization measure. Their
values are selected such that ω1,,ω2,,N.

In step 3 for computing the SL, once all the probabilities are com-
puted for each time point i, now for each k critical distances εk,i are com-
puted such that their probabilities should follow a formula, that is,
Pε
k;i 5 pref, where pref,, 1.
In step 4 for computing the SL, for each time pair (i,j) and within the

considered window (ω1,|i�j|, ω2; e.g., w15 1 and w25 3), it is easy
to count the number of channels Hi,j [as shown in Eq. (8.6)], for which
the embedding vectors Xk,i and Xk,j will be closer together considering
the critical distance εk,i :

Hi;j 5
XM
k51

θ εk;i 2 Xk;i 2Xk;j

�� ��� �
(8.7)
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Eq. (8.7) represents a count on the number of embedded signals
showing a resemblance with each other. This number lies in a range
between 0 and M.

In step 5 for computing the SL, for each channel k and each discrete
time pair (i,j), the SL is computed as:

if Xk;i 2Xk;j

�� ��, εk;i:Sk;i;j 5
Hi;j 2 1

M2 1

if Xk;i 2Xk;j

�� ��$ εk;i:Sk;i;j 5 0

By averaging over all j the SL Sk,i is obtained as in Eq. (8.8):

Sk;i 5
1

2ðω2 2ω1Þ
XN

j51
ω1 , j2i

�� ��,ω2

Sk;i;j (8.8)

The SL Sk,i could be interpreted as a measure describing how strongly
channel k at time i is synchronized to all the other M�1 channels. The
SL may have different values between Pref and 1. Specifically, Sk,i5Pref

represents a scenario where all M channels are uncorrelated. On the
other hand, the Sk,i5 1 refers to maximal synchronization between all M
channels. Preferably, the Pref should have a low value such that it is
independent from the properties of the time series or embedding
parameters.

For a 19-channel EEG cap from Brain Master, the SL can be computed
involving each channel pair for brain lobes such as the frontal (Fp1,
Fp2, F3, F4, F7, F8, Fpz), temporal (T3, T4, T5, T6), parietal (P3, P4, P7,
P8), occipital (O1, O2), and central (C3, C4). In particular, the SL for Fp1
involved the channel pairs: Fp1�Fp2; Fp1�F4; Fp1�F8; Fp1�T4;
Fp1�T6; Fp1�P4; Fp1�P8; Fp1�O2; and Fp1�C4. Further, the extracted
SL features could be arranged columnwise in a matrix, called the EEG
data matrix. The EEG data matrix may have reductant or irrelevant fea-
tures when subjected to ML classification. Hence, the matrix underwent
feature selection.

Here the feature selection method is briefly described (refer to
Section 8.5 for a complete description of the feature selection method).
This chapter advocates a rank-based feature selection method employed
to find the most significant features in the EEG data matrix.26 According
to this method, each feature is assigned a weight value corresponding
to the ability of a feature to classify the data points into corresponding
target classes. The weight values were computed according to the area
under curve (AUC) of the receiver operating characteristic (ROC) com-
puted for a feature. A higher weight value was assigned to a feature
with larger AUC than a feature with a smaller AUC. The weight value
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could be any number between 0 and 1, indicating a bad to good classifi-
cation ability. The weight values allowed listing the most significant fea-
tures in a list in descending order. According to this method, the most
noteworthy features could be identified by selecting the top-listed fea-
tures only.

8.3.1.5 Integration of Features

In this study, the features are integrated based on a feature concate-
nation method. In particular, an integration of the features was done by
selecting the most discriminant features from EEG power, EEG alpha
interhemispheric asymmetry, and the SL.

8.4 STANDARDIZATION

This study advocates the use of z-scores standardization. The stan-
dardization eliminates possible outliers in the data matrix. In z-score
standardization, each feature is subjected to standardization separately.
In particular, the mean and standard deviation of a feature is computed.
Next, the z-score could be computed by performing subtraction of each
element value by its mean and dividing by its corresponding standard
deviation.

Mathematically, the EEG data standardization was performed using
the formulas described in Eqs. (8.9) and (8.10).27

For example, Xi represents an element of each feature with “i” as an
index. For a feature, the mean X and the standard deviation S are com-
puted, respectively [as shown in Eq. (8.10)] where the N represents total
number of elements in a feature. Finally, the z-value is computed
according to Eq. (8.9).

Z5
Xi 2X

S
(8.9)

X5

PN
i51 Xi

N
; S5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i51 ðxi2xÞ2
N2 1

s
(8.10)

8.5 FEATURE SELECTION

The selection of most relevant features resulted in dimension reduc-
tion that further facilitates a classifier to learn actual patterns in the data
rather than be confounded to any outlier. Hence, the feature selection
would certainly improve classifier performance.28 The selection of most
significant features essentially includes two steps26: first, assigning a
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weight to each feature in the EEG data matrix based on their classifica-
tion ability while computing its relevance with the target vector, and
second, identification of redundant features based on computing corre-
lations among top-ranked features.

Assigning a weight to each feature was performed according to the
criterion, that is, ROCs.29 According to the criterion, the empirical ROC
curve was computed for each feature and the AUC was computed,
termed as a z-value. The z-value may vary between 0 and 0.5 describing
bad to good classification, respectively. For example, a feature with
larger z-value was more capable in discriminating the two classes than
a feature with a smaller z-value. Those features with better class separa-
bility according to the z-value were ranked higher in the ranking list
than the features with lower z-values. As a result, the features were
arranged (ranked) in descending order according to the z-values.
However, redundancy among distinctive features could not be found
just by assigning z-values to the features. In other words, the interrela-
tion among features was not categorized with the feature-ranking
method. Therefore, the additional step of computing correlation among
features was performed and the features with the highest correlations
were discarded. Hence, combining steps 1 and 2, a reduced set of the
most relevant and nonredundant features were achieved. The classifier
performances were computed for all features while adding one feature
at a time. However, only the best classification results were presented.
The rest of this section explains the theoretical description of the fea-
tures’ selection method.

Let A5 [a1, a2 . . . am] be the set of m features and r be a function that
assigns a value of merit to each feature aAA. The feature ranking is a
function F that assigns a value of merit (relevance) to each attribute
(aiAA) and returns a list of attributes (a�i AA) observed by its relevance,
with iAf1; . . .;mg:

Fðfa1; a2; . . .; amgÞ5, a�1; a
�
2; . . .; a

�
m .

where rða�1Þ$ rða�2Þ$ . . .$ rða�mÞ.
By convention, it was assumed that a high score was indicative of a

relevant feature. The features were sorted in a decreasing order of rank-
ing for each feature as mentioned by r(a*). ROCs were defined as the
ranking criterion for individual features independently to the context of
others. The selection of features was restricted to supervised learning
because the information about the treatment outcome was provided
based on the clinical scores.

For each feature, the given examples were sorted in descending order
according to the feature values. Let rt be the rank of the tth class a1
examples. Let qt be the number of class 11 examples whose ranks are
higher than rt. The ROC curve is generated by plotting the (ti,qt) over
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t5 1 . . . M�1. Fig. 8.5 shows the ROC curve generated by plotting (ti,qt)
over t5 1, . . ., M�1.

As shown in the figure, the area ARD is defined as the area between
the ROC curve and the diagonal line. The ARD was obtained by first
computing the distance between the point (ti,qt) of the ROC curve and a
point (ti,ti) on the diagonal line, that is, qt�ti, and sum up qt�ti over
t5 1 . . . M�1 as follows:P

tðqt 2 tiÞ
�� ��5 P

tðrt 2 2tiÞ
�� ��

5
P

t rt22
P

t ti
�� ��

5 Ωið2 1Þ2M21ðM21 1 1Þ
�� �� (8.11)

where Ωi(a1) is the sum of the ranks of class a1 examples when the
sorting was performed for all examples by the values of feature i.
Eq. (8.12) depends on the size of M�1, and so by dividing it by the
whole area M11 and M�1, the ARD of the feature i is described as:

ARDi 5
Ωið2 1Þ2M21ðM21 1 1Þ

M11M21

����
���� (8.12)

The pseudocode for the feature-ranking method has been provided
in Table 8.2.

8.5.1 Example 1

Let a variable (or a set) be defined by capital X and a value of that
variable by a same small letter, that is, x. Let C be a set of target classes

FIGURE 8.5 Receiver operating characteristics curve.26
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or a variable corresponding to the target label. Let F be a variable corre-
sponding to the entire feature set, taking values f. Let Fi be a variable
corresponding to ith features taking values fi.

Table 8.3 enlists the EEG data. According to this description, the fea-
tures are enlisted columnwise. The table shows two features with 10
example points. In the rest of this section, the computation of the area
under the ROC curve is provided.

Tables 8.4�8.6 lists the intermediate values of different variables dur-
ing the computation of the AUC for the given example data listed in
Table 8.3.

TABLE 8.2 Pseudocode for the Feature Ranking Method

patterns = [x y]; 

patterns = sortrows(patterns,-1); 

y = patterns(:,2); 

p = cumsum(y==1); 

tp = p/sum(y==1); 

n = cumsum(y==-1); 

fp = n/sum(y==-1); 

n = length(tp); 

Y=(tp(2:n)+tp(1:n-1))/2; 

X = fp(2:n) - fp(1:n-1); 

auc=sum(Y.*X)-0.5; 

TABLE 8.3 Real EEG Data

Sample ID . . . i j . . . Label

1 20.2 10.5 (2)

2 21.4 21.4 (2)

3 10.8 20.9 (2)

4 20.8 10.2 (1)

5 . . . 10.1 22.5 . . . (1)

6 10.5 11.4 (2)

7 11.6 20.3 (1)

8 22.1 21.2 (2)

9 20.3 12.2 (1)

10 13.4 21.7 (2)
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8.5.2 Example 2

Tables 8.7�8.9 enlist the intermediate values of different variables
during the computation of the AUC for the given example data listed in
Table 8.3.

TABLE 8.4 Computation for Example 1

Feature Values (Sorted

in Descending Order) Label p n tp fp

3.4 (2) 0 1 0 0.1667

1.6 (1) 1 1 0.25 0.1667

0.8 (2) 1 2 0.25 0.333

0.5 (2) 1 3 0.25 0.5

0.1 (1) 2 3 0.5 0.5

2 0.2 (2) 2 4 0.5 0.6667

2 0.3 (1) 3 4 0.75 0.6667

2 0.8 (1) 4 4 1 0.6667

2 1.4 (2) 4 5 1 0.8333

2 2.1 (2) 4 6 1 1

TABLE 8.5 Computation of Y5 (tp(2:n)1 tp(1:n2 1))/2

tp(2:n) 0.25 0.25 0.25 0.5 0.5 0.75 1 1 1

tp(1:n�1) 0 0.25 0.25 0.25 0.5 0.5 0.75 1 1

(tp(2:n)1 tp(1:n�1))/2 0.25 0.5 0.5 0.75 1 1.25 1.75 2 2

Y 0.125 0.25 0.25 0.375 0.5 0.625 0.875 1 1

TABLE 8.6 Computation of X5 (fp(2:n)�fp(1:n�1))

fp(2:n) 0.1667 0.333 0.5 0.5 0.6667 0.6667 0.6667 0.8333 1

fp(1:n�1) 0.1667 0.1667 0.333 0.5 0.5 0.6667 0.6667 0.667 0.8333

X 0 0.1667 0.1667 0 0.1667 0 0 0.1667 0.1667

AUC5 sum(Y.3X)�0.5;

AUC5 (0.1253 01 0.253 0.16671 0.253 0.16671 0.3753 01 0.53 0.16671 0.6253 01 0.8253 0

1 0.16673 11 0.16673 1)2 0.5

AUC5 0.5 � 0.25 0.3
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8.6 CLASSIFICATION MODELS

8.6.1 Logistic Regression Classification

This study advocates the use of LR classification because it is
suitable for solving binomial classification problems. In addition, the LR

TABLE 8.7 Computations for Example 2

Feature Values (Sorted

in Descending Order) Label p n tp fp

1 2.2 (1) 1 0 0.25 0

1 1.4 (2) 1 1 0.25 0.1667

1 0.5 (2) 1 2 0.25 0.3333

1 0.2 (1) 2 2 0.50 0.3333

2 0.3 (1) 3 2 0.75 0.3333

2 0.9 (2) 3 3 0.75 0.5

2 1.2 (2) 3 4 0.75 0.6667

2 1.4 (2) 3 5 0.75 0.8333

2 1.7 (2) 3 6 0.75 0.8333

2 2.5 (1) 4 6 1 1

TABLE 8.8 Computation of Y5 (tp(2:n)1 tp(1:n2 1))/2

tp(2:n) 0.25 0.25 0.50 0.75 0.75 0.75 0.75 0.75 1

tp(1:n2 1) 0.25 0.25 0.25 0.50 0.75 0.75 0.75 0.75 0.75

(tp(2:n)1 tp(1:
n2 1))/2

0.25 0.25 0.375 0.625 0.75 0.75 0.75 0.75 0.875

Y 0.125 0.125 0.1875 0.3125 0.375 0.375 0.375 0.375 0.4375

TABLE 8.9 Computation of X5 (fp(2:n)2 fp(1:n�1))

fp(2:n) 0.1667 0.333 0.333 0.333 0.5 0.6667 0.8333 0.8333 1

fp(1:n�1) 0 0.1667 0.333 0.333 0.333 0.5 0.6667 0.8333 0.8333

X 0.1667 0.1667 0 0 0.1667 0 0.1667 0 0.1667

AUC5 sum(Y.3X)�0.5;

AUC5 (0.1253 0.16671 0.1253 0.16671 0.18753 0.16671 0.31253 01 0.3753 01 0.3753 0.1667

1 0.3753 01 0.3753 0.16671 0.43753 0.1667)2 0.5

AUC5 0.0833

188 8. ELECTROENCEPHALOGRAPHY-BASED DIAGNOSIS OF DEPRESSION

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



classifier is capable of finding a suitable model between categorical and
continuous variables. For example, the categorical variables are
depressed versus normal or treatment respondent versus nonrespon-
dents. The features extracted from the EEG lie in the category of the
continuous variables. For example, the LR classification has been com-
monly applied for various epidemiological studies, for example, during
cancer classification either as malignant or benign.30

In this study, the objective of the classification process is to model the
relationship between significant QEEG (Quantitative EEG) features such
as the wavelet-based features and the treatment outcome, that is,
respondents (R) versus nonrespondents (NR). In the case of diagnosis,
the model was based on a relationship between QEEG features and the
classes, that is, MDD patients and healthy controls. The learned model
was further utilized to diagnose the MDD patients and to predict anti-
depressant’s treatment outcome.

A multivariate relationship between the EEG-based features and the
clinical outcomes, that is, R and NR, was modeled based on the LR model,
which is commonly applied for various epidemiological studies (e.g., dur-
ing classification of cancer either as malignant or benign).30 In case of diag-
nosis, the clinical outcomes were the “MDD patients” and “healthy
controls.” The reduced set of EEG features was considered as the indepen-
dent variables and the corresponding treatment outcomes (R or NR) were
the dependent variables. Logistic function provides the mathematical base
on which the logistic model is based and is given by Eq. (8.13):

FðzÞ5E
Y

x

� �
5

1

11 e2z
(8.13)

where Y was the class labels and assigned a value either (R Vs NR) or
(MDD patients Vs healthy controls) and x represents a combination of
the EEG features after feature selection, that is, the coefficients achieved
by WT technique and the features extracted from EMD and STFT analy-
sis. To obtain the LR model from the logistic function, we used
Eq. (8.14):

z5α1β1X1 1 β2X2 1 . . .1βkXk (8.14)

where z is a linear combination of α plus β1 multiplied with X1, plus β2

multiplied with X2, and plus βk multiplied with Xk, where the Xk are
the independent variables and α and βi are constant terms representing
unknown parameters. Furthermore, by replacing the value of z from
Eqs. (8.13) to (8.14), the following Eq. (8.15) represents the logistic
function:

FðzÞ5E
Y

x

� �
5

1

11 e2ðα1
P

βiXiÞ
(8.15)

1898.6 CLASSIFICATION MODELS

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



In terms of response and nonresponse, the risk of a person to be non-
responder or a responder is estimated and represented by Y or l(x). The
LR classifier resulted into a likelihood value l(x), where 0 # l(x) # 1,
which was an indication of subjects associated either with the R or NR
category. If l(x) was greater than the threshold5 0.5, the subject was
declared as R (responder) and otherwise as a NR (nonresponder). In
summary, the LR classifier generated probability values to cater for
MDD patients as either R or NR to the treatment. The fitting of the LR
model is explained as follows.

Assume that we have a sample of n independent observations (xi, yi),
i5 1, 2, . . ., n, where yi denotes the value of a dichotomous outcome var-
iable and xi is the value of the independent variable for the ith subject.
The outcome variable is coded as R or NR, y5 [R, NR], based on the
clinical results provided by the BDI-II and HADS. This coding for a
dichotomous outcome is used throughout the text. As in the univariate
case, fitting the model requires that we obtain estimates of vectors
β0 5 ðβ0;β1; . . .;βpÞ. The method of estimation used in the multivariable
case will be the same as the univariate situation maximum likelihood.
In general, the maximum likelihood yields values for the unknown
parameters which maximize the probability of obtaining the observed
set of data. To apply this method, we must first construct a function,
called the likelihood function. This function expresses the probability of
the observed data as a function of unknown parameters. The maximum
likelihood estimators of these parameters are chosen to be those values
that maximize this function. Thus, the estimators are those which agree
most closely with the observed data. The likelihood function is nearly
identical to that given in Eq. (8.16):

lðβÞ5 L
n

i51

πðxiÞyi ½12πðxiÞ�12yi (8.16)

8.6.2 Support Vector Machine Classification

The SVM is as a high-efficiency classification model. This study uti-
lizes SVM classifier with linear kernel. The SVM classifies the feature
space based on a hyperplane that separates MDD patients and controls
according to class labels.31 The SVM works well for a high-dimensional
dataset by establishing a linear decision boundary. In the context of
small datasets, using linear kernel SVM instead of a nonlinear kernel
reduces the risk of overfitting. In addition, it improves the classification
performance by significantly reducing the model complexity. In sum-
mary, the LR classifier involved probability values to classify MDD
patients versus controls. On the other hand, the SVM concluded a
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hyperplane to achieve the classification between the two groups.
Following paragraph provides a brief description of SVM,
mathematically.

If the training data is linearly separable, then a pair (w,b) exists such
as wTxi 1 b$ 1 for all xiεP and wTxi 1 b#a1 for all xiεP with the deci-
sion rule given by fw,b(x)5 sgn(wTxi 1 b), where w is termed as
weighted vector and b as the bias. It is easy to show that when it is pos-
sible to linearly separate two classes an optimum separating hyperplane
can be found by minimizing the squared norm of the separating hyper-
plane. The minimization can be set up as a convex quadratic program-
ming (QP) problem: Minimize ΦðwÞ5 1

2 :w:
2
subject to y(wx1 b)$ 1,

i5 1, 2, . . ., l.
In the case of linearly separable data, once the optimum separating

hyperplane is found, the data points that lie on its margin are known as
support vector points and the solution is represented as a linear combi-
nation of only these points.

8.6.3 Naı̈ve Bayesian Classification

The NB classification32 generates conditional posterior probabilities
for each data sample. Because the NB classifier is a supervised classifier,
it involves the target groups, that is, MDD patients and healthy controls.
In case of a binomial classification, the NB classifier produces two prob-
abilities. The classifier model assigns the sample to a class having higher
posterior probability.

The NB classifier has a simple structure. NB networks are composed
of directed acyclic graphs with only one parent (representing the unob-
served node) and several children (corresponding to observed nodes).
There is a strong assumption of independence among child nodes in the
context of their parent.33 Thus, the independence model (NB) is based
on estimating34 [Eq. (8.17)]:

R5
PðijXÞ
PðjjXÞ 5

PðiÞPðXjiÞ
PðjÞPðXjjÞ 5

PðiÞLPðXrjiÞ
PðjÞLPðXrjjÞ

(8.17)

where P indicates probability, i and j are labels, and X contains the pre-
dictors or independent variables. Comparing these two probabilities,
the larger probability indicates the class label to be more likely an actual
class label (if R. 1 predict i else predict j).

8.7 VALIDATION

This study introduces 10-CV as its validation method. The 10-CV
aims to determine the robustness of the classification models.35 It allows
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computing the performance metrics such as the classifier accuracies,
sensitivities, and specificities. In this study, the cross-validation pro-
vides sampling of data points in the EEG data matrix in such a way that
each point can be utilized during classification testing and training.

In brief, the 10-CV includes the division of data samples into 10 sub-
groups. The classifier training involves nine of the data samples and the
last one employed during testing the classification model. The division
of training and testing samples are subject to random distribution. This
randomness successfully removes the bias of classification models to
individual data points. Table 8.10 represents an example of a confusion
matrix for the binary classification problem. The matrix provided the
quantification of performances of the classification models employed in
this study.

Eqs. (8.18)�(8.22) provide mathematical descriptions of the perfor-
mance metrics computed from the confusion matrix. By definition, the
sensitivity of a classification model is defined as the percentage of true
cases (TP) that are correctly classified as cases as shown in Eq. (8.18).
For example, a depressed subject is classified as depressed by the classi-
fication model. Moreover, the classifier specificity refers to the percent-
age of true noncases (TN) correctly classified as noncases. Eq. (8.19)
shows the mathematical description. For example, a classification model
predicts a study sample as a healthy control who is actually a healthy
control, according to the ground truth. Furthermore, the classification
accuracy illustrates the percentage of correctly classified cases and non-
cases among all the example points. Eq. (8.20) provides the mathemati-
cal description. In addition, the false positive (FP) and false negative
(FN) corresponds to the incorrect classification of healthy controls as
MDD patients and incorrect classification of MDD patients as healthy
controls, respectively. Finally, Eqs. (8.21) and (8.22) show the formulas
for the positive predictive value (PPV) and the negative predictive
values (NPV), respectively.

Sensitivity5
TP

TP1 FN
(8.18)

Specificity5
TP

FP1TN
(8.19)

TABLE 8.10 Confusion Matrix

Condition positive Condition negative

Test outcome positive True positive False positive

Test outcome negative False negative True negative
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Accuracy5
TP1TN

TP1TN1 FN1 FP
(8.20)

PPV5
TP

TP1 FP
(8.21)

NPV5
TN

FN1TN
(8.22)

By definition, the F-measure is defined as a weighted harmonic aver-
age of recall and precision values.36 The precision is the probability that
a (randomly selected) patient analyzed to be MDD was really MDD,
according to the ground truth. On the contrary, the recall is the probabil-
ity that a (randomly selected) MDD patient correctly identified as MDD.
Eq. (8.23) shows the F-measure mathematically:

F-score5
2TP

2TP1 FP1 FN
(8.23)

where TP refers to true positives, FP refers to false positive, and FN
represents false negatives.

8.8 MDD PATIENTS VERSUS HEALTHY CONTROLS

In this section, the differences between the MDD patients and healthy
controls are studied involving the sLORETA analysis, topographic
maps, comparison of power in different band powers, the alpha inter-
hemispheric asymmetry, and the ERP component P300. The details on
each result are provided in the respective sections.

8.8.1 The sLORETA Analysis

Table 8.11 shows sLORETA maps for the MDD patients and healthy
controls. During EC condition, the MDD patients have shown increased
activity at regions (frontal: BA5 11/47; T5 7.752, P, .05). On the other
hand, during EO conditions regions, the brain activity was manifested
in areas (frontal: BA5 47; temporal: BA5 21; occipital: BA5 19, P, .05,
T5 6.637).

The sLORETA analysis for MDD patients and healthy controls impli-
cated the brain regions such as frontal, temporal, and occipital. In litera-
ture, numerous studies have reported abnormalities in the frontal cortex
associated with MDD. For example, a reduction in prefrontal cortex vol-
ume was reported in recent literature.37,38 In some older studies, ische-
mic lesions were located in the anterior frontal cortex and found to be
associated with more severe depression.39,40 In addition, patients with
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ischemic stroke showed a strong correlation between lesions and subse-
quent depression. The stroke has affected the prefronto-subcortical cir-
cuits, particularly in the left hemisphere.41 Cognitive disability was
commonly observed in MDD patients, particularly involving frontal cor-
tex. Its volume reductions were reported to range from 7% overall
reduction42 to 48% in the subgenual prefrontal cortex.43 In a postmor-
tem study, significant differences between the control subjects and
depressed patients were found in prefrontal cortical areas.44

In temporal areas, several studies assessed left and right temporal
volumes separately.45�47 Only Vythilingam47 found evidence for a later-
alization effect, reporting smaller left temporal lobe volume in patients.
Notably, the patient sample studied by these authors had the longest ill-
ness duration compared to other studies.47 In this regard, the left-
lateralized temporal lobe changes may reflect progression of the disease
over time or a distinct pathophysiological process that affects risk of
relapse. In the occipital area, an increase in theta and alpha activity has
been found in MDD patients.48 In Table 8.12, the brain regions impli-
cated in this section are presented with respect to different frequency
bands, including physiological conditions.

TABLE 8.11 The sLORETA Maps of MDD Patients’ Versus Healthy Controls

Student’s t-test-based differences between MDD patients and

healthy controls Brain areas

(Eyes closed condition)

Frontal: BA5 11/
47, BA5 9/10

(Eyes open condition)

Frontal: BA5 11;
temporal: BA5 21;
occipital: BA5 19
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8.8.2 Electroencephalography Signal Power and Alpha
Interhemispheric Asymmetry

Fig. 8.6 shows EO EEG signal power differences between MDD patients
and healthy controls, including frontal, temporal, parietal, occipital, and
central regions. The MDD patients exhibited less theta and alpha signal
powers in all regions compared with healthy controls. In addition, the
frontal and occipital regions have shown less delta signal power in
depressed patients compared to healthy controls. However, for brain

FIGURE 8.6 Eyes open EEG signal power for MDD versus healthy controls (P, .01).

TABLE 8.12 Abnormal Brain Regions for MDD Patients

Physiological condition Brain regions

Eyes closed (EC) Frontal

Eyes open (EO) Frontal, temporal, and occipital
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regions such as the central, temporal, and parietal areas the delta and beta
bands showed a slight increase in EEG signal powers when compared
between depressed and healthy controls (P, .01).

The EEG signal power differences between the MDD patients and
healthy controls implicated less power most commonly found in the
depressed patients only. The EEG signal is of a composite nature and the
power computations in each frequency band have shown relevance with
the pathophysiology of depression. For example, in an earlier study, ele-
vated EEG activity (less alpha) was observed during resting condition49�52

and an increased relative power (less alpha) was also reported.53,54 The
increase in EEG activity (less alpha value) was observed in frontal, parie-
tal,55 and occipital56 brain areas. Moreover, the early stages of depression
were characterized by elevated alpha activity.48

In Table 8.13, depressed individuals tend to exhibit relatively greater
right frontal activity (less alpha) when compared with healthy controls.
In short, depressed individuals showed greater anterior EEG activity.

EEG alpha interhemispheric asymmetry has been studied as a vulner-
ability marker for depression. In 1983, Davidson et al.57 reported a rela-
tive hyperactivation of the right prefrontal cortex. In a later study, the
researchers considered “approach” and “withdrawal” as orthogonal to
each other and as fundamental to EEG asymmetry, which may become
a vulnerability measure for depression.58 The approach system facili-
tated appetitive behavior with positive results and the withdrawal
system motivated aversive and negative emotions.59 The decreased left-
sided frontal EEG activation was related to a deficit in the approach
system. Based on these observations, it was concluded that the study
subjects who have such symptoms were at risk of negative emotional
states and depression in response to environmental stress.

8.8.3 ERP Component: P300

Fig. 8.7 shows plots of grand averaged P300 components at central
region (Cz) that could significantly discriminate the groups: healthy con-
trols and MDD patients. As evident from the figure, the healthy controls
exhibited higher P300 intensities than MDD patients. In addition, the
MDD patients depicted longer latencies than the healthy controls.

TABLE 8.13 EEG Interhemispheric Alpha Asymmetry for MDD Patients Versus
Healthy Controls (P,.01)

Brain Regions MDD Patients Healthy Controls

Frontal Right , left Left , right

Parietal, central, temporal, occipital Left , right Right , left
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Results shown in Fig. 8.7 implicated a decreased P300 intensity and a
larger latency for depressed patients. However, the normal behavior is
different and can be seen in that the P300 peak occur with 300 ms delay
with prominent peak intensity. In the literature, the P300 was associated
with cognitive abilities and commonly studied for MDD. For example,
the auditory evoked potentials (AEP) have shown positive correlation
with cognitive abilities.60,61

In general, the MDD patients were considered to have low cognitive
abilities due to their illness. Such abnormalities were observed with a
change in P300 intensity and occurrence or latency of the P300 peak. For
example, depression was associated with a delay in occurrence of P300
peak62 and only found in MDD patients when compared with the
healthy controls.63�65 In addition, a decreased P300 intensity in the right
hemisphere was observed based on low resolution electromagnetic
tomography (LORETA) analysis.66 Moreover, longer P300 latency was
observed in a study involving visually evoked stimuli.67

8.8.4 Classification Results (ITMS Diagnosis)

Fig. 8.8 shows the diagnosis accuracy as a function of a number of fea-
tures. The figure shows a direct relationship between the classification

FIGURE 8.7 The P300 for the MDD patients and healthy controls.
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accuracy and the number of features. More particularly, an increase in
the number of features increases the classification accuracy for SVM.
However, at a certain point (i.e., number of features 5 35), a further
increase in the number of features could not increase the classification
accuracy rather it remians constant. It means that only the first 35 fea-
tures could be sufficient for achieving maximum classification accuracy.

Table 8.14 shows results of the classification performance based on
the SVM classification model. According to the table, however, the high-
est efficiencies were achieved involving integration of features based on
the method, that is, ITMS diagnosis. Hence, it resulted in
accuracy5 98.8%, sensitivity5 98.6%, specificity5 99.4%, and
f-measure5 98.3. The second highest performance (accuracy5 97.1%,
sensitivity5 97%, and specificity5 98%) was achieved with alpha asym-
metry. The third highest accuracy was achieved with alpha power fea-
tures. The alpha power features resulted in accuracy5 95.1%,
sensitivity5 96.6%, and specificity5 94.4%.

The study shows high performance accuracies (i.e., 98.8%) which are
comparable to previous studies, for example, a different study based on
the classification of depressed patients versus healthy controls concluded
90% accuracy.68 In this context, Knott et al.11 found 91.3% classification
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FIGURE 8.8 SVM accuracy as a function of number of features.
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accuracy involving 70 depressed patients and 23 normal subjects. Their
study employed linear features. However, the number of samples were
not balanced between the two classes. Due to this imbalance between the
numbers of samples in two groups, the classification results may be
biased toward the depressed patient’s class. Moreover, Lee et al.69 ana-
lyzed EEG data involving the detrended fluctuation analysis (DFA) based
on 11 depressed and 11 healthy subjects as controls. The study concluded
higher DFA values in MDD patients when compared with controls.
However, due to the small sample size, the results could not be general-
ized. In another study, EEG analysis based on wavelet entropy analysis
achieved 80% accuracy involving 26 MDD participants only.70

In comparison, the ML scheme has achieved the highest classification
results while employing linear EEG features only. The results implicate
that conventional ML techniques with linear features as input data can
achieve high performances. In addition, integrating features from differ-
ent frequency bands could increase the classification efficiency than the
individual frequency bands. This observation is in accordance to the
research ideology that useful features may be discovered from EEG sub-
bands.71 Moreover, the SVM exhibits the highest classification perfor-
mances by using comparatively more features compared to LR and NB.
Because SVM has a complex structure it; therefore requires more data
samples to appropriately train compared with LR and NB classifiers.

To remove the likelihood that the resulting classifier models are con-
cluded due to noise present in the EEG data, the following precautions
are adopted. First, during preprocessing, the artifacts are carefully
removed and tested by plotting their histograms plots. Second, equal
sample sizes are selected in both MDD patients and healthy controls.
For example, the gender distribution is equal between the groups to
eliminate any gender bias from the conclusive results. Third, as overfit-
ting may happen, 100-time iterations of the 10-CV improves the robust-
ness of the underlying classification models.

TABLE 8.14 SVM Classification for MDD Patients’ Versus Healthy Controls

EEG-Based Features Accuracy Sensitivity Specificity F-measure

Delta power 84.5 82 87.4 81.4

Theta power 87.5 88.6 87 85.6

Alpha power 95.1 96.6 94.3 94.4

Beta power 90.1 90.3 92.4 89.7

Alpha asymmetry 97.1 97 98 96.2

Synchronization likelihood (SL) 94.38 97 92.4 92.1

ITMS diagnosis 98.8 98.6 99.4 98.3
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8.9 SUMMARY

This chapter explains in detail how a ML approach can improve the
diagnosis of treatment efficacy assessment for depression. The process
of feature extraction, selection, and classification is discussed. The vali-
dation of the ML model is necessary, especially for the case of a small
study sample. The resulting model can be used to generalize the results.
This model could be implemented in a clinical setting and requires only
a small amount of EEG data informing on patients’ condition and could
assist clinicians for possible diagnosis as well.
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C H A P T E R

9

Electroencephalography-Based
Treatment Efficacy Assessment

Involving Depression

9.1 INTRODUCTION

The previous chapter elaborated on an electroencephalography
(EEG)-based machine learning (ML) scheme designed to diagnose and
perform treatment efficacy assessment for depression based on EEG
data only, known as the Intelligent Treatment Management System (ITMS)
for depression. The ITMS is common for diagnosis and treatment selec-
tion, but not for the feature extraction block. Therefore, this chapter
focuses on explaining the feature extraction subblock for ITMS-treatment
selection. ITMS-treatment selection involves an integration of features such
as EEG signal energy, wavelet-based sample entropy (WSE), wavelet-
based composite permutation entropy index (WCPEI), and wavelet-
based fractal dimension (WFD).

Wavelet transformation provides a multiresolution decomposition of
EEG data. As a result, different EEG bands are achieved. Furthermore,
the decomposed version of the EEG signal is subject to time-domain fea-
tures to compute signal complexity, including the methods sample
entropy (SE), composite permutation entropy (CPEI), and fractal dimen-
sion (FD). This chapter elaborates on the importance of these methods
in the context of depression. The integration of multiple decompositions
of EEG data and time-based features provides insights at multiple levels
of EEG data.

ITMS-treatment selection inherently involves supervised classification.
Therefore, its validation should involve clinical evidences such as
clinically validated scores on disease severity. In this study, the clinical
evidences included the administration of questionnaires such as the
Beck Depression Inventory (BDI) and Hospital Anxiety and Depression
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(HADS) scores. Hence, this study has considered these clinical question-
naires as a gold standard during EEG-based analysis and classification.

Furthermore, this chapter includes EEG-based localizations of abnor-
mal brain areas through the use of sLORETA analysis and topographic
plots. The chapter presents the results of ITMS classifications for treat-
ment response.

9.1.1 ITMS-Treatment Selection

This chapter advocates the use of time-frequency decomposition of
EEG data based on wavelet transform (WT) analysis to classify treat-
ment respondents and nonrespondents. Fig. 9.1 shows a block-level
representation of the feature extraction stage (FES) for ITMS-treatment
selection.

9.1.1.1 Significance of Features (ITMS-Treatment Selection)

This chapter advocates for the integration of time and frequency
domain features, including the decomposition of EEG into different
frequency bands, which could be useful for the treatment efficacy
assessment of depression. In addition, as EEG data have high temporal
resolution, complex EEG data are computed with the use of techniques
such as CPEI, sample entropy (SE), and FD.

Clean EEG data

Wavelet transform analysis

D1    D2    D3    D4    A4

Preprocessing
stage

Feature 
extraction

stage

Rank-based feature selection 

WCPEI WSE WFD WE

Integration of features 

FIGURE 9.1 Feature extraction stage (FES) for ITMS-treatment selection.
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During WT analysis, the decomposition of EEG signals results in
individual frequency bands, also termed as multiresolution decomposi-
tion. In the literature, this multiresolution decomposition has shown
important applications as a diagnostic tool for various medical applica-
tions, including both signal and image processing.1,2 Other examples
include various biomedical applications,3,4 including the diagnosis of
epilepsy and Alzheimer’s disease.5,6 However, WT analysis could
provide meaningful insights by decomposing EEG data at multiple
levels of decompositions. Each level of decomposition refers to a partic-
ular EEG frequency band. In addition, similar techniques, such as short-
time Fourier transform (STFT) and empirical model decomposition
(EMD), can provide signal decomposition at multiple levels. Therefore,
for the sake of comparison, the study provides EEG data analysis
involving both STFT and EMD analyses.

As mentioned in Chapter 4, Pathophysiology of Depression, abnor-
malities in different EEG frequency bands could result due to different
conditions of MDD. For example, increased delta and theta power
over the right hemisphere were associated with the MDD patients
only.7 Moreover, LORETA-based studies have revealed elevated delta,
theta, and beta power in the brain region, ACC, in MDD patients.8 In
addition, left frontal alpha activity has been reported in depressed
patients when compared with controls associated with the left frontal9

and DLPFC brain regions.10 Hence, multiresolution decomposition of
EEG data into various bands could result in increased chances of dis-
covering MDD treatment respondents or nonrespondents. Also, the
prediction of treatment efficacy might be improved, which could help
psychiatrists in the selection of a suitable antidepressant for a given
MDD patient.

In this study, EEG data were subjected to WT analysis which resulted
in various wavelet coefficients denoted as D1, D2, D3, D4, and A4. For
example, D1 refers to detailed coefficients at the first level of wavelet
decomposition. In addition, A4 refers to approximate coefficients at the
fourth level of wavelet decomposition. During this process, the selection
of an appropriate window function was based on a criterion know as
energy to permutation entropy ratio (EPER). For this criterion, a wavelet
window function that provided the highest value of the ratio should be
selected for WT analysis. High values of EPER indicated that the wave-
let window function showed relevance with the changes in the recorded
EEG data. A mathematical description of this criterion is presented in
Section 9.1.1.2.

CPEI was used to measure the depth of clinical anesthesia.11 It has
shown promise as a practical EEG measure of GABAergic hypnotic
drug effects. For example, it successfully tracks the quantitative assess-
ment of EEG patterns from awake to light to deep anesthesia.
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Moreover, it requires minimum preprocessing and is highly resistant to
eye blink artifacts. CPEI is a function of frequencies in the EEG signal;
for example, it shows high values near to one in cases where EEG sig-
nals are dominant at the higher frequency bands. On the contrary, it
results in low values, nearly 0.4, in case where EEG data are dominated
by the delta and theta bands.

SE represents the signal complexity of the bioelectric processes in the
brain; for example, SE values for patients with cerebral injuries are
found to be lower than normal subjects.12 Low values of SE indicate
more self-similarity in the time series EEG signal.13 In another sleep
study, the SE values characterized the depth of sleep. The deeper the
sleep, the smaller the SE!14

FD is used to quantify the complexity and self-similarity of an
object.15 FD provides the ability to distinguish between different patho-
physiological states by directly examining EEG in time domain. Since
the dimension of a plane is equal to 2 and the dimension of a line is
equal to 1, it can be expected that the EEG FD will always be between 1
and 2. FD can be computed using different techniques, but Higuchi’s
algorithm was used here.16

In this chapter, time and frequency information are integrated by
decomposing EEG signals into various frequency bands and then com-
puting the complexity for each frequency band. For example, EEG
decomposition with WT analysis resulted in delta, theta, alpha, and
beta frequency bands. Table 9.1 describes complexity measures such as
WCPEI, WSE, and WFD. These measures were utilized to compute com-
plexity values corresponding to individual frequency bands. Sections
9.1.1.4�9.1.1.7 will describe their specific details.

9.1.1.2 Selection of an Appropriate Basis Function for
Electroencephalography Analysis

The selection of the most suitable wavelet window function to per-
form the decomposition of the EEG signal has vital importance. In this
study, the most suitable wavelet function was selected based on a crite-
rion known as EPER, according to the formula described in Eq. (9.1):

S5
SignalE
SignalPE

(9.1)

where SignalPE denotes EEG signal permutation entropy (PE) and
SignalE refers to energy. According to the formula, the “S” values were
computed for all study participants and a final value was selected based
on averaging across all study participants. A wavelet window function
which provides the highest value of “S” was considered as the most
suitable window function for wavelet analysis and was selected for
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decomposing the EEG data. This criterion works because the wavelet
basis function can provide high values of EPER which best suits the
shape of the EEG signals under observation.

9.1.1.3 Computing Wavelet-Based Coefficients

Fig. 9.2 shows EEG signal decomposition into detailed and approxi-
mate coefficients with the fourth level of decomposition. At each level,
the detailed and approximate coefficients were described with labels D1
and A1, respectively. Similarly, each level has its own detailed and
approximate coefficients, for example, at level 2—D2 and A2, level 3—D3
and A3, and level 4—D4 and A4. At each level, the EEG signal was high-
pass and low-pass filtered, represented as the detailed and approximate
coefficients.

Table 9.2 shows wavelet coefficients at distinct levels corresponding
to specific bands of frequencies.

Theoretically, wavelet decomposition is essentially a convolution of
EEG signal with different scaled and dilated versions of a selected

TABLE 9.1 EEG Features for ITMS-Treatment Selection

EEG Features Significance

Wavelet detailed and approximate
coefficients

Wavelet coefficients represent the EEG signal at
various scales with time information and are
believed to be used to successfully reconstruct the
EEG signal.

Wavelet-based signal energy (WE) Signal energy extracted via wavelet coefficients is
believed to represent the underlying EEG signal
more concisely.

Wavelet-based sample entropy
(WSE)

The multiresolution decomposition of the EEG
signal is provided by WT analysis. The SE
computed the complexity of the wavelet
coefficients.

Wavelet-based composite
permutation entropy index
(WCPEI)

The multiresolution decomposition of the EEG
signal is provided by WT analysis. Time-based
features such as composite permutation entropy
index (CPEI) computed the complexity of the
wavelet coefficients.

Wavelet-based fractal dimension
(WFD)

The multiresolution decomposition of the EEG
signal is provided by WT analysis. Time-based
features such as fractal dimension (FD) computed
the complexity of the wavelet coefficients.

Integration of the features The integration of features is believed to improve
the overall classification accuracy.
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wavelet window function. Each level represents a different scale of the
function. In this study, the Daubechies D4 wavelet window was used
for the decomposition of the EEG data.17 The selection of this window
function was based on the energy to PE criterion as described in the
previous section. According to the theory, wavelet function is defined at
scale “a” (dilation parameter) and at location “b” (translation parameter)
by the mathematical expression Eq. (9.2):

ψa;bðtÞ5
1ffiffiffi
a

p ψ
t2 b

a

� �
(9.2)

As mentioned in Eq. (9.2), by choosing the orthonormal wavelet
basisψm;nðtÞ, the original EEG signal can be reconstructed in terms of
wavelet coefficients, Tm,n, using the inverse discrete WT [Eq. (9.3)]:

xðtÞ5
XN

m52N

XN
n52N

Tm;nψm;nðtÞ (9.3)

reconstruction required the summation of all integers’ m and n.

0.5–70 Hz

0.5–35 Hz 36–70 Hz

0.5–17.5 Hz 17.5–35 Hz

0.5–8.5 Hz 8.5–17.5 Hz

0.5–4 Hz 4–8.5 Hz D4

D3

D2

D1

FIGURE 9.2 A multiple-level decomposition of EEG signal.

TABLE 9.2 Wavelet-Based EEG Frequency Bands

Wavelet Coefficients EEG Frequency Bands Frequency Ranges (Hz)

D1 Gamma 36�70

D2 Higher beta and low gamma 17.5�35

D3 Alpha and low beta 8.5�17.5

D4 Theta 4�8.5

A4 Delta band 0.5�4
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In this chapter, WT analysis was performed [Eq. (9.4)]:

DWTðj; kÞ5 1ffiffiffiffiffiffiffi
2j
�� ��q ðN

2N
xðtÞψ t2 2jk

2j

� �
dt (9.4)

where “a” and “b” were replaced by 2j and k2j, respectively. An efficient
way for implementing this scheme was invented by passing the signal
through a series of low-pass (LP) and high-pass (HP) filter pairs named
as quadrature mirror filters.18

9.1.1.4 Computing Wavelet-Based Signal Energy

In this chapter, the total energy contained in EEG signal, x(t), was
defined as its integrated squared magnitude [Eq. (9.5)]:

E5

ðN
2N

xðtÞ
�� ��2dt5 :xðtÞ:2 (9.5)

The relative contribution of signal energy contained at a specific “a” scale
and “b” location is given by the wavelet energy density function [Eq. (9.6)]:

Eða; bÞ5 Tða; bÞ
�� ��2 (9.6)

The scalogram is integrated across “a” and “b” to recover the total
EEG signal energy using the admissibility constant, Cg [Eq. (9.7)]:

E5
1

Cg

ðN
2N

ðN
0

Tða; bÞ
�� ��2 da

a2
db (9.7)

The value of admissibility constant depends on the chosen wavelet,
for example it is equal to pi for the Daubechies wavelet.

9.1.1.5 Computing Wavelet-Based Sample Entropy

In this chapter, WSE was employed to compute the complexity of
EEG signal recorded during EC and EO conditions. SE was first devel-
oped by Richman and Moorman,13 and can be computed based on the
procedure provided by steps one to six.19

The EEG data were decomposed with WT analysis into different
wavelet coefficients. The wavelet coefficients were presented as N data
points [Eq. (9.8)]:

xð1Þ; xð2Þ; . . .; xðNÞ (9.8)

1. Formulate m dimensional vectors X consecutively from the EEG wavelet
coefficients achieved in Eq. (3.17), starting with the ith point [Eq. (9.9)]:

XðiÞ5 ½xðiÞ; xði1 1Þ; . . .; xði1m2 1Þ� (9.9)

where i, j5 1, 2,. . ., N2m1 1, j 6¼i.

2119.1 INTRODUCTION

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



2. Next, compute the distance between two consecutive m dimensional
vectors as derived in Eq. (9.9) and shown in Eq. (9.10):

d½XðiÞ;XðjÞ�5 max
k5 0;1;...m2 1

½ xði1 kÞ2 xðj1 kÞ
�� ��� (9.10)

3. Given a tolerance window r for every ith value, calculate the distance
d[X(i) and X(j)], count the number of this distance, which is less than
or equal to r and denoted as BiðrÞ. Then calculate the ratio of this
number to N�m�1, indicated in (9.11), Bm

i ðrÞ:

Bm
i ðrÞ5

1

N2m2 1
Bi (9.11)

4. Calculate the average value of Bm
i ðrÞ [Eq. (9.12)]:

BmðrÞ5 1

N2m1 1

XN2m11

i51

Bm
i ðrÞ (9.12)

5. Increase the vector dimension from m to m1 1 and repeat Steps 1�4
and calculate Bm11

r ðrÞ:

Bm11ðrÞ5 1

N2m1 1

XN2m11

i51

Bm11
i ðrÞ (9.13)

Theoretically, from Eqs. (8.12) and (8.13), the SE can be defined in
Eq. (9.14):

SEðm; r;NÞ5 lim
N-N

2ln
Bm11ðrÞ
BmðrÞ

� 	
 �
(9.14)

6. When N has a finite value, Eq. (9.15) represents the final formula:

SEðm; r;NÞ52 ln
Bm11ðrÞ
BmðrÞ

� 	
(9.15)

In this chapter, the SE has three parameters: a run length m, a toler-
ance window r, and N which represents the number of data points.
Parameter values such as m5 1 and r5 0.2 SD were used as suggested
by.13 SD was the standard deviation of the original EEG data X(i).

The same procedure was adopted to compute the WSE for the detec-
tion of treatment response and nonresponse. The WSE was computed
for each scalp channel and the numerical values described the complex-
ity of the EEG signal at a scalp location. A high (e.g., approx. 1) WSE
value indicated more brain complexity (activation), while a low (e.g.,
approx. 0) WSE value reflected lower complexity (activation), respec-
tively. In this study, it was hypothesized that abnormal brain activity
due to MDD treatment response may show different values of WSE as
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compared with treatment nonresponse. The computation of SE resulted
in a signal numerical value for each scalp location or EEG channel. In
this study, the EEG data were computed for EC and EO conditions,
including the 19 scalp locations, which resulted in 38 numerical values.

9.1.1.6 Computing Wavelet-Based Composite Permutation Entropy
Index

Computing WCPEI is a nonlinear method. It is directly proportional
to the complexity of a given time series dataset. It can be achieved
through the following four steps:20

1. The wavelet coefficients achieved by decomposing the EEG signal
using WT analysis were fragmented into a sequence of motifs. As
shown in Fig. 9.3, the motifs are shapes of six distinct types. These
shapes can explain most of the changes in an EEG signal.

2. Identification of each motif is limited to only one of the possible six
types.

3. The number of motifs of each type in the signal were counted to
obtain the probability of occurrence of each motif.

4. The Shannon uncertainty formula [Eq. (9.16)] was used to calculate
PE. It was based on the normalized probability distribution of the
motifs.

PE52

P
pi 3 lnðpiÞ

lnðnumber of motifsÞ (9.16)

For the calculation of CPEI, two PEs with parameters, noise threshold
(tie) and lag values (τ), were added. The mathematical description for
CPEI used in the analysis is:

CPEI5

P
pi 3 lnðpiÞtie, 0:5;τ51 1

P
pi 3 lnðpiÞtie, 0:5;τ52

lnð49Þ (9.17)

where noise threshold (tie, 0.5 uV) and τ equals either 1 or 2. In this
study, the same procedure was adopted to compute the WCPEI for both
study groups, that is, treatment responders and treatment nonrespon-
ders. The WCPEI was computed for each scalp channel and numerical
values described the complexity of the EEG signal at each scalp location.

FIGURE 9.3 Motifs.20
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High (e.g., approx. 1) WCPEI values implicated more brain complexity
(activation) while low (e.g., approx. 0) WCPEI values reflected lower
complexity (activation), accordingly. In this study, it was hypothesized
that treatment response may show different values of WCPEI as com-
pared with treatment nonresponse. The computation of WCPEI resulted
in a signal numerical value for each scalp location or EEG channel. In
this study, the EEG data were computed for EC and EO conditions,
including 19 scalp locations, which resulted in 38 numerical values.

9.1.1.7 Computing Wavelet-Based Fractal Dimension

WFD calculates the complexity and irregularity of a time-based
signal. Its value ranges from Df5 1 for a simple curve to Df5 2 for a
curve which nearly fills out the whole plain [Eq. (9.18)].

LðkÞ5 k2Df (9.18)

The algorithm constructs k new time series based on the wavelet coef-
ficients that were achieved by decomposing the given EEG data: X(1), X
(2),. . ., X(N) [Eq. (9.19)].

Xk
m:XðmÞ; . . .;X m1 int

N2m

k

� �
3 k

� �
(9.19)

where m5 1, 2,. . .,k, N is the total number of samples, k is interval time,
m is initial time, int(r) represents the integer part of a real number r.
Eq. (9.20) describes the mathematical formulation for the length LmðkÞ of
each curve Xk

m:

LmðkÞ5
1

k

XM
i51

Xðm1 i3 kÞ2Xðm1 ði2 1Þ3 kÞ
�� �������

����� N2 1

M3 k

� �
(9.20)

where

M5 int
N2m

k

� �
(9.21)

Lm(k) represents the sum of normalized absolute values of difference
in ordinates of pair of points distant k (with initial point m). The curve
length L(k) for time interval k is calculated as the mean of k values, that
is, Lm(k) where m5 1, 2,. . ., k [Eq. (9.22)]:

LðkÞ5
Pk

m51 LmðkÞ
k

 !
(9.22)

where Lm(k) represents the sum of normalized absolute values of differ-
ence in ordinates of pair of points distant k (with initial point m). The
value of FD Df is calculated by a least square linear best-fitting
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procedure. It is equivalent to the slope coefficient of the linear regres-
sion of the log/log graph [Eq. 9.22].

The same procedure was adopted to compute the WFD for both
study groups, that is, treatment response and treatment nonresponse.
The WFD was computed for each scalp channel and numerical values
described the complexity of the EEG signal at each scalp location. High
(e.g., approx. 1) WFD values implicated more brain complexity (activa-
tion) while low (e.g., approx. 0) WFD values reflected lower complexity
(activation), respectively. In this study, it was hypothesized that treat-
ment response may show different values of WFD as compared with
treatment nonresponse. The computation of WFD resulted in a signal
numerical value for each scalp location or EEG channel. In this study,
the EEG data were computed for EC and EO conditions, including 19
scalp locations, which resulted in 38 numerical values.

In this paragraph, a brief description is provided regarding the
feature selection method employed in this study. A detailed description
of the method is provided in Section 7.5 (Feature Selection). In this
study, a rank-based feature selection method was employed to find
the most significant features in the EEG data matrix.21 According to the
method, each feature was assigned a weight value corresponding to the
ability of the feature to classify data points into corresponding target
classes. The weight values were computed according to the area under
curve (AUC) of the receiver operating characteristic (ROC) computed
for a feature. A higher weight value was assigned to a feature with a
larger AUC than a feature with a smaller AUC. The weight value could
be any number between 0 and 1, indicating a bad to good classification
ability. The weight values allowed for the most significant features to be
listed in descending order. According to this method, the most expressive
features could be identified by selecting the top-listed features only.

9.1.1.8 Integration of Features

The integration of these features was performed based on the most
noteworthy features identified individually from WCPEI, WSE, and
WFD (e.g., features from WCPEI, WSE, and WFD). In addition to these
features, the energy of the EEG signal was computed based on wavelet
coefficients. Because of the feature extraction, different EEG data matri-
ces were constructed and subjected as input data to the ML scheme
(ITMS-treatment selection).

9.1.2 Finalizing the Electroencephalography Data Matrix

Table 9.3 provides the dimensions of each EEG data matrix. Because
of the feature extraction, a substantial number (Nc) of candidate features
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were computed and arranged in a matrix columnwise, each column was
denoted as xi, where i5 1 . . . Nc. In this study, the number of features
was in the thousands indicating its high dimensionality. In addition,
the rows of the matrix represent MDD patients with physiological con-
ditions provided for each patient. In this study, this feature space
matrix was termed as EEG data matrix. The feature space denoted
by L5 [(xi, yi), i5 1 . . . Nc] included both the feature space matrix and
the corresponding output class labels, that is, y5 [MDD, Controls] or

TABLE 9.3 EEG Data Matrices and Dimensions

EEG Data Matrix

Matrix

Dimension
(per band*)

EEG absolute power delta: the “64” corresponds to 34
MDD patients and 30 healthy controls. The “38”
corresponds to 19 scalp locations for EC and 19 for
EO.

64 3 38* ITMS
diagnosis

EEG alpha interhemispheric asymmetry: the “64”
corresponds to 34 MDD patients and 30 healthy
controls. The “128” corresponds to 8 scalp locations
on the left and 8 on the right hemisphere, i.e.,
83 85 64, and for each EC and EO, i.e.,
643 25 128.

64 3 128

Synchronization likelihood: the “64” corresponds to
34 MDD patients and 30 healthy controls. The “171”
corresponds to all possible combinations of scalp
sensors.

64 3 171

Integration of features (ITMS diagnosis) 64 3 337

Wavelet-based energy (WE): the “64” corresponds
to 34 MDD patients and 30 healthy controls. The
“38” corresponds to 19 scalp locations for EC and
19 for EO.

34 3 38* ITMS-
treatment
selection

Wavelet-based CPEI (WCPEI): the “64” corresponds
to 34 MDD patients and 30 healthy controls. The
“38” corresponds to 19 scalp locations for EC and
19 for EO.

34 3 38*

Wavelet-based FD (WFD): the “34” corresponds to
34 MDD patients. The “38” corresponds to 19 scalp
locations for EC and 19 for EO.

34 3 38*

Wavelet-based SE (WSE): the “34” corresponds to
34 MDD patients. The “38” corresponds to 19 scalp
locations for EC and 19 for EO.

34 3 38*

Integration of features (ITMS-treatment selection) 34 3 152

* The corresponds to only one EEG band. It could be delta or theta or alpha or beta or gamma.
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y5 [R, NR]. Finally, it was observed that the resulting matrix (L) was
rectangular and included high-dimensional datasets (the number of
columns) with 64 data points (the number of rows).

The diagnosis and treatment outcome prediction involved two differ-
ent methods. Regarding the diagnosis, EEG absolute power and alpha
asymmetry were considered as vulnerability markers for diagnosing
depression. These features showed association (statistically significant)
with the MDD patients as compared to the healthy controls. This find-
ing suggests that averaging the PSD (EEG absolute values) to compute
absolute power and asymmetry could be useful features for discriminat-
ing between MDD patients and healthy controls.

On the other hand, discrimination within the MDD patients is more
challenging than discriminating between the MDD patients and healthy
controls. For example, it required micro-level details of the EEG data, as
evident from a previous study,22 where the coherence was computed at
high frequency resolution such as at each Hz. The study successfully
discriminated the treatment respondents from the nonrespondents
among a group of MDD patients. Moreover, as EEG has high temporal
resolution, time-based quantities such as CPEI, SE, and FD have been
reported as promising measures to quantify brain behavior. For exam-
ple, CPEI has been considered as a measure of GABAergic hypnotic
drug effects. SE represents the signal complexity of the bioelectric pro-
cesses in the brain. For example, SE values for patients with cerebral
injuries were found lower than normal individuals. FD provides the
ability to distinguish different pathophysiological states by directly
examining EEG in time domain.

Based on these findings, in this study it was hypothesized that meth-
ods such as the absolute power of different bands and asymmetry are
more suitable for discriminating MDD patients from healthy controls,
and hence useful for EEG-based diagnosis of depression. On the other
hand, discrimination within the MDD patients group requires a deeper
level of analysis such as the multiresolution decomposition of the EEG
signal, and hence suitable for EEG-based discrimination of antidepres-
sant treatment response and nonresponse.

9.2 TREATMENT RESPONDENTS VERSUS
NONRESPONDENTS

The differences between the R and NR are studied from different
perspectives such as through sLORETA analysis which provides
differences between the two groups. In addition, topographic maps
provide a unique perspective of looking at the differences between
R and NR.
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9.2.1 sLORETA Analysis

Based on infinitely referenced EEG data, sLORETA analysis was
applied for EC and EO conditions with gender stratified groups. The
gender stratification was performed to determine brain regions that
might not be revealed in the case of a combined group analysis. The sig-
nificance of the differences between responders and nonresponders was
determined by performing a student’s t-test.

Table 9.4 shows sLORETA maps of activations to localize brain areas
that are statistically significantly different between R and NR during EC
and EO conditions. According to the table, during EC condition, the fron-
tal brain area has shown high activations while comparing responders
with nonresponders. In EO condition, two brain regions were found to
be significantly different, that is, the frontal and occipital areas.

According to sLORETA analysis (Table 9.4), the frontal and occipital
brain regions are localized and show statistically significant difference
between the treatment respondents and nonrespondents. According to
the literature, the differences of the activations between groups suggest
the importance of utilizing a classification model that is capable of
learning these patterns between R and NR. Brain source localization
(BSL) techniques such as LORETA and its variants, including sLORETA

TABLE 9.4 sLORETA Maps for Respondents Versus Nonrespondents

Student’s t-test-based Differences Between R and NR Brain Areas

(Eyes closed condition)

Frontal BA5 11

(Eyes open condition)

Frontal
BA5 11
Occipital
BA5 19

218 9. ELECTROENCEPHALOGRAPHY-BASED TREATMENT

EEG-BASED EXPERIMENT DESIGN FOR MAJOR DEPRESSIVE DISORDER



and standardized shrinking LORETA-FOCUSS (ssLOFO), are used to
localize brain regions. Studies based on BSL techniques have identified
activations of brain areas that are associated with treatment outcome
either as treatment responders or nonresponders. The BSL was applied
in studies,23,24 where 18 MDD patients were treated with Nortriptyline
for 16 weeks. In addition, the patients were treated with Citalopram
and Reboxitine, respectively. Both studies resulted in increased pretreat-
ment resting delta activity in the rostral anterior cingulate cortex
(rACC). The activity was associated with treatment response. In another
study, higher theta activity in the rACC and orbitofrontal cortex was
found to be correlated with response to medication.25

9.2.2 Topographic Maps

Figs. 9.4 and 9.5 show wavelet-based topographic maps26 for MDD
versus healthy controls and responders versus nonresponders,
respectively. Fig. 9.4 shows the difference between participants based
on the Wilcoxon-based rank sum as exhibited by the P-values.
During EC, brain regions such as the frontal, left, and right temporal
showed significant differences. In addition, some other areas such as
left central, parietal, and occipital also depicted significant differ-
ences. During EO, subjects exhibited differences in the right frontal
and temporal areas on both sides. In addition, right sided occipital
and parietal also showed significant differences. During EC and EO
conditions, frontal and temporal areas were commonly observed as
significantly different between the two groups, which is in accor-
dance with the literature.27

In Fig. 9.5, during EC, statistically significant differences in the right
frontal, left temporal, and right parietal regions were observed. During
EO, the subjects exhibited differences in the left temporal area. During
EO, in addition to the frontal and temporal areas, the sensor at the
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FIGURE 9.4 Topographic maps for MDD versus controls during EC (left) and EO (right).
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central and parietal regions showed statistical differences. Again, it was
observed that the frontal and temporal regions were common between
EC and EO conditions.

9.2.3 Ranking Features Based on Receiver Operating
Characteristic Criterion

Table 9.5 shows the most significant features according to ROC
criterion during the feature selection process. The features were
arranged in descending order according to their individual z-values.
Higher z-values directly correspond to the ability of a feature to dis-
criminate between the respondents and nonrespondents. Therefore,
the z-values may vary between 0 and 0.5, indicating bad to good classi-
fication ability, respectively. Among the 15 most significant features, 9
were associated with the frontal lobe and 4 were found associated
with the temporal region. The parietal and central areas implicated
one and two features, respectively. In summary, the frontal and tem-
poral areas have implicated highly significant features (frontal5 9,
temporal5 4, parietal5 1, and central5 2). Abnormalities associated
with the frontal and temporal areas during MDD have been reported
in the literature as well.27

9.2.4 Low-Dimensional Representation

Fig. 9.6 describes the distribution of responders (R) and nonrespon-
ders (NR) on a low-dimensional (2-dimensional) representation. Fig. 9.6
shows a scatter plot of Mt5 64 available pretreatment training samples
projected onto the first two major nonlinear principal components only.
As shown in the figure, the shapes of the two clusters provide a data
visualization in terms of responders and nonresponders.
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FIGURE 9.5 Topographic maps for R versus NR during EC (left) and EO (right).
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FIGURE 9.6 A 2D representation of R versus NR using PCA.

TABLE 9.5 A List of Discriminating Feature Indices of ITMS-Treatment Selection

No. EEG Electrodes Frequency Band Absolute z-values P-values

1 Fp2 Delta 0.3024 .016

2 C3 Theta 0.2886 .022

3 F7 Delta 0.2794 .013

4 F3 Delta 0.2794 .022

5 F7 Theta 0.2739 .016

6 T4 Theta 0.2711 .022

7 F8 Theta 0.2711 .008

8 T4 Delta 0.2711 .010

9 F3 Theta 0.2665 .002

10 Fz Delta 0.2656 .045

11 F4 Delta 0.2638 .0021

12 C4 Delta 0.2601 .015

13 F8 Delta 0.2574 .021

14 T4 Theta 0.2555 .030

15 P3 Delta 0.2555 .001
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Fig. 9.6 shows low-dimensional representations based on kernel-
based principal component analysis (KPCA). The KPCA can be used to
visualize the clustering behavior of the multidimensional feature space.
This figure was generated using the KPCA method with a Gaussian ker-
nel using Nr5 15 selected features. The x-axis represents the first PCA
component and the y-axis corresponds to the second PCA component.
This example lends credibility to the idea that it is possible to select a
set of features from background EEG which are indicative of response.
An advantage of the low-dimensional representation (Fig. 8.6) is that it
visually confirms that the classes do indeed cluster in distinct separable
regions in the feature space, indicating that prediction is feasible.

9.2.5 Classification Results (ITMS-Treatment Selection)

Table 9.6 provides SVM classification results for discriminating
between treatment respondents and treatment nonrespondents. The
results are resimulated using data collected from this work. According
to the table, the wavelet-based CPEI features performed better than
the wavelet-based energy, FD, and SE features (accuracy5 80.1%,
sensitivity5 81.6%, specificity5 77.8%). The integration of all the
wavelet-based features (ITMS-treatment selection) resulted in
accuracy5 89.1%, sensitivity5 91%, and specificity5 88.7%.

Table 9.7 provides a comparison between the ML method and state-
of-the-art methods (as mentioned in the Chapter 5, Sections 5.2 and 5.3)
alpha, theta power, alpha asymmetry, ATR index, theta cordance, coher-
ence, and P300 intensities. The results are resimulated using data
collected from this work. The table presents results from the logistic
regression classifier with the IR-referenced EEG data only. The number
of features reported here show maximum classification accuracies with
the given feature sets. Results shown in the table signify better perfor-
mance of the wavelet-based method than the existing state-of-the-art
methods. It can be observed that the second-best accuracy is provided

TABLE 9.6 SVM Classification for R Versus NR

EEG-Based Features Accuracy (%) Sensitivity (%) Specificity (%)

Wavelet-based energy 77.2 78.3 76.4

Wavelet-based CPEI 80.1 81.6 77.8

Wavelet-based SE 74.44 71.66 76.6

Wavelet-based FD 77.3 80 75

ITMS-treatment selection 89.1 91 88.7
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by coherence, that is, 76.3%. However, the associated specificities are
low, which leads to the conclusion that these features are not
suitable for clinical applications. Finally, integration of all the wavelet-
based features (ITMS-treatment selection) have resulted in
accuracy5 89.1%, sensitivity5 91%, and specificity5 88.7%.

Table 9.8 provides a comparison of the ML method with STFT and
EMD techniques. The EEG features computed with WT analysis showed
the highest classification efficiencies (accuracy5 89.1%) among other
EEG features. On the other hand, STFT- and EMD-based EEG feature
extraction showed a lower performance than WT analysis. An integra-
tion of the features including WT analysis, EMD, and STFT resulted in
an accuracy of 85.3%.

The ML techniques utilized were recommended by Ahmad-khudayari
and fellow researchers, for example, utilization of ML techniques are
recommended to classify study participants based on pretreatment EEG
data.28 However, ML methods discussed in this chapter include logistic
regression classification, support vector machine, and Naı̈ve Bayesian

TABLE 9.7 Comparison Between ITMS-Treatment Selection and Literature

EEG-Based Methods Accuracy (%) Sensitivity (%) Specificity (%)

Alpha power 62.2 64.7 60

Theta power 58.71 64.7 52.14

Alpha asymmetry 65 62.38 68.5

ATR index 61.68 70 54

Theta cordance 70.7 75.7 65.7

Coherence 76.3 81.9 69.5

P300 intensities 74.16 70 75

ITMS-treatment selection 89.1 91 88.7

TABLE 9.8 SVM Classification (R vs NR) for EEG Data

EEG Features

Classification Performance

Accuracy (%) Sensitivity (%) Specificity (%)

Wavelets 89.1 91 88.7

STFT 61.66 52.5 70

EMD 60.4 52.5 70

Wavelet, STFT, and EMD 85.33 84.5 86.5
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classification, which were not employed by previous studies. Other parts
of the scheme such as feature extraction, selection, and validation are also
different from previous studies. However, the wavelet-based method
offers a higher efficiency (accuracy, sensitivity, and specificity) involving
wavelet features extracted from EEG. In addition, wavelet features from
the frontal and temporal areas are found to be significant. This finding is
in accordance with various research studies related to MDD.29

Regarding the question of clinical applicability, the wavelet-based
method provides a faster evaluation of treatment outcomes as it utilizes
pretreatment EEG data. This contrasts with methods that require data
from the first week as well, for example, the ATR index.30 Furthermore,
the wavelet-based method provides higher values of specificities, which
favor its clinical utility. Biomarkers such as theta cordance and ERP-
based techniques (P300 and LDEAP) resulted in low specificities.31,32

The selected antidepressants have similar mechanisms of action and
are categorized under the same class of antidepressant, that is, SSRIs.
Therefore, the wavelet-based method is applicable to these kinds of anti-
depressants only. Other classes of antidepressants such as SNRIs or tri-
cyclics have different mechanisms of actions, and this method requires
further investigation for applicability to these kinds of treatments.
Therefore, caution should be adopted when generalizing results for anti-
depressants, though they may come under the category of SSRIs.

9.3 DISCUSSION

In this chapter, an improved feature selection and classification sys-
tem termed as ITMS-treatment selection is presented, which utilizes EEG
wavelet-based features as biomarkers for antidepressant treatment selec-
tion involving SSRIs. ITMS-treatment selection shows a higher efficiency
than published methods. In addition, treatment efficacy assessment is
performed on EEG data (week 0) recorded from drug naı̈ve MDD
patients. Conventionally, an adequate time frame of 2�4 weeks is
required for antidepressant treatment efficacy assessment. Hence,
ITMS-treatment selection might improve treatment selection by effectively
reducing the time frame of 2�4 weeks. In addition, the wavelet-based
system may help psychiatrists during treatment selection by providing
objective evidence to evaluate the suitability of antidepressants under
the SSRIs category.

In this chapter, brain localization techniques help in identifying brain
areas such as frontal, temporal, parietal, and occipital. The techniques
included (1) the construction of 3D images based on sLORETA analysis;
(2) topographical maps generated from a reduced set of wavelet
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features; and (3) the 15 top-ranked features sorted according to ROC cri-
terion. This finding is in accordance with other research studies related
to MDD.29 Other studies based on structural observations such as MRI,
including MDD patients with abnormalities associated with the frontal,
temporal, parietal and occipital regions.29,33�35 However, the main con-
tribution is that our data have replicated these findings with wavelet
decomposition.

There is a possibility that our ML-based models are confounded with
some outliers other than relevant patterns extracted from brain activi-
ties. However, this concern has been ruled out by (1) properly adopting
artifact removal techniques; (2) standardizing preprocessed data based
on z-scores; (3) plotting the low-dimensional representation of the fea-
ture space. This helps in identifying outliers which may disturb inter-
pretations and conclusions; (4) during the classifier testing and training,
selecting random data points so that each data point in the feature space
can be used; and (5) in terms of classification, equally distributing both
the responder and nonresponder classes within MDD male and female
patients. Based on all these precautions, it may be concluded that the
results shown here are unbiased and a true representation of the infor-
mation from the recorded pretreatment EEG data.

9.4 SUMMARY

This chapter provides details on the ITMS for treating depression.
In addition, few limitations of the proposed method have been
highlighted. For example, during MDD patient recruitment, it was diffi-
cult to recruit patients under a common treatment. As a result, the inclu-
sion of patients was restricted to a single class of antidepressants, that is,
SSRIs. Since the pharmaco-EEG profiles of different antidepressants are
not clear yet, it is difficult to study medication-specific treatment effects.
The proposed ITMS has been validated with relatively small sample size.
In addition, the findings are specific to Malaysian populations only.
Therefore, in order to generalize the findings, it is necessary to replicate
the reported results into larger population. The study patients are
required to be in washout for a period of 2 weeks before the first EEG
data acquisition. In future studies, the inclusion of psychophysiological
characteristics integrated with EEG may improve prediction
performance.
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