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ABSTRACT

We focus on the problem of speaker recognition in far-field multi-
channel data. The main contribution is introducing an alternative
way of predicting spatial covariance matrices (SCMs) for a beam-
former from the time domain signal. We propose to use Conv-
TasNet, a well-known source separation model, and we adapt it to
perform speech enhancement by forcing it to separate speech and
additive noise. We experiment with using the STFT of Conv-TasNet
outputs to obtain SCMs of speech and noise, and finally, we fine-
tune this multi-channel frontend w.r.t. speaker verification objective.
We successfully tackle the problem of the lack of a realistic multi-
channel training set by using simulated data of MultiSV corpus. The
analysis is performed on its retransmitted and simulated test parts.
We achieve consistent improvements with a 2.7 times smaller model
than the baseline based on a scheme with mask estimating NN.

Index Terms— Conv-TasNet, beamforming, embedding extrac-
tor, speaker verification, MultiSV

1. INTRODUCTION

In the past years, the demand has been steadily increasing for smart
appliances that process users’ commands, such as hands-free de-
vices, smart speakers, TVs, and home assistants. They are often
equipped with several microphones. Multiple sensors have the abil-
ity to provide spatial information that is especially useful in adverse
noisy and reverberant conditions. Multi-channel signal processing
is currently being researched and applied in various fields, such as
source separation, and speech enhancement, with applications to au-
tomatic speech recognition, keyword spotting and speaker verifica-
tion (SV).

Since the advent of speaker embeddings extracted by neural
networks [1], single-channel SV has progressed tremendously. To
achieve desirable generalization, state-of-the-art embedding extrac-
tors require a large amount of training data such as Voxceleb [2, 3],
often inflated by multiple augmentations [4]. Even though some
multi-channel data-collecting initiatives have emerged [5, 6, 7], it is
prohibitively costly and time demanding to collect a multi-channnel
dataset comparable to single-channel Voxceleb in terms of amount
of speakers and hours of speech.

When dealing with multi-channel data, there is experimental ev-
idence [8] that even a strong embedding extractor can benefit from
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multi-channel enhancement [9, 10, 11] more than from a single-
channel one [12]. The type of speech enhancement, however, plays
an important role: while various multi-channel enhancement and
source separating networks directly predicting sources have been de-
veloped [13, 14, 15], the non-linear distortions and artifacts may hurt
the performance of a downstream speaker verification [16] or even
ASR [17]. A plausible option for multi-channel pre-processing is
linear filtering performed by a beamformer. It turned out to be ben-
eficial in multiple studies [18, 19, 11].

Successful speech enhancement [20] and separation models [20,
21, 22] were previously based on a prediction of time-frequency (T-
F) spectral masks (representing the dominance of a desired signal in
T-F bins) applied to the input spectrum. In accordance with their
success, a traditional way of neural beamforming likewise utilizes
masks [19, 23, 11]. In such scenarios, pooled per-channel masks are
used for the estimation of second-order statistics (spatial covariance
matrices – SCMs).

A trend to estimate enhanced/separated speech signals directly
in either frequency [24] or time domains [25, 26, 27] has emerged,
too. Whereas frequency domain used to dominate the field, recent
studies increasingly employ time-signal processing. Following the
direct prediction of desired outputs, some studies have also utilized
such models for the estimation of SCMs required by beamforming
in multi-channel settings [28, 29].

We propose a multi-channel speaker embedding extraction
model for SV in far-field conditions with background noise and
reverberation. Similarly to our baseline [11], the final model com-
prises neural-network-supported beamforming and single-channel
embedding extractor. We focus on the multi-channel part of the
system (beamforming). For it to enhance speech and suppress noise
well, precise estimation of SCMs is required. To this end, motivated
by the discussed trends, we depart from the mask predictor (used
in the baseline). Instead, we aim at utilizing the speech modeling
power of recent models. Similarly to [29], we base the SCM estima-
tion on per-channel outputs of a time-domain model from the field
of source separation. We opt for Conv-TasNet [25] for its modeling
power and small size which we even decrease to obtain a small
footprint network. Our contributions can be summarized as follows:

• Despite the utilization of Conv-TasNet, we propose an SCM esti-
mation approach that is different from that used in [29]. We em-
pirically found it performing consistently better in our task of SV,
especially for retransmitted data and ad-hoc microphone arrays.

• We show significant improvements on simulated evaluation data
and comparable or better performance on retransmitted data com-
pared to the mask predictor based model, which has 2.7 times
more parameters than the proposed network.

• We show the efficiency of the front-end (Conv-TasNet or mask
predictor) fine-tuning in a joint model by optimizing speaker-
discriminative loss. The fine-tuning brought average relative
improvements of 8.0% and 6.4% for proposed and mask predictor
based models, respectively.
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Fig. 1: Proposed multi-channel embedding extraction for SV based on beamforming and Conv-TasNet enhancement.

2. METHOD

As displayed in Figure 1, the architecture comprises two main com-
ponents: beamforming-based front-end and speaker embedding ex-
traction. At the first stage of front-end processing, four channels
from a microphone array are independently fed to a per-channel
operating Conv-TasNet [25]. It has been proven strong in source
separation, and we aim at employing its modeling capacity in our
scenario. We utilize it to split single-channel input mixture to cor-
responding speech and noise components. Resulting four estimates
of speech and noise are subsequently used to estimate speech and
noise SCMs, respectively. It is the quality of SCMs that affects
beamformer speech enhancing ability. Any beamformer that makes
use of SCMs, such as MVDR (minimum variance distortionless re-
sponse) [30] or GEV (generalized eigenvalue) [31], may be used at
this stage. We perform our analysis with the MVDR. Single-channel
beamformer output is subject to feature extraction and passed to a
ResNet-based embedding extractor. Finally, the speaker embeddings
are compared with cosine similarity to yield SV scores.

2.1. Conv-TasNet for speech enhancement

The original Conv-TasNet [25] is a neural network designed to sepa-
rate a time-domain mixture y ∈ RT , with T representing the number
of samples, into individual source signals: given that y =

∑I
i=1 xi,

the model should output predictions of I source signals {x̂i}Ii=1 in
a non-specified order. To achieve this goal, it is trained to optimize
a scale-invariant signal-to-distortion ratio (SI-SDR) in an utterance-
level permutation-invariant training (PIT) manner [22].

Although Conv-TasNet was originally designed for speech
source separation, we adapt it to separate single-speaker speech
from an additive noise. Therefore, it can be viewed as a speech
enhancement model applied to every channel c = 1, . . . , C of a
microphone array.

We assume that every channel signal yc ∈ RT can be decom-
posed into components xc and nc. Component xc is a time-domain
speech signal impinging on the microphone c (reverberant speech),
and nc is a reverberant noise signal. Our speech enhancing model is
supposed to separate the speech component from the noise compo-
nent: [x̂c, n̂c]T = Conv-TasNetenh(yc).

In summary, given multi-channel mixture signals {yc}Cc=1, the
Conv-TasNet-based speech enhancer is used to obtain estimates of
speech {x̂c}Cc=1 and estimates of noise {n̂c}Cc=1 for each channel
independently as schematically displayed in Figure 1.

2.2. Beamforming in frequency domain
In order to perform beamforming in the frequency domain, time-
domain inputs need to be transformed employing short-time Fourier
transform (STFT). Let Yc ∈ CT ×F be an STFT representation of
yc, where F is the number of frequency bins and T represents the
number of frames. For every frame index t and frequency index f ,
we then construct a vector Yt,f = [Yt,f,c=1, . . . , Yt,f,c=C ]

T ∈ CC
grouping channels together, where Yt,f,c ∈ C is a complex value of

a time-frequency bin of channel c. A beamformer performs linear
filtering, therefore, the enhanced STFT value X̂(BF )

t,f is obtained as

X̂
(BF )
t,f = wH

f Yt,f , (1)

where wf ∈ CC is a time-independent beamforming weight vector
and (·)H represents the conjugate (or Hermitian) transpose. The way
wf is computed depends on the criterion that the beamformer opti-
mizes. In this study, we adopt the MVDR beamformer. Subjected to
a unity gain constraint in the desired direction (distortion-less con-
straint), the MVDR minimizes the power of the output. The mini-
mization leads to a closed-form solution. We use a formulation with
SCMs [32]:

wMVDR
f =

(
Φ

(N)
f

)−1

Φ
(S)
f

Tr

((
Φ

(N)
f

)−1

Φ
(S)
f

)u, (2)

where Φ
(S)
f is a frequency-dependent SCM of speech, Φ

(N)
f is the

SCM of noise, and u ∈ {0, 1}C is a one-hot vector encoding the
reference microphone. We always aim at obtaining enhanced speech
at the first microphone, hence we keep u = [1, 0, . . . , 0]T constant.

2.3. Spatial covariance matrix estimation

Let X̂c ∈ CT ×F and N̂c ∈ CT ×F be the STFT representations
of Conv-TasNet enhanced speech signal x̂c and the estimated noise
n̂c, respectively. We propose an approach to SCM estimation that
is based on input masking rather than using x̂c, n̂c directly. Our
assumption is that it has the potential to neglect wrong predictions
for some channels. Using Conv-TasNet estimates, we first compute
channel-dependent real ratio masks resembling ideal ratio masks
(IRM) [20]

M(S)
c =

(
|X̂c|2

|X̂c|2 + |N̂c|2

)β
, M(N)

c =

(
|N̂c|2

|X̂c|2 + |N̂c|2

)β
,

(3)
where β is a scalar set to 0.5 since we empirically found it perform-
ing the best. Vectors X̂t,f = [X̂t,f,c=1, . . . , X̂t,f,c=C ]

T ∈ CC

and N̂t,f = [N̂t,f,c=1, . . . , N̂t,f,c=C ]
T ∈ CC are constructed from

time-freqency-channel bins of STFTs {X̂c}Cc=1 and {N̂c}Cc=1, re-
spectively. Following [33], we combine channel-dependent masks
using product pooling M(ν) =

∏C
c=1 M

(ν)
c , with ν being either S

or N . Values of M(ν) ∈ RT ×F represent the prevalence of speech
or noise in time-frequency bins of Conv-TasNet outputs. Finally,
values of combined masks weigh the outer products when estimat-
ing SCMs:

Φ
(ν)
f :=

∑T
t=1M

(ν)
t,f Yt,fY

H
t,f∑T

t=1M
(ν)
t,f

. (4)

7983

Authorized licensed use limited to: Brno University of Technology. Downloaded on June 28,2022 at 22:05:26 UTC from IEEE Xplore.  Restrictions apply. 



2.4. Speaker embedding extractor
Speaker embedding network extracts utterance-level embeddings
given enhanced single-channel audio (1). Due to frame length
(64 ms vs. 25 ms) and shift (16 ms vs. 10 ms) mismatch between
the beamforming front-end and embedding extractor, the signals are
re-framed through the time domain. Subsequently, log-Mel filter
bank energy features (fbanks) are extracted and fed to the extractor.

The embedding extractor architecture is based on ResNet34
[34], with slight modifications described in Section 3.3. Follow-
ing the x-vector extractor approach [1], outputs of the last residual
block are subject to statistical pooling. The obtained statistics are
projected to speaker-descriptive 256-dimensional embedding. The
model is trained to optimize additive margin (AM) softmax [35].

3. EXPERIMENTAL SETUP

3.1. Training data

We use two training datasets – one for embedding extractor and one
for front-end. The single-channel embedding extractor is trained on
the development part of Voxceleb 2 [3] with reverberation and noise
augmentations defined by the Kaldi recipe.

Since front-end models (Conv-TasNet and mask predictor) re-
quire speech and noise references, we use training data from the
MultiSV1 corpus [36] which we have recently released. It comprises
simulated four-channel reverberated and noisy training recordings.
It comes with reverberant speech and reverberant noise references
for training as well as with speaker labels. Speech signals of 1,000
speakers that enter the simulation were selected from Voxceleb 2
dev recordings exceeding 20 dB SNR. Distractors cover various do-
mains – music from FMA small [37], noises (without music and bab-
ble) from MUSAN [38], and selection of noises from Freesound.org
(fan, HVAC, office sounds, etc). They were added to speech signals
with SNRs uniformly sampled from [3, 20] dB. Room impulse re-
sponses were created by the image source method (ISM) [39], and
RT60 ranges from 0.3 to 0.9 s.

Since front-end models process signals independently, the multi-
channel nature of MultiSV is disregarded. However, it is utilized in
joint training, which will be detailed later, as all four channels are
used in beamforming whose output is fed to the embedding extractor.

3.2. Evaluation multi-channel data

We use trial sets defined by MultiSV for evaluation. They are based
on trials for a single-channel VOiCES challenge [40] where the data
are selected from the VOiCES corpus [5]. Modification enabling
multi-channel SV evaluation was presented in [41]. MultiSV ex-
tends it by adding other conditions. We adopt the scenario of single-
channel enrollment and multi-channel test. For a thorough evalu-
ation, we employ both simulated and retransmitted data. They are
equal in terms of source speech originating from LibriSpeech [42].

Following [36], the retransmitted evaluation sets are referred to
as dev retr SRE, eval retr v1 SRE, and eval retr v2 SRE. Enrollment
single-channel recordings are the same as those used in the VOiCES
challenge [40] – reverberant (dev) or combination of reverberant and
clean (eval). Test segments are four-channel recordings of ad-hoc
microphone arrays. They contain retransmitted music (only in dev
retr), television, babble, and none (diffuse background) noises. Ver-
sions of the “eval” set differ in employed microphones. V1 com-
prises arrays with large inter-microphone distance where distant sen-

1https://github.com/BUTSpeechFIT/MultiSV

sors might have very low SNR. V2 contains more compact arrays.
Trial definitions dev retr CE and eval retr CE differ from their SRE
counterparts only in terms of clarity of enrollment segments. CE
stands for “clean enrollment”. The development set comprises 196
speakers and 996,448 trials (with 5,024 target ones). The evaluation
set comprises 100 different speakers and 973,929 trials (with 9,939
target ones).

Simulated trial sets are labeled as dev simu and eval simu.
Microphone array recordings were obtained by simulation using
source speech signals. Background noises contain MUSAN mu-
sic and noises (not present in training data), and distractors from
Freesound.org. RT60 reverberation times of ISM-generated RIRs
were uniformly drawn from the interval [0.3, 0.9] s. Mixing SNRs
were uniformly drawn from [3, 20] dB.

3.3. Models and hyperparameters

Original best-performing Conv-TasNet model in [25] comprises
5.1M parameters. To obtain more practical small-footprint model
of 1.2M parameters, we altered hyperparameters (respecting the
original naming convention) as follows: N = 256, L = 40, B = 128,
H = 192, P = 3, X = 7, and R = 3. The rationale behind the increased
length of filters (L) in the encoder and decoder is to keep approx-
imately the same time span of bases while using data sampled at
16 kHz (compared to 8 kHz). The original Conv-TasNet for source
separation is trained with SI-SDR objective in a PIT fashion. In our
case, sources (speech or noise) are well-defined, therefore PIT is not
required. As opposed to SI-SDR, we optimize SNR. It is because
scale invariance in training could cause a different dynamic range
of enhanced speech and noise. As noted in [29], preserved scale
information is important for correct subsequent SCM estimation.

ResNet-based [34] embedding extractor requires 40D fbank fea-
tures. Its stages comprise conv. layers of 64, 128, 256, 256 channels,
and the last part of the model is tailored towards embedding predic-
tion. The scale of the AM softmax loss [35] was set to 30. The
margin was continuously increased during training up to 0.2.

4. EXPERIMENTS

We present SV results in terms of equal error rate (EER [%]) and
minimum detection cost (MinDCF), where the prior probability of a
target trial Ptar is set to 0.01 following the VOiCES challenge [40].

4.1. Baseline

The baseline comprises frequency domain mask predictor [11] and
the same embedding extractor as the proposed model. Given the
magnitude spectra at the input, the front-end directly estimates per-
channel speech and noise masks using NN (as opposed to speech and
noise signals). They are combined by averaging and used for SCM
estimation according to (4). The mask predictor is trained to opti-
mize a binary cross-entropy between outputs and ideal binary masks
[20]. The model comprises a long short-term memory (LSTM) layer
(providing outputs of the same dimensionality as inputs, i.e. 513 –
number of frequency bins) followed by 2 fully connected (FC) lay-
ers with 513 neurons and two parallel FC layers predicting masks.
It is noteworthy that the results obtained with the baseline are not
readily comparable with results in [11]. The reasons are as follows:
following the evolution in SV, we switched our embedding extractor
from simpler time delay NN model (TDNN) with cross-entropy to
ResNet with the AM loss. We also employ cosine-similarity scoring
instead of PLDA. Training data has changed as well.
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Table 1: Evaluation on trials with retransmitted multi-channel test segments. Enrollment utterances are retransmitted (SRE) or clean (CE).

Front end train
type params dev retr SRE eval retr v1 SRE eval retr v2 SRE dev retr CE eval retr CE

EER [%] MinDCF EER [%] MinDCF EER [%] MinDCF EER [%] MinDCF EER [%] MinDCF

mask predictor
se

p. 3.2M 0.98 0.124 4.47 0.354 2.04 0.197 0.92 0.111 4.25 0.326
proposed 1.2M 0.97 0.119 4.39 0.346 2.08 0.188 0.90 0.104 4.24 0.330

mask predictor

jo
in

t 3.2M 0.86 0.109 4.38 0.329 2.22 0.182 0.84 0.087 4.32 0.315
proposed 1.2M 0.82 0.108 4.26 0.324 1.98 0.176 0.80 0.085 4.20 0.314

Table 2: Proof-of-concept experiments on simulated data.

Front end dev simu eval simu
EER [%] MinDCF EER [%] MinDCF

mask predictor 1.41 0.162 2.02 0.195
propopsed 1.17 0.147 1.91 0.176

4.2. Proof of concept

The first experiment aims to evaluate Conv-TasNet’s ability to pro-
vide good representations of speech and noise, leading to better esti-
mation of SCMs in a controlled environment. To this end, we opted
for an evaluation data that is similar to the training data – both are
simulated. However, differences in speakers, speaking styles (read
and spontaneous speech), utterances, and noises make the evalua-
tion sets challenging. As per results in Table 2, we observe consis-
tent improvements in all metrics over the baseline with the proposed
front-end. Relative improvements range from 5.4% to 21.1%.

4.3. Retransmitted evaluation data

We provide results obtained on more realistic retransmitted data.
Such an evaluation is often missing, but we find it important. Con-
ducted experiments assess the ability to generalize to unseen acous-
tic conditions and background noises. Television and babble noises
are new to the system (although, they might share some properties
with music noise to some extent). What also makes the data diffi-
cult is the fact that the assumptions that hold for simulated training
data do not need to hold for retransmitted evaluation data. Noise and
source additivity, and ray acoustics are examples of the assumptions.

According to the results in Table 1, retransmitted data poses a
challenge to both systems, and the clear dominance of Conv-TasNet
based system from the previous experiment has diminished. On
the other hand, despite a significantly smaller size of the proposed
model, it is still able to perform on par with or slightly better than
the mask-predicting model. Comparing dev retr SRE and CE (its
clean-enrollment counterpart) as well as eval retr v1 SRE with eval
retr CE, the results suggest that, on average, speaker embeddings ex-
tracted from beamformed signals are more similar to embeddings of
clean enrollment segments. It holds for both systems and is appeal-
ing as this scenario is practically useful. As expected, microphone
arrays that are compact, and do not suffer from outlier signals of
bad quality, provide considerably better results. This outcome stems
from the comparison of eval retr v1 SRE and eval retr v2 SRE.

4.4. Joint model fine-tuning

Since loss functions optimized by speech enhancement models
might not be directly related to the quality of SCM estimation, and
in turn to speaker embeddings, we also propose a front-end fine-
tuning scheme. We join both separately trained models and optimize

speaker-discriminative AM loss. This is enabled because all com-
ponents (including beamforming) of the models are differentiable.
During the fine-tuning phase, the ResNet extractor is fixed, and
only the front-end parameters are updated. We re-utilize data used
for separate front-end training, MultiSV, as it also includes speaker
labels. Prior to this fine-tuning, the last layer must have been re-
defined and trained since the number of speakers differs from the
number of speakers in the embedding extractor training set.

The lower part of Table 1 shows considerable improvements by
fine-tuning. Our Conv-TasNet based system benefits from this phase
more as the average relative improvement is 8.0% compared to 6.4%
for the mask predictor based model. Overall, our model yields the
best numbers across the board. It suggests its power and generality.

4.5. Discussion

Apart from the presented approach to SCMs estimation, we also ex-
perimented with a more straightforward method directly utilizing
Conv-TasNet outputs to estimate speech and noise SCMs similarly
to [29], i.e. without masking. Even though we obtained 1.23% EER,
0.155 MinDCF on dev simu, and 1.99% EER, 0.179 MinDCF on
eval simu, the proposed approach consistently outperforms it, espe-
cially on retransmitted data. It is worth noting that retransmitted data
was not explored in [29].

We also explored the GEV beamformer and we observed similar
outcomes. Owing to the space constraints, we only present results
with the MVDR beamformer.

In this study, Conv-TasNet enhances individual channels inde-
pendently. Utilization of multiple channels to enhance one of them
might be helpful. A simple concatenation of channels did not im-
prove results in our preliminary experiments.

It is noteworthy that the data used for fine-tuning is simulated.
During this phase, speaker labels suffice, and no speech-noise de-
composition is required. We hypothesize that real data could boost
performance even more.

5. CONCLUSIONS

We proposed a new multi-channel speaker embedding extractor for
far-field SV with noise and reverberation. It consists of NN-boosted
beamforming and a ResNet-based extractor. We proposed to use
Conv-TasNet for speech enhancement and a beamforming-related
SCM prediction based on its outputs, which is different from that
used in [29]. We obtained significant improvements on simulated
MultiSV. Analysis on more difficult retransmitted MultiSV shows
comparable or better performance over the baseline while using 2.7
times less parameters for front-end. We also demonstrate the effec-
tiveness of a Conv-TasNet fine-tuning in a joint model.

As part of future work, we aim to analyze fine-tuning of both
models simultaneously. We will also explore a better way of making
use of multi-channel information during the enhancement phase.
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