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ABSTRACT

In this contribution, we provide a description of the ABC team’s
collaborative efforts toward the development of speaker verification
systems for the NIST Speaker Recognition Evaluation 2021 (NIST-
SRE2021). Cross-lingual and cross-dataset trials are the two main
challenges introduced in the NIST-SRE2021. Submissions of ABC
team are the result of active collaboration of researchers from BUT,
CRIM, Omilia and Innovatrics. We took part in all three close con-
dition tracks for audio-only, audio-visual and visual-only verifica-
tion tasks. Our audio-only systems follow deep speaker embeddings
(e.g., x-vectors) with a subsequent PLDA scoring paradigm. As em-
beddings extractor, we select some variants of residual neural net-
work (ResNet), factored time delay neural network (FTDNN) and
Hybrid Neural Network (HNN) architectures. The HNN embed-
dings extractor employs CNN, LSTM and TDNN networks and in-
corporates a multi-level global-local statistics pooling method in or-
der to aggregate the speaker information within short time-span and
utterance-level context. Our visual-only systems are based on pre-
trained embeddings extractors employing some variants of ResNet
and the scoring is based on cosine distance. When developing an
audio-visual system, we simply fuse the outputs of independent au-
dio and visual systems. Our final submitted systems are obtained
by performing score level fusion of subsystems followed by score
calibration.

1. INTRODUCTION

Speaker verification is the task of verifying the claimed speaker iden-
tity based on the given speech recordings and has become a key tech-
nology for personal authentication in various applications. Speaker
detection is the core task in NIST’s speaker recognition evaluations
(SREs). Like SRE 2019 [1], the 2021 edition of speaker recognition
evaluation (SRE21) focuses on speaker verification over conversa-
tional telephone speech (CTS) and audio from video (AfV). Similar
to SRE 2019, SRE21 also features three tracks namely audio-only,
visual-only and audio-visual tracks involving automatic person ver-
ification using audio, image, and audio-visual or video modalities,
respectively. But unlike SRE2019, the SRE21 introduces two major
challenges and they are (i) cross-lingual trials and (ii) cross-dataset
trials [2].

In order to tackle the introduced challenges, in ABC team, we
focused on different parts or stages of automatic speaker verifica-
tion pipeline. One can build separate verification systems for CTS

& AfV and then perform score level fusion for taking care of the
cross-corpus (i.e., CTS versus AfV) trials. The second way of tack-
ling this issue is to train verification systems on the pooled train-
ing recordings from CTS and AfV sources, possibly with data aug-
mentation with various audio codecs simulation. Alternatively, one
can use only broadband AfV corpus (e.g., VoxCeleb), generate sup-
plementary data employing diversified audio codecs for mimicking
CTS scenarios and then use the augmented data to build verifica-
tion systems. On our side, we mainly adopted the second approach
though one of our systems was developed on the top of CTS [3] data
only.

For SRE21 audio-only track, we adopted the deep speaker em-
bedding framework, where a suitable embedding extractor is used
for training and extracting the deep speaker embeddings in the first
phase. In the second phase, a probabilistic linear discriminant analy-
sis (PLDA) or cosine distance backend is used for verification scor-
ing over the extracted enrollment and test embeddings. The popular
x-vector - PLDA backend combination is one such framework which
uses a time-delay neural network (TDNN) [4] architecture as embed-
dings extractor backbone network. In this work, as embeddings ex-
tractor backbone network, we explored Factored TDNN (FTDNN)
[5], some variants of Residual Neural Network (ResNet) [6] and re-
cently proposed Hybrid Neural Network (HNN) [7, 8] architectures
to learn robust speaker embeddings. The HNN architecture employs
CNN, LSTM and TDNN networks in cascade for capturing comple-
mentary information available among these individual networks and
incorporates a multi-level global-local statistics pooling to aggregate
the speaker information within short time-span and utterance-level
context. Following the extraction of deep speaker embeddings, we
used probabilistic linear discriminant analysis (PLDA) back-end for
scoring after applying centering, whitening, dimension reduction by
LDA, and length normalization. Additionally, as post processing we
also adopted nuisance attribute projection (NAP) to compensate for
dataset shifts and domain adaptation over the model (e.g., supervised
PLDA adaptation) and embedding space.

For building visual-only verification systems, we mainly relied
on the pre-trained face verification model based on InsightFace [9]
that employs ResNet101 architecture as face or visual embeddings
extractor. Cosine similarity was used as a backend (or classifier) for
verification scoring between enrollment and test embeddings.

In addition to the regular audio-only track, for the first time,
the NIST introduced audio-visual track in SRE 2019 and provided
a common framework that enabled the speaker recognition research
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community to explore promising new ideas on multimodal biomet-
rics. In SRE 2019, developed audio-visual systems based on simple
score level fusion strategies yielded remarkable performance gains
over the unimodal (i.e., audio-only or visual-only) systems, provid-
ing a strong evidence about the complementarity of these two modal-
ities [1, 10]. Hence, for SRE21, we formed our audio-visual systems
by simply fusing the scores of independent audio and visual systems.

2. AUDIO-ONLY VERIFICATION SYSTEMS

In this section, we describe speaker verification systems developed
using voice/audio biometric trait alone. This includes data prepara-
tion, training embeddings extractor, backend and lastly, calibration
and fusion.

2.1. ResNet34 Embeddings Extractor

2.1.1. Training data and data augmentations

For training the system, we used following databases:

• NIST CTS Superset [3]

• Voxceleb 1 & 2 [11]

There are in total 14096 speakers. We used Kaldi style data augmen-
tation with MUSAN database [12].

• 8k dataset: When training 8kHz sampling frequency-based
systems, we downsample all broadband (i.e., Voxceleb 1 &
2) data to 8kHz.

• 16k dataset: When building 16kHz sampling frequency-
based models, we use upsampled 8kHz data, original 16kHz
data, and 16kHz data downsampled to 8kHz, passed through
GSM codec and upsampled back to 16kHz.

Following Mel-frequency filterbank features are fed to the input
of the network:

• 8k dataset: 64-dimensional Mel-filterbanks with frequency
band limited to 20-3800Hz

• 16k dataset: 80-dimensional Mel-filterbanks with frequency
band limited to 20-7600Hz

2.1.2. Development dataset

For monitoring our performance and for both calibration and fusion,
we used the official SRE2021 development dataset [2] provided by
the NIST and LDC.

2.1.3. ResNet34 as Backbone Network

The backbone of these embedding extractors is a 34-layer ResNet.
All convolutional kernels are 3×3, and the number of channels is
(64,128,256,256) and the first convolutional layer also outputs 64
channels. The number of convolutional layers per block is (3, 4, 6,
3). The input features are 64-dimensional Mel filterbanks, extracted
from 8kHz audio files, and the training segments contain 350 frames.

There are three main differences between the proposed ex-
tractors and other ResNet architectures typically used in speaker
recognition. First, for all three ResNet systems from our submis-
sion, only standard deviation features are included in the statistics
pooling layer. The approach was examined in [6] and appears to
generalize better, at least in cases where there exists dataset-shifts
between training and test settings. Second, for two systems in

our primary fusion (Omilia BUT-RN34 str4 stat and Omilia BUT-
RN34 str4 embd), a reduced temporal stride is applied, which seems
helpful for generalizing to new languages. The temporal stride per
ResNet stage is set to (1,2,1,2) (i.e. a cumulative stride equal to 4
instead of the standard 8) while the frequency stride is the typically
used (1,2,2,2). The motivation is to reduce the receptive field by a
factor of 2 in order to model shorter speech patterns, which should
be more language-independent. Finally, we experimented with ex-
tracting statistics instead of embeddings, as the latter representations
are susceptible to overfitting the training speakers and languages.
Statistics allows us to experiment with unsupervised dimensionality
reduction methods (e.g. PCA) and possibly retain directions that
are more discriminative for languages and domains not included
in the training set. As a result, two of ResNet systems from our
primary fusion use the output of the statistics pooling layer in place
of embeddings, and one uses traditional embeddings.

The networks are trained using multi-speaker classification and
with Additive Angular Margin (also known as ArcFace [9]) loss with
30 and 0.3 scale and margin, respectively. As optimizer, we use
stochastic gradient descent with momentum equal to 0.9. The mini-
batch size is 256, however to fit it in a single GPU we split the mini-
batch into 16 “microbatches” of 16 examples each and use gradient
accumulation. The initial learning rate (LR) is equal to 0.2 which
we divide by 2 when the loss does not improve for more than 3000
model updates in the held-out set (the final LR is 0.2/64).

2.1.4. Backend

Four audio systems from the primary submission share the same ap-
proach to train the backend:

First, nuisance attribute projection (NAP) is used to remove the
direction corresponding to speaker gender [13, 14]. Then, we pro-
ceed with centering the data, LDA reducing dimensionality to 75 or
100, and length normalization. In case the input vectors were the
outputs of statistics pooling layer from the embedding network, be-
fore LDA, we apply PCA reducing dimensionality of the input from
2048 (2047 after NAP) to 256.

After data pre-processing, we train a mixture of 3 PLDA mod-
els [15]: each component of the mixture is a PLDA trained on the
data coming from one of three languages: English, Cantonese, and
Mandarin. At test time, we estimate the log-likelihood of the en-
rollment and test segments for each of the models: logP (R | Mi),
where R is a single embedding for single-session enrollment and
test data, and set of three embeddings for multi-session enrollment
models, Mi is one of the three PLDAs. Passing these quantities
through softmax, we obtain weights that are used to scale the LLR
speaker verification scores obtained for each of PLDAs in the mix-
ture. We compute two matrices of weighted scores: one corresponds
to weights computed for the enrollment models and another one cor-
responds to weights based on the test segments. Final score matrix
is the average of these two.

The backend models were trained on English, Cantonese, and
Mandarin data from CTS-superset. Backend training used the em-
beddings extracted from original data and one random augmentation
per recording.

2.2. Factored TDNN (FTDNN) Embeddings Extractor

2.2.1. FTDNN

In this system, we use the factorized TDNN architecture proposed
in [5]. We train it with the Kaldi toolkit [16] with the settings in the
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sre16/v2 recipe except that we used 16k dataset, features, devel-
opment test set described in Section 2.1.1. PLDA backend was used
for scoring.

2.3. Hybrid Neural Networks (HNN) Embeddings Extractor

This section provides an overview of the speaker verification systems
based on Hybrid Neural Networks (HNN) Embeddings Extractor [7,
8] for the NIST SRE 2021 audio-only track.

2.3.1. Training data

For training speaker discriminant neural network, we used aug-
mented version of CTS-superset data [3]. In order to generate
supplementary data on the top of original CTS-superset training
data, we use offline data augmentation using RIRs and MUSAN
noises [12]. We also performed on the fly data augmentation using
SpecAugment [17] technique.

In order to train PLDA model, we used augmented version of all
mixer data from CTS-superset [3].

2.3.2. Features & SAD

23-dimensional Mel-frequency cepstral coefficients (MFCC) were
extracted using an analysis window of 25 msec with a frame shift of
10 msec. Features are normalized using cepstral mean normalization
over a window of 300 frames. Energy-based speech activity detector
(SAD) was used to get rid of non-speech frames.

2.3.3. HNN as Backbone Network

As speaker discriminant deep embeddings extractor, we employed a
hybrid deep learning architecture, introduced in [7, 8], that employs
CNN, LSTM and TDNN networks for learning more discriminative
local descriptors by capturing the complementarity of CNN, LSTM
and DNN/TDNN networks.

The hybrid speaker embeddings extractor, as depicted in Fig.
1, also uses a multi-level global-local statistics pooling, which not
only considers the global statistics of each network module, but also
extracts the local statistics to take the speaker information within the
local variability into account.

The 23-dimensional MFCCs are used as input features to this
hybrid model, which are passed through the IDCT-layer (inverse
discrete cosine transform) to obtain 23-dimensional Mel-Filterbank
(MFB) features. The MFCCs, being decorrelated, are more easily
compressible without any information loss and therefore, take less
storage space than MFB coefficients.

Over the MFB features, SpecAugment is applied on the fly,
where both time and frequency masking are performed. The aug-
mented spectral features are then passed through 5 2-dimensional
CNN (2D-CNN) layers to capture the local spectral characteristics.

The 2D-CNN module is then followed by a frame-level network
which is composed of TDNN and LSTM layers, to extract local de-
scriptors with sufficient temporal information for speaker discrimi-
nation.

The multi-level statistics pooling (MLSP) [18] is used for ag-
gregating first- and second- order statistics from the last layers of
CNN, LSTM and TDNN blocks. However, unlike the conventional
x-vector, the hybrid architecture extracts the statistics not only glob-
ally, but also locally to exploit the short-duration correlation.

As depicted in Fig. 1, each module (i.e., TDNN, LSTM) takes
both the frame-level outputs from the previous layer, and the local
statistics extracted from them as input. During the local statistics

Table 1: System performances on the Audio-only tracks of NIST
SRE21 Development set.

Track System EER min C

Audio-only HNN 12.40 0.648

HNN (lda dim=75) 10.89 0.517

HNN(supPLDA) 8.89 0.487

Table 2: System performances on the Audio-only track of NIST
SRE21 Evaluation set.

Track System EER min C

Audio-only HNN 13.46 0.657

HNN (lda dim=75) 10.28 0.563

HNN(supPLDA) 8.71 0.507

pooling operation, the input sequences are resampled and the pool-
ing window shift rates are adjusted to match the sequence length
with the frame-level features.

After propagating the input features to the frame-level network,
a global statistics pooling is performed to aggregate the local de-
scriptors obtained from the CNN, LSTM and TDNN blocks. The
global first- and second- order statistics are concatenated to a fixed-
dimensional utterance-level representation.

The pooled statistics are then projected into a 512-dimensional
embedding vector via two fully-connected layers. Once the training
is completed, the embeddings are extracted from the fully-connected
layer close to the global statistics pooling layer.

2.3.4. Results on the SRE21 Development and Evaluation Test Sets

We build 3 audio-based speaker verification systems using hybrid
neural network (HNN) - based embeddings extractor:

• HNN: In this case LDA is used to reduce embeddings dimen-
sion to 200 and then PLDA scoring is applied. No score nor-
malization or any other post-processing is applied. This sys-
tem is denoted as CRIM-HNN in Table 5.

• HNN (lda dim=75): In this case LDA is used to reduce em-
beddings dimension to 75 then PLDA scoring is applied. No
score normalization or any other post-processing is applied.

• HNN (supPLDA): LDA is applied to reduce embeddings
dimension to 80 and then scoring is performed using adapted
PLDA model which was adapted using supervised PLDA
adaptation (supPLDA) technique. In this case, we trained
two PLDA models, one on mixer data from CTS-superset and
another on SRE16 evaluation data [19]. After that, the PLDA
parameters (i.e. across-class and within-class covariances)
were adapted by doing interpolation. Optimal interpolation
parameter was set to α = 0.70. No score normalization or
any other post-processing is applied.

Tables 1 and 2 present results attained by all three systems men-
tioned above on the development and evaluation test sets of NIST
SRE 2021 audio-only track. Significant improvements in perfor-
mance were achieved by reducing the dimension of embeddings to
75 or 80 and applying supervised PLDA adaptation.

348



Fig. 1: A schematic diagram of the CNN-LSTM-TDNN - based hybrid neural networks (HNN) embeddings extractor used for the develop-
ment of voice biometric system for NIST-SRE 2021.

2.4. Calibration and Fusion

All systems were first pre-calibrated and then passed into the fusion.
The output of the fusion was then again re-calibrated.

Both calibration and fusion were trained with logistic regression
optimizing the cross-entropy between the hypothesized and true la-
bels on a corresponding development set. Our objective was to im-
prove the error rate on the development set.

As we observed disproportionate results on female and male
subsets of development trials, we have decided to perform our pri-
mary fusion and calibration of our single best system in a gender de-
pendent way. We have calibrated and fused twice – once on female
and once on male development trials and to obtain final scores on
evaluation set, we have multiplied scores of corresponding fusions
with a gender posterior and summed them. Our secondary audio fu-
sion was performed traditionally in a gender independent way on the
whole development set.

2.4.1. Gender ID

Gender labels for the evaluation data were inferred as follows. Sim-
ilar to Section 2.1.4, we train a mixture of PLDAs, only this time
instead of using languages we use gender labels to define the mix-
ture components. Unlike in Section 2.1.4, we do not project away
the gender direction from the data before training the mixture. Then,
normalized likelihoods of each enrollment model or test segment for
female model P (r | Mf ) are used as soft gender labels (it is 1 for
hard female label and 0 for a male label). The final label for a trial
is an average of two labels for different sides of that trial.

3. VISUAL-ONLY VERIFICATION SYSTEMS

3.1. Systems developed at CRIM

Three visual-only verification systems were built at CRIM based on
pre-trained models. In this section, we provide description of all
three face verification systems.

3.1.1. CRIM AF

For the visual task, embeddings were extracted from every enrolle-
ment (speaker) image, and every single video frame of test segments
where a face is detected. The ffmpeg tool was used to extract frames
from videos every second.

To extract embeddings, we employ insightface tensorflow deep
face analysis toolbox [20] with onnxruntime-gpu as inference back-
end to produce 512-length face embeddings which are then used to
compute cosine similarities between a trial’s enrollment embedding
and test segment frames’ embeddings, extracted every second. For
each trial, the maximum score of cosine similarities is chosen. In our
configuration, we use a pretrained RetinaFace [21] model for face
detection, and an antelopev2 model of model size 407MB for face
recognition. The latter is based on ResNet100 model trained on the
Glint360K [22] training dataset. This configuration, throughout our
experiments, has shown to overperform by far all other tried models
(Insightface’s buffalo l, and arcface, facenet, and vggface pretrained
face recognition models available in the DeepFace [23] framework).
The results of this system, denoted as CRIM AF, on the NIST SRE
2021 visual-only track development and evaluation sets are included
in Tables 3 and 4, respectively.

Normalization, face alignment (warping based on facial land-
marks), and image cropping to produce 112× 112 face images were
applied exactly as originally employed in insightface. We use a sin-
gle NVidia GTX1050Ti GPU which took around 20 hours to process
all video frames to produce face embeddings. Embeddings were
normalized by first subtracting the mean of each embedding, then
subtracting value of the global mean of the development set embed-
dings. When the model is unable to detect any face from a video, and
thus face recognition is not possible, an arbitrary neutral score of 0.5
is returned for cosine similarity. Face detection model was perfectly
effective at detecting faces from videos at the exception of only 2
videos and 9 videos (because of over-exposure issues) respectively
in the development set and evaluation set.
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3.1.2. CRIM MD 1p66

The design of the CRIM MD 1p66 face recognition model is based
on the InsightFace (pytorch-based) recognition system [9]. First, an
embedding is generated for each image and each sampled frame, re-
spectively, from the enrollment and the test sets. Then models are
created for each image and each video. A single identity is consid-
ered, and it corresponds to the first detected face when multiple faces
are found. Mainly, the recognition pipeline integrates 3 components,
feature generation, model definition, and scoring strategy.

3.1.2.1. Embedding generation
First, from each image/frame, the face region, if indeed exists, is

delimited using the RetinaFace detector [21]. A post processing per-
mits then to warp and crop the face using 5 facial fiducial points.
After that, the obtained face image is resized to a standard size of
112× 112 pixels. The RetinaFace detector has also been adopted
as a baseline of the NIST visual speaker recognition system [24].
The face image is then fed to the InsightFace model [9] to generate
the corresponding embeddings. The feature generator adds and nor-
malizes the embeddings of the images/frames themselves to those of
their flipped versions.

3.1.2.2. Target model generation
The features are generated for each image from the enrollment

set as specified above. Hence, each target model is represented by
a single embedding vector. Then, for each video from the test set
the frames sequence is sampled at a frame rate of 1/FPS 1. In this
case, the number of embedding vectors depends on the length of the
video sequence. In each video there is a limited number of emo-
tion/pose variation modes, and often the frames are almost similar.
The CRIM MD 1p66 system exploits the Chinese Whispers clus-
tering algorithm [25] to properly group the embeddings of the test
video. An appropriate threshold allows to merge the most similar
embeddings and keep those that are less similar, as they are, even
if they are from the same identity. The idea is to keep only their
restrained representative modes that well explain the face variations
in the video. The algorithm only needs a threshold parameter, con-
trary to the k-means++ clustering algorithm that is suggested in the
NIST’s baseline [24] where the number of modes (k) must be fixed
in advance. Clearly, there is no impetus suggesting that all video
sequences should have the same number of centroids. An exam-
ple of face clustering using the Chinese Whispers algorithm is given
in [26, 27].

3.1.2.3. Scoring strategy
A pairwise cosine similarity is calculated between the enrollment

image model and each one of the embeddings’ centroid of the test
video for a given trial pair i.e. (single enrollment embedding, test
video embeddings’ centroids). The maximum of the pairwise scores
gives a final score for the current trial.

3.1.2.4. Missing faces
In the development set, all the faces of the enrollment and the

test sets were detected. However, in the evaluation set there were
23/3 177 test videos where the detector does not detect any face;
either because the detector failed or there was no face in the frame at
all. The total number of trials with missing faces reached 2 263 pairs.
Our strategy for inferring an arbitrary score for these videos is to
choose a scoring threshold with a smaller EER from the development

1The videos are of different frames-per-second (FPS) rate.

set. The arbitrary score corresponds to the average of all the scores
obtained by removing at each time one test video. The inferred value
defines the ambiguous area around the decision boundary separating
the target and non-target classes.

3.1.3. CRIM MD NEW2

The face recognition system CRIM MD NEW2 is a nuanced vari-
ant of the CRIM MD 1p66 system. The difference between them
lies in the fact that we have added a preprocessing layer that is in
charge of denoising all the pipelined raw images/frames. The layer
consists of a filtering operation in the frequency domain using the
fast Fourier transform to attenuate the high frequency signal. An
example of a filtered image is given in figure 2c. The filtering opera-
tion led to an increase in the number of missing faces, 26 against 23
for the previous model, bringing up the number of trial pairs without
faces to 2 579/283 011. It results in a slightly different ambiguity
threshold (0.71) against (0.70). These findings are in almost perfect
agreement with the results from [9] where the authors have managed
to show a clear separation between the angle distribution of the posi-
tive pairs and the negative ones; their optimal threshold value, which
can be referred to as an ambiguity angle, was around 65◦ for Arc-
Face and about 70◦ in the case of Triplet-Loss; please refer to [9,
Fig. 6]. Comparatively, the ambiguity scores (0.7) and (0.71) of
our two models are well aligned with the ambiguity angles from [9]
as arccos (0.70× 2− 1) = 66.4◦, notice that the scores have been
scaled to [0, 1].

(a) A raw frame from a Dev-test video sequence.

(b) Without filtering (c) With filtering

Fig. 2: Face detection, cropping, and alignment: Filtered vs. non
filterd image/frame.

In figure 3, we show the impact of the extra processing step in
CRIM MD NEW2 on the score distribution. Many samples have
been moved to the correct class. The relative order of the samples’
scores is also an important factor with regard to the evaluation met-
ric (EER). The figure reveals clear evidence of the target/non-target
discrimination afforded by the proposed systems.

3.1.4. Results on the SRE21 Development and Evaluation Test Sets

Tables 3 and 4 present results obtained by all three face verification
systems mentioned above on the development and evaluation test
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Fig. 3: Score distributions of target and non-target pairs in the de-
velopment test set.

Table 3: System performances on Visual-only tracks of the NIST
SRE21 Development set.

Track System EER min C

Visual-only CRIM AF 2.15 0.04

CRIM MD 1p66 1.66 0.027

CRIM MD NEW2 0.17 0.017

sets of NIST SRE 2021 visual-only track. On the development set
best performance was achieved by the CRIM MD NEW2 system
whereas on the evaluation set system CRIM MD 1p66 yielded the
best face verification results.

3.2. Systems Developed at Innovatrics

Innovatrics provided their toolkit with API to be incorporated to the
system at BUT. Here are the main components of the Innovatrics
face recognition system:

• Face detection: accuracy / speed trade-off tuned version of
approach described in [28]

• Facial landmark detection: Precise detection of facial land-
marks is necessary for proper alignment of face before face
embedding can be extracted. The modified version of the
method described in [29] was used for facial landmark de-
tection.

• Face embedding: face embedding with size of 512B was
generated by neural net with ResNet100 architecture [30].
The network was trained using modified ArcFace loss [9]
on more than 10M images (80% google searched images of
celebrities, 20% internal) of several 100k identities.

Table 4: System performances on Visual-only track of the NIST
SRE21 Evaluation set.

Track System EER min C

Visual-only CRIM AF 5.41 0.099

CRIM MD 1p66 1.49 0.067

CRIM MD NEW2 1.62 0.081

3.3. Calibration and Fusion

When submitting individual systems, we just calibrated with LR on
the whole video development set. When fusing, we were struggling
with extremely low amounts of errors on the DEV set and we re-
sorted to averaging the scores of individual calibrated systems and a
subsequent post-calibration with LR.

4. AUDIO-VISUAL VERIFICATION SYSTEMS

During SRE 2019 and subsequently it became evident that the au-
dio and visual modalities pose complementary information and score
level fusion audio- and visual-only systems lead to significant gain
in performance over the unimodal systems. Inspired by this find-
ings from SRE 2019 [1, 10], when submitting to the audio-visual
track, we used the same approach of averaging and post-calibration
of scores as in the visual-only track. For both tracks, we used the
corresponding DEV set to calibrate.

5. RESULTS AND DISCUSSIONS

In this section, we report results of the ABC team’s competitive indi-
vidual and fused speaker/person verification systems developed for
the NIST SRE21 for audio-only, visual-only and audio-visual fixed
condition tracks on the SRE21 development and evaluation test sets.
We also report post-evaluation results obtained by performing fu-
sion of additional combination of submitted systems. The equal er-
ror rate (EER), minimum primary cost (min C) and actual primary
cost (act C) are used as metrics for evaluating the verification per-
formances.

Table 5 shows results of our individual audio-only systems
developed using ResNet34, FTDNN and Hybrid Neural Network
(HNN)-based deep embeddings extractors. The primary and sec-
ondary audio-only fused systems as well as the single best system’s
results are also reported in the same table. One can observe from
the reported results on the development and evaluation sets that the
difference in performances is very narrow between the single best
and fused audio-only verification systems.

Table 5 also presents results of our individual and fused visual-
only systems. On the SRE21 evaluation set, in terms of EER,
CRIM MD 1p66 system outperformed the other two systems. On
the other hand, Innovatrics system achieved the best results in
terms of min C and act C on the same test set. We can see from
this table that not much improvement in performances were attained
from the fusion of visual-only systems. As the visual-only systems
were built following almost identical techniques they pose very little
complementary information.

Additionally, the audio-visual systems results are reported in
Table 5. Compared to the performance of audio-only systems
audio-visual systems, obtained by score-level fusion of audio- &
visual-only systems, demonstrated remarkable gain in performances.
Again, compared to visual-only systems’ results performance im-
provements secured by the audio-visual systems is small. This is
due to the design simplicity of visual-only track. For visual-only
track, NIST provided a close-up image of the target speaker for
enrollment and single speaker test video or image for test which
makes visual-only track an extremely easy task.

Our observations or findings throughout the participation of
SRE21 can be summarized as follows:

• In audio-only track, PLDA backend performed better than co-
sine scoring.
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Table 5: Results of the systems for the NIST SRE 2021 Fixed Condition. AUDIO systems were evaluated on the whole development set,
VISUAL and AV ones were evaluated on the audio-visual subset of the development set. * Notice the difference between audio system 2
and Single Best Audio system. The only difference between the two is the calibration approach used. In the latter system, gender-dependent
calibration is used while in the former one not. **This system was not submitted during the evaluation.

System 2021 dev set 2021 evl set
min C act C EER min C act C EER

AUDIO
1 Omilia BUT-RN34 str8 stat 0.580 0.631 10.00 % 0.559 0.563 9.63 %
2 *Omilia BUT-RN34 str4 stat 0.482 0.494 7.67 % 0.468 0.473 7.90 %
3 Omilia BUT-RN34 str4 embd 0.482 0.507 8.58 % 0.473 0.480 8.38 %
4 BUT-FTDNN 0.504 0.523 11.24 % 0.508 0.517 8.82 %
5 CRIM-HNN 0.648 0.656 12.40 % 0.657 0.668 13.46 %

VISUAL
6 CRIM MD 1p66 0.027 0.067 1.66 % 0.067 0.314 1.49 %
7 CRIM MD NEW2 0.017 0.021 0.17 % 0.081 0.292 1.62 %
8 Innovatrics 0.018 0.018 1.82 % 0.037 0.099 1.80 %

Primary AUDIO Fusion = 1+2+3+4 0.437 0.441 6.66 % 0.446 0.447 7.63 %
Secondary AUDIO Fusion = 2+5 0.481 0.492 7.67 % 0.466 0.472 7.89 %
*Single Best AUDIO = 2 0.471 0.478 6.70 % 0.454 0.459 7.98 %

Primary VISUAL Fusion = 6+7+8 0.004 0.005 0.33 % 0.043 0.433 1.25 %
Single Best VISUAL = 7 0.017 0.021 0.17 % 0.081 0.292 1.62 %
Single Best VISUAL = 8 0.018 0.018 1.82 % 0.037 0.099 1.80 %

Primary AV Fusion = 2+6+7+8 0.001 0.001 0.07 % 0.040 0.387 1.10 %
**Secondary AV Fusion = 2+5+8 0.011 0.025 1.10 % 0.029 0.036 1.97 %
Single AV Best = 2+7 0.004 0.005 0.03 % 0.057 0.220 1.31 %

• Dimensionality reduction by LDA played a key role on boost-
ing audio-only speaker verification performance. Better re-
sults were provided by PLDA backend when embeddings’
dimension were reduced to either 80 or 100 by LDA.

• Fine-tuning the ResNet embeddings extractor on longer dura-
tion segments brought interestingly important improvement
in performances. Decreasing the stride in ResNet was proved
to be conducive.

• Supervised PLDA adaptation by treating SRE 2016 evalua-
tion data [19] as in-domain data was helpful and has lead in
gains in the verification performance.

• Visual-only verification task becomes much simpler if a
close-up image of the target individual is used for enrollment
and single speaker test video or image for test.

• Audio and visual biometric traits pose significant comple-
mentary information and therefore, lead to improved perfor-
mance when fused together.

6. CONCLUSION

In this work, we presented an overview of the ABC team’s competi-
tive efforts toward the development of automatic person verification
systems for NIST speaker Recognition Evaluation 2021 (SRE21)
based on audio, visual and audio-visual biometric traits. Introduction
of cross-lingual and cross-dataset trials made audio-only verification
track much more challenging compared to previous SREs. On the
other hand, instead of providing video recording as in the SRE 2019,
in SRE21, a close-up image (e.g., selfie) of the target individual was
provided for enrollment which turned visual-only track so simpler

that it yielded almost zero EER (equal error rate) on the visual de-
velopment test set. Once again multi-modal fusion of audio-only and
visual-only systems demonstrated the best performance compared to
unimodal systems.
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