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Abstract
This paper describes the joint effort of BUT and Telefónica Re-
search on the development of Automatic Speech Recognition
systems for the Albayzin 2022 Challenge. We train and evalu-
ate both hybrid systems and those based on end-to-end models.
We also investigate the use of self-supervised learning speech
representations from pre-trained models and their impact on
ASR performance (as opposed to training models directly from
scratch). Additionally, we also apply the Whisper model in a
zero-shot fashion, postprocessing its output to fit the required
transcription format. On top of tuning the model architectures
and overall training schemes, we improve the robustness of our
models by augmenting the training data with noises extracted
from the target domain. Moreover, we apply rescoring with
an external LM on top of N -best hypotheses to adjust each
sentence score and pick the single best hypothesis. All these
efforts lead to a significant WER reduction. Our single best
system and the fusion of selected systems achieved 16.3 % and
13.7 % WER respectively on RTVE2020 test partition, i.e. the
official evaluation partition from the previous Albayzin chal-
lenge.
Index Terms: ASR fusion, end-to-end model, self-supervised
learning, automatic speech recognition.

1. Introduction
This paper describes the BCN2BRNO team’s Automatic
Speech Recognition (ASR) system for the Albayzin 2022
Speech to Text Transcription (STT) Challenge. We present the
detailed description of the datasets, as well as technical details
for the development of subsystems and the fusion. This effort is
a collaboration between BUT Speech@FIT research group and
Telefónica Research (TID). Our first goal in the challenge was
to compare recent deep learning architectures to classical hybrid
ASR systems, e.g. by integrating novel research developments
into our conventional hybrid Spanish speech recognition sys-
tem. Our second goal was, to significantly improve the baseline
performance of our previous Albayzin systems [1].

Our primary system is a word-level ROVER fusion of five
individual models. It achieves 13.7 % WER on our develop-
ment set, that is, the official evaluation dataset in the previous
Albayzin STT 2020 Challenge. The LM rescoring is carried
out separately for some of the individual ASR subsystems. The
rescored N-best lists from the subsystems are then aligned into
a single confusion network using the SRILM N-best Rover tool
[2]. The three additionally submitted contrastive systems are:
(1) a fusion of fewer individual ASR systems, (2) the best indi-
vidual system, and (3) the recent Whisper system, vanilla except
for our custom output normalization.

⋆Equal contribution.

2. Data
In Albayzin 2022 Speech to Text Challenge, we are provided
with the databases from the previous evaluations: RTVE2018
and RTVE2020, together with RTVE2022 [3] created freshly
for this year’s challenge. RTVE2018 is a collection of shows
from public Spanish Television (RTVE) during the years 2015
to 2018. It contains 569 hours of audio, from which 468 hours
are provided with subtitles and the rest contains human-revised
transcripts. RTVE2020 consists of TV shows of different gen-
res, broadcast by the RTVE from 2018 to 2019. RTVE2022
is a collection of diverse audio materials from the 1960’s to the
present. All RTVE databases together contain around 768 hours
of audio content.

For this year’s challenge, we split these databases into train-
ing, development, and validation sets. We followed the orig-
inal data splits and use the whole RTVE2018 database (train,
dev1, dev2, test partition) together with the RTVE2022’s train
partition for training, which resulted in 738 hours of training
data. We used the RTVE2022’s dev partition with 2.5 hours
of audio for development. This dev partition was originally
designed for Albayzin 2020 Text and Speech Alignment Eval-
uation (TaSA), where the transcripts were generated from re-
spoken recordings [4]. The RTVE2020’s test partition with 39
hours of recordings was used for cross-validation. This parti-
tioning allows us to compare the performance of our models
with the performance of systems provided by participants in the
previous challenge.

Since our training and development data contains inaccu-
rate transcripts, we needed to filter them out. We followed the
same transcript retrieval process as in [1, Section 2.1]. This
resulted in 512 hours of clean training data (out of initial 738
hours) and 41 minutes of clean development data (out of initial
2.5 hours).

2.1. Noise data augmentation
In addition to the RTVE data, we also use Spanish Common-
Voice dataset, which comprising around 400 hours of read
speech validated by volunteers [5]. Instead of using this dataset
directly, we corrupt it with noise to better match the target do-
main, i.e. RTVE2022 dev and RTVE2020 test sets.

The noise data augmentation is a 3-step process. First, we
extract non-speech segments longer than 2 seconds from the
RTVE dataset. Then, these noises (with the addition of restau-
rant, street, home, workshop, and fan noises 1) are used to de-
grade the CommonVoice data. Finally, we reverberated [6] 50 %
of the data and transcoded one fifth of the data by various codecs
(i.e. AMR-xx, G.7xx and GSM-xx). Target SNR was randomly
chosen in the range of 6 dB to 20 dB. The resulting augmented
data partition is referred to as “CV aug” in the rest of the text.

1Mentioned noises were downloaded from freesound.org.
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3. Automatic Speech Recognition
Our automatic speech recognition pipeline consists of 4 con-
ceptual blocks: a) voice activity detection, b) end-to-end and
hybrid ASR models, c) RNN-LM rescoring, and d) shallow fu-
sion. First, we split each audio recording into smaller segments
with our custom voice activity detection. The segmented speech
is then processed by the ASR models, where each model pro-
duces a N -best list of hypotheses and scores. The scores are
later re-calibrated using RNN-based language model, and the
1-best hypothesis is generated for each ASR system based on
the adjusted score. Finally, the 1-best transcripts from all ASR
models are united into a single output using shallow fusion. In
the following sections, we describe each block in more detail.

3.1. Voice activity detection
Voice activity detection (VAD) is applied to both development
and evaluation data in order to segment long audio recordings
into smaller chunks containing speech. Our VAD is based on
a simple feed-forward neural network with two outputs (i.e.,
speech and non-speech) and four layers with 400 neurons each.
For the input, 15-dimensional standard Mel-filter bank features
are combined with 3 additional Kaldi pitch coefficients [7], and
cepstral mean normalization is applied. The VAD is trained
on RTVE2018 dev1, dev2, and test data (101 hours). Pre-
softmax outputs are converted to logit posteriors and smoothed
by averaging over 31 consecutive frames. Speech segments are
extracted by thresholding the smoothed logit posteriors at the
value of −0.5.

3.2. ASR models
We experimented with 5 different ASR models. Three models
are using Encoder-Decoder Transformer architecture [8] (XLS-
R Conformer, XLSR-53-CTC and Whisper model [9]). The
fourth is RNN Transducer architecture [10], and the fifth is the
hybrid DNN-HMM model [11].

XLS-R Conformer Inspired by the recent success of pre-
trained models based on wav2vec2.0 [12], we decided to exa-
mine these models more closely in this challenge. We first built
a conformer model from scratch using Mel-filter bank features
and then we investigated the use of XLS-R (wav2vec2.0) em-
beddings as features.

The Conformer model was trained from scratch in ESPnet2
framework [13]. The input features are 80-dim Mel-filter bank
outputs. We use SpecAugment data augmentation [14] with
time-warp of 5 windows, with the frequency mask applied twice
in range of 0 to 30 Mel-filter channels. The time mask is also
applied twice in range of 0 to 40 frames. This system is based on
the Conformer architecture [15] and is composed of 12 encoder
layers and 6 decoder layers. The conformer encoder layer incor-
porates, in addition to a self-attention module, a convolutional
layer in between two feed-forward modules. The decoder was
built using masked self-attention as well as cross-attention be-
tween the encoder embeddings and the decoder. Each encoder
and decoder layer outputs 512 dimensional embeddings; atten-
tion is done with 8 parallel heads and the feed-forward module
expands the data into 2048 dimensions. We use the standard ES-
PNnet2 training recipe with 25k warm-up steps and the learn-
ing rate 8 · 10−4. We use byte-pair encodings (BPE) [16] as
target output units and empirically found 1500 BPEs gave the
best performance on the dev set. The models are trained with
the joint CTC/Attention loss with the CTC weight of 0.3. This
model gave a performance of 18.9 % WER without the use of
any external language model.

Next, we explore the use of XLS-R wav2vec2.0 embed-
dings as features instead of Mel-filter bank features. The large
XLS-R-128 model was trained on 436,000 hours of unlabelled
speech data from 128 languages [17]. We use the 0.3 bil-
lion parameter model of XLS-R. This model was imported
into ESPnet-2 using the S3PRL framework and is used only as
the feature extractor with multi-layer feature aggregation. The
1024-dimensional embeddings of the XLS-R are subsequently
used as the input features to the conformer model. This setup is
exactly identical to the previous one, except the mel-filter-bank
features replaced by the XLS-R embeddings. During the train-
ing of this model, the XLS-R parameters are not updated. For
training, we have increased the learning rate to 2.5 · 10−3 and
the number of warm-up steps to 40k. We found the use of the
XLS-R embeddings as features provided 1.8 % abs. improve-
ment of WER over the conventional end-to-end conformer.

XLSR CTC We also investigated the use of the smaller
original XLSR-53 model, pre-trained with 56k hours of audio in
53 languages [18], and then fine-tuned to the Spanish Common-
Voice. We added two linear layers randomly initialized on top
of the Wav2Vec2.0 architecture. The resulting model has more
than 300M trainable parameters and outputs 38 distinct charac-
ters: unaccented letters a – z, accented vowels á, é, ı́, ó, ú, and
the diaeresis on the vowel u(ü). The transcription is obtained
using simple greedy decoding from the frame-wise character
posteriors that the model produces.

The model training has been based on the CTC recipe from
the SpeechBrain toolkit [19]. We only use SpecAugment [14]
as an augmentation method. The model was trained using the
CTC loss only and the learning rates are updated using the New-
Bob scheduler [20]. Additionally, we manually restarted the
LR at some points in training. The ASR was trained using a
batch size of 3, setting the starting LRs for the linear layers and
Wav2Vec2.0 to 1.0 and 10−5, respectively. Finally, the best
checkpoint in terms of WER is stored; this purely acoustic end-
to-end ASR model achieved 24.6 % WER on RTVE2020.

Whisper We ran the vanilla Whisper [9] model (“large”,
1550M parameters) on our VAD segmentation. The raw tran-
scripts contained several mistakes, so we further applied three-
step transcription filtering. First, we omitted all the punctua-
tion and converted numbers to textual form. This gave us 1 %
abs. reduction of WER. Then, we removed 1397 segments with
transcript “i” which indicates non-sense transcription (caused
by acoustic mismatch, music, etc.), yielding 0.1 % abs. Finally,
we observed that in difficult acoustic conditions such as music,
the Whisper decoder tends to get stuck and produce long strings
of repetitive symbols, e.g. “lalalalala...”, “tadadadada...”. We
used zlib to compress the segment transcripts and filtered out
segments with compression factor higher than 2, resulting in
deletion of 566 very well-compressed segments and an absolute
improvement of 0.9 % WER.

RNN-T We also investigated the performance of RNN-T
model. We chose the SpeechBrain implementation. This recipe
uses CRDNN architecture [21] for the RNN-T’s transcription
network and an RNN with gated recurrent units (GRU) [22]
for the prediction network. The joiner simply sums the tran-
scription network output and the prediction network output and
applies LeakyReLU non-linearity on top. The entire RNN-T
model has more than 135M trainable parameters. The input
consists of 80 filter bank features and the model predicts the
posterior probabilities over a vocabulary of 1000 tokens. These
tokens are a mixture of words, BPEs, and characters. We used
the “Unigram” algorithm from SentencePiece [16] to generate
the token vocabulary. The tokenizer was trained on cleaned
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RTVE training transcripts. The model was trained from scratch
on cleaned RTVE training data using the RNN-T objective func-
tion. We applied SpecAugment technique on features only to
mask frequency bins.

Hybrid CNN-TDNN-HMM Hybrid DNN-HMM ASR
was trained with the Kaldi toolkit. Factorized Time Delay NN
(TDNNf) architecture [11] with convolutional layers (CNN)
was selected as it was showing similar performance to more
complicated recurrent NN types including those based on Long-
Short-Term Memory (LSTM) cells. Our CNN-TDNNf archi-
tecture contains 6 CNN layers (with 64, 64, 128, 128, 256, 256
filters) followed by 19 TDNNf layers each with 1536 neurons,
and bottle-neck factorization to 160 dimensions with stride 3.

Feature augmentation adaptation method was used in our
system to deal with various acoustic condition in target data. It
incorporates a compact representation of speaker or noise in-
formation into a fixed-dimensional vector appended to the input
features. Two approaches were used in this work:

• i-vectors [23] – nowadays commonly used adaptation
technique. Online 100 dimensional i-vectors [24] were
estimated on same features as for acoustic models (40-
dim MFCCs).

• x-vectors [25] – popular in speaker recognition field and
showing also slight gain in ASR [26, 27]. Further analy-
sis [28], used in this work, showed significant gain over
i-vectors for x-vector extractor trained on a significant
amount of speaker identification data.

The ASR feature extraction is based on 40-dim MFCCs,
where inverse cosine transform is applied preceding the input
of the NN. It re-creates the Mel-filter bank outputs more suit-
able for further CNN processing. The adaptation vectors are
transformed by affine transform to 200 dimensions. Both fea-
ture streams are concatenated and serve as CNN input. NNs
are trained with the Lattice Free Maximum Mutual Information
(LF-MMI) objective and bi-phone targets as suggested in [29].

3.3. RNN-LM rescoring

Our ASR systems produce N -best lists2, that are rescored by an
external language model. The LM is a custom LSTM trained
using BrnoLM3. The LM consists of two layers of LSTM with
1500 units each and operates on an independent vocabulary of
20k BPE units. We have pretrained the language model on a
collection of Spanish newspaper texts (around 440M tokens)
and then fine-tuned it to the transcripts of the training data.

To obtain actual improvements from the LM rescoring, we
tuned the weight of the LM score (with optimal values in 0.25 –
0.3, compared to 1 as the weight of the original ASR score)
and the word insertion bonus (with optimal values in 5.5 – 6.5)
on the development data. We did not attempt to subtract the
internal LM of the decoder.

3.4. System fusion

To facilitate effective fusion of outputs of the different systems,
we first compact each resulting N -best list into a confusion net-
work. This is done by iteratively aligning the individual hy-
potheses to the currently best scored path in the confusion net-
work. Then, the best path through the confusion network is

2With the notable exception of Kaldi, whose lattices can be easily
reduced to N -best lists.

3https://github.com/BUTSpeechFIT/BrnoLM

taken and the respective bin-posterior probability is assigned as
confidences to each word.

To reconcile the differences in ASR system outputs, these
best paths are taken from each ASR system and united into a
single transcript by system fusion based on voting process. We
used NIST ROVER [2], where the voting is done according to
the word frequency and maximum confidence. We tuned the
α parameter, which is a trade-off between frequency of word
occurrence and maximum word confidence. We also tuned the
null word confidence (also known as blank symbol confidence).
We set α to 0.7 and null word confidence to 0.9. We did not use
the time information during fusion.

4. Results
The overall results are presented in Table 1. The initial part of
the table shows performance of individual ASR systems, while
the latter part contains results obtained from fusion of ASR sys-
tems. The best single system is XLSR-128-Conformer (c2) with
17.1 % WER, where we used XLS-R-128 model to produce fea-
ture embeddings and trained a Conformer model on top of them.
Without the pre-trained model, the Conformer WER is 18.9 %.

Next, the results show that rescoring of N-best lists by ex-
ternal language model provides significant benefits. It improves
WER of each system by 0.7 % absolute on average. Our best
single-model ASR system achieved 16.3 % WER with RNN-
LM rescoring and 17.1 % WER without rescoring.

Table 1: Word error rates of our models on RTVE2020 test
set with and without external RNN-LM rescoring. CV aug in-
dicates the model was trained both on RTVE and augmented
CommonVoice datasets. Note that the hybrid ASR model con-
tains n-gram LM by design, marked with †.

Test [% WER]
Model w/o LM with LM

1 XLSR-128-Conformer (c2) 17.1 16.3
1∗ Conformer (no pre-training)∗ 18.9 –
2∗ XLSR-128-Conformer∗ 17.5 17.0
2 + CV aug 17.7 16.9
3 Whisper (c3) 19.1 –
4 CNN-TDNN-HMM + i-vectors 22.2† –
5 CNN-TDNN-HMM + x-vectors 21.6† –
6 XLSR-53-CTC 24.6 –
7 RNN-T 24.7 –
8 + CV aug 21.5 20.9

9 Fusion 1 + 2 17.1 16.0
10 Fusion 1 + 2 + 8 16.4 15.7
11 Fusion 1 + 2 + 5 (c1) 16.0 –
12 Fusion 1 + 2 + 5 + 8 15.7 –
13 Fusion 1 + 2 + 5 + 6 + 8 15.2 14.8
14 + Whisper w/o LM (p) 14.8 13.7

We mixed the CommonVoice recordings with noises ex-
tracted from the Albayzin training data this time, resulting in
the CV aug set. Appending this set into the training (System 2
in Table1) shows slight 0.2 % degradation when no RNN-LM
was used, but 0.1% improvement when RNN-LM rescoring is
used. We assume that CV aug data badly influenced the model
decoder, which was later corrected by using RNN-LM. Unfor-
tunately, the baseline system, 2∗, has a small bug in the setup
leading to worse performance than the corrected system 1.
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The performance of Whisper, 19.1 % WER, is not bad at all,
given that it is a generic multilingual ASR system that was not
adapted to Albayzin data. The Kaldi systems 4 and 5 are about
4.5 % absolute behind the best single system and the XLSR-53-
CTC and RNN-T systems are about 7 % WER abs. behind the
best single system. Interestingly, adding the augmented Com-
monVoice data CV aug helped the RNN-T system dramatically,
reducing the WER by 3.2 % abs.

Another large WER reduction comes from the fusion of
ASR systems. Thanks to a diverse mix of ASR systems
(wav2vec2.0 based Conformer models, hybrid model, RNN-
T model and Whisper Transformer model), we were able to
further decrease WER by 2.3 % absolute. The systems have
various architectures, as well as objective functions and pre-
training. Note that the fusion of XLSR Conformers with hybrid
ASR (System 11) achieved a solid 1.1 % absolute WER reduc-
tion w.r.t. the fusion of just XLSR Conformer models (System
9). Finally, our overall best result 13.7% WER was achieved by
fusing 6 ASR systems in combination with RNN-LM rescoring
(System 14).

Note also that in all our fusions, the wav2vec2.0 model oc-
curred twice. This is to give higher emphasis on the words from
the two best systems in the majority voting done by ROVER.
We use this simple trick, since our word-level confidences were
computed just from aligned N -best lists from each single sys-
tem, e.g. if the same incorrect word occurred in many single
model hypotheses, it obtained high confidence score. Calibrat-
ing the confidences on a held-out set should solve this issue.

4.1. Submitted systems

The primary system (marked ‘(p)’ in Table 1) is a fusion of
rescored hypotheses from XLSR-128-Conformer models (Sys-
tems 1 and 2), rescored hypotheses from RNN-T model (System
8) and, without rescoring, the transcripts from Whisper, hybrid
CNN-TDNN-HMM and XLSR-53-CTC models (Systems 3, 5,
and 6). We submitted also 3 contrastive systems (‘(c1)’, ‘(c2)’
and ‘(c3)’): ‘(c1)’ is a fusion of rescored hypotheses from the
two XLSR-128-Conformer models (Systems 1 and 2) and non-
rescored hypotheses from our hybrid model (System 5); ‘(c2)’ is
our best single-model ASR (System 1) with rescored hypothe-
ses and ‘(c3)’ are Whisper transcripts without LM rescoring
(System 3).

Table 2 shows that performance differences between
RTVE2020 and RTVE2022 test sets are quite small, which is
a sign of good generalization. Also, the ranking of the systems
is the same on both test sets.

In Table 3, we see that inside the RTVE2022 test set, there
are huge WER differences across the TV shows spanning from
5.89 % to 49.85 %. The worst performance was achieved on
APB TV show. We find, during the post-eval analysis, that this
particular TV show is just partially transcribed and sometimes
the “reference” transcripts contain sentences, which speaker did
not say verbatim. We also notice that some of our substitutions
were actually correct words.

5. Conclusions
In this paper, we described our submitted systems for Albayzin
2022 Speech to Text Challenge. The processing pipeline con-
sists of voice activity detection, speech recognition, external
language model rescoring, and shallow fusion. We showed that
each mentioned part contributes to the performance. Our best
single-model ASR system achieved 17.2 % WER in this year’s

Table 2: Word error rate comparison of submitted systems on
RTVE2020 test and RTVE2022 test data partitions.

System RTVE2020 RTVE2022

(p) 2x Conformer, TDNN,
RNN-T, CTC, Whisper

13.7 14.4

(c1) 2x Conformer, TDNN 16.0 15.2
(c2) Conformer 16.3 17.2
(c3) Whisper 19.1 18.7

Table 3: Word error rate decomposition on individual TV shows
from RTVE2022 test.

System
TV Show #words p c1 c2 c3

ED 40317 14.38 15.28 16.96 23.22
AG 39853 5.89 6.28 7.27 7.16
CA 36186 17.71 19.10 22.05 19.28
SYG 34356 10.05 10.67 11.76 19.94
EC 30174 13.61 14.68 16.68 16.33
CO 29110 8.55 9.25 10.83 15.59
AT 28817 11.16 12.04 13.92 18.63
3x4 23548 13.11 14.01 14.97 14.23
EE 23398 23.55 24.61 26.83 26.85
NN 19027 9.33 10.10 11.55 10.63
CCA 18026 10.31 11.00 12.13 13.18
ERA 15369 22.08 22.75 24.62 25.40
ATE 12149 9.47 10.41 12.55 10.05
JYS 9464 11.79 11.95 14.64 18.43
IU 8947 20.36 21.22 24.65 24.81
GR 8694 26.63 29.00 32.34 27.33
APB 7439 49.85 51.27 61.12 59.66
RD 6943 20.60 22.41 25.38 20.50
CPE 6871 13.87 14.86 17.25 15.01
TO 6380 23.98 24.73 25.82 26.69
YR 4213 29.74 30.52 35.22 32.33

Total 409 281 14.35 15.24 17.22 18.65

challenge, while our best fusion achieved 14.4 % WER. From
these numbers we can conclude that all six systems used in
the fusion are in some sense complimentary. Surprisingly, the
Whisper model also performs reasonably well; it achieved just
18.7 % WER, while it was not trained on any in-domain data.
This suggests that fine-tuning of the model might dramatically
improve our system, and thus it is a subject of our future work.
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M. Hlaváček, and T. Pavlı́ček, “Analysis of x-vectors for low-
resource speech recognition,” in ICASSP 2021 - 2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE Signal Processing Society, 2021, pp. 6998–
7002.

[29] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for ASR based on lattice-free MMI,” in Proceedings
of Interspeech, 09 2016, pp. 2751–2755.

280


