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ABSTRACT
In this paper, we propose an interpretable electroencephalogram
(EEG)-based solution for the diagnostics of major depressive dis-
order (MDD). The acquisition of EEG experimental data involved
32 MDD patients and 29 healthy controls. A feature matrix is con-
structed involving frequency decomposition of EEG data based
on power spectrum density (PSD) using the Welch method. Those
PSD features were selected, which were statistically significant. To
improve interpretability, the best features are first selected from
feature space via the non-dominated sorting genetic (NSGA-II)
evolutionary algorithm. The best features are utilized for support
vector machine (SVM), and k-nearest neighbors (k-NN) classifiers,
and the results are then correlated with features to improve the
interpretability. The results show that the features (gamma bands)
extracted from the left temporal brain regions can distinguish MDD
patients from control significantly. The proposed best solution by
NSGA-II gives an average sensitivity of 93.3%, specificity of 93.4%
and accuracy of 93.5%. The complete framework is published as
open-source at https://github.com/ehw-fit/eeg-mdd.
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1 INTRODUCTION
According to theWorld Health Organization (WHO), "a state of com-
plete physical, mental, emotional and social well-being of a person
and not merely the absence of disease and infirmity corresponds to
good health". However, in most parts of the world, physical health
is prioritized over mental health leading to an alarming rise in
various mental health issues all over the world. For mental health
well-being, several mental disorders have been identified such as
anxiety, depression, ADHD, schizophrenia etc. Among all of the
existing mental health issues, depression is the most prevalent and
is projected as a serious threat to mankind. According to the WHO,
depression affects more than 264 million people worldwide and is
the primary cause of 800 000 suicide deaths each year [31]. Depres-
sion can lead to several issues such as sadness, loss of attention
or pleasure, demotivation, sleep disorders, exhaustion, and poor
attention or focus. In European Union (EU), it is reported that de-
pression affected 7.2% of the EU population in 2018 [27]. In EU the
estimated annual direct cost of depression was €620 billion (more
than 4% of GDP) in 2018 with costs of €260 billion in unemployment,
€190 billion in the health sector (treatment of depression), and €170
billion for the social welfare systems (disability benefits) [20]. Re-
cently the COVID-19 pandemic has further increased the number
of depressed individuals [7]. As a result, depression has become a
major disease affecting human mental health, and its consequences
cannot be ignored. To address this issue, the first step required is
the correct diagnosis of depression, followed by treatment and the
corresponding efficacy.

For the diagnosis of major depression disorder (MDD) patients,
the traditional method used by physicians and psychiatrists is the
clinical questionnaire-based assessment, which is primarily deter-
mined by patients’ responses and behavioral activities [17]. Thus, it
is highly susceptible to human subjectivity, which impairs the objec-
tivity of the diagnosis process [17]. Consequently, numerous studies
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have been conducted to advance the traditional models’ compe-
tency as well as develop better replaceable strategies for diagnosing
depression. Some of them include computing heart rate variability
(HRV), using functional MRI (fMRI), and evaluating through visual
facial expression (VFE) [17]. However, these strategies have several
disadvantages which limit their practicability in a clinical environ-
ment; for example, the outcomes can be significantly affected by
body movements in HRV, fMRI is costly and usually not available
in smaller clinical settings, and VFE needs long-term and careful
monitoring. A good alternative is to use electroencephalography
(EEG). EEG records various electrical signals that are generated for
communication between brain cells that belong to various parts of
the brain. This allows us to learn about different brain behaviors.
In addition, EEGs are widely available, mobile, cost-effective, less
complex, and patient-friendly. Thus, EEG becomes a powerful tool
to analyze and diagnose many mental diseases and disorders such
as MDD, schizophrenia, Parkinson’s disease, Alzheimer’s disease,
epilepsy, sleep disorders, and dementia [16]. Furthermore, studies
have shown that underline brain neural activities are affected by
depression, thus making EEG suitable to study depression [17].

Despite the various advantages, EEG-based classification ofMDD
patients is still a challenging task and no commercial framework is
available for clinicians to diagnose MDD patients using this modal-
ity. Therefore, this issue is a hot topic in the research community
and researchers are trying to improve the EEG-based diagnosis pro-
cesses based on accuracy, sensitivity, specificity, and interpretability.
The classification of Major Depressive Disorder (MDD) patients
from Electroencephalogram (EEG) data traditionally involves two
steps. First, a range of feature extraction techniques are used to ex-
tract meaningful features from EEG data. These techniques typically
involve extracting quantitative and qualitative descriptors of EEG
signals. Second, a suitable classification technique is employed on
the extracted features to classify MDD patients. Ultimately, the goal
of these two steps is to accurately classify MDD patients from their
EEG data [16]. Furthermore, based on the extracted features, several
classification techniques have been proposed in the literature such
as logistic regression (LR), artificial neural networks (ANN), support
vector machines (SVM), and convolutional neural networks (CNN)
[10]. Because of superior classification performance, Deep learning
(DL) techniques have also been proposed for MDD classification
[28]. The advantage of DL techniques is that both feature extraction
and classification are done by DL simultaneously.

However, the existing traditional ML-based classification solu-
tions use hand-crafted features [6, 18] and thus offer a solution
that is difficult to scale, while other solutions using DL provide no
interpretability at all [28]. In order to improve the interpretability of
the solution, one of the alternatives is the use of genetic algorithms
(GAs). GAs have recently attracted many researchers in solving
various optimization problems. GAs searches are based on one or
more objective functions and have stochastic search abilities in
complex environments. This enables them to select the optimal
solution among large solutions set for an optimization problem.

The average amount of data generated across many different
activities has grown significantly in size as a result of the develop-
ment of various technologies as well as due to the data processing
and storage capabilities of computing devices in the modern era.
Thus, to produce better results in various learning tasks, selecting a

suitable number and the optimal features from such large datasets
is becoming a challenging area of research. To address these issues,
GAs have been successfully implemented in the literature for the
heuristic selection of the close-to-optimal features by removing un-
necessary and redundant features from a high-dimensional feature
space [21]. For the feature extraction, some of the popular imple-
mented GAs are ant colony optimization (ACO), genetic algorithm
(GA), particle swarm optimization (PSO), grey wolf optimization
(GWO), differential evolution (DE), genetic algorithm with aggres-
sive mutation (GAAM), Non-dominated Sorting Genetic (NSGA)
algorithm, and Culling algorithm (CA) [1, 15].

Some studies have attempted to employ GAs to choose the best
features for classification. However, these studies are either im-
plemented to target the improvement in classification and/or are
not fully exploited in the context of the MDD patients detection
and classification [24, 25]. Therefore, the current literature is only
focused on improving the classification performance and thus un-
able to provide a good interpretability of various affected brain
functionality of MDD patients along with good classification.

In this paper, we propose a classification solution for MDD pa-
tients along with interpretable results. For this purpose, we use the
non-dominated sorting genetic algorithm (NSGA-II) to minimize
the features for classification by selecting the optimal features. The
optimal features are then utilized for a KNN as well as an SVM
classifier. The least number of features are then correlated with clas-
sification results to improve the interpretability. By interpretability,
we mean which brain functional activities are affected in an MDD
patient. Note that this information may be crucial for a clinician
for treatment and may provide more insight and knowledge of a
MDD patient brain. Thus, improving the interpretability will not
only help to detect MDD but may also help clinicians for better
treatment of MDD patients. To improve interpretability, we have
used GAs to select the minimum number of optimal features while
maintaining a reasonable level of classification performance. Thus,
NSGA-II allows us to select a minimum number of features for clas-
sification which eventually leads to correlating the classification
results with the affected brain functionalities of MDD patients. To
make the results reproducible, we open-sourced the code of this
work at https://github.com/ehw-fit/eeg-mdd.

2 BACKGROUND
In this paper, our proposed approach consists of three stages; fea-
ture extraction from MDD patient’s data, optimal feature selection,
and classification of MDD patients using optimal selected features.
Therefore, in this section, we review some algorithms and tech-
niques that are prerequisites for our work.

2.1 Feature Extraction
In literature, several techniques based on time-domain, frequency-
domain, and time-frequency-domain analysis of the signals are
employed for feature extraction. Thus, feature extraction methods
have been divided into three categories including time decompo-
sition (TD), spectral analysis (SA) methods, and time-frequency
analysis (TFA) methods [13]. We have initially investigated sev-
eral feature extraction methods such as sample entropy, Hjorth
parameter, Higuchi Fractal Dimension and power spectrum density
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(PSD) using the Welch method. The Welch method is one of the
widely used methods for the estimation of PSD. The weighted sum
of the periodograms of the signal’s overlapping windows is calcu-
lated using a non-parametric method. A windowed signal is used
to generate overlapping segments and a discrete Fourier transform
(DFT) is then determined for each segment. Finally, the Welch pe-
riodograms are produced by averaging the PSD for each segment.
A mathematical formulation of the Welch method is shown in the
following [9]:

𝐼𝑊𝑥𝑥 (𝑤) =
1
𝑃

𝑃−1∑︁
𝑃=0

𝐼𝑃𝑥𝑥 (𝑤) (1)

where P shows the number of segments and 𝐼𝑃𝑥𝑥 (𝑤) shows the
periodogram perwindowed segment, and 𝐼𝑊𝑥𝑥 (𝑤) shows the average
of 𝐼𝑃𝑥𝑥 (𝑤) [9].

2.2 Evolutionary-based Feature Extraction
For EEG-based feature selection, several genetic algorithms such as
CGA, GAAM, NSGA, and CA have been proposed in the literature
[15]. The optimal feature selection methods for EEG are based on
two criteria; the first is minimizing the features, and the second is
maximizing the classification accuracy. Thus, this becomes a multi-
criteria optimization problem. Since the NSGA method is dedicated
to the multi-criterion optimization problem, therefore, we have
selected the NSGA method for feature selection. The NSGA algo-
rithm allows the finding of a subset of optimal features that leads
to a higher classification capacity. Generally, in a decision process,
several contradictory criteria are used. For an automatic decision, it
is commonly useful to adopt one universal criterion to replace the
contradictory criteria. If the choice is to be made automatically, it
is appropriate to introduce one universal criterion that will replace
the conflicting criteria. The idea of NSGA is an illustration of such
a criterion [4]. NSGA is realized as a Holland algorithm with an
explicit fitness function that operates around the concept of one
individual dominating another. Those individuals who have worse
values of all considered criteria compared to other individuals are
considered dominated. In NSGA, for the evaluation of an individual,
the recent population are sorted based on the domination principle
and an appropriate index of Pareto front is assigned to each indi-
vidual. Furthermore, from the subsequent Pareto fronts, individuals
are determined based on the domination principle. In front 1, the
individuals dominate by at least one criterion over the other fronts
individuals. Similarly, in front 2 the individuals dominate by at least
one criterion over the front 3 individuals, and so on. The fitness
score given to an individual is represented by the front index. As
a result, individuals from the front of the lower index are more
appropriately suited to the optimization problem than those from
the front of the higher index.

2.3 Standard Classifiers of MDDs
After the selection of optimal features, classification is the next
stage. In literature, several machine learning algorithms have been
proposed for EEG-based MDD classification, such as LR, SVM, and
k-nearest neighbors (k-NN) etc., [6, 10]. Among all, LR performed
well for a binary classification task, and requires low complexity.

However, a high dimension of the input vector may lead to over-
fitting. In addition, it may also lead to the poor generalizability of
the model. SVM is one of the alternative solutions for classification.
Using SVM, the ideal boundary for categorizing data into two or
more groups can be either linear or non-linear. However, its com-
putational complexity is high for processing a large dataset. The
k-NN algorithm has shown promising classification results and has
been used in several EEG-based identifications of diseases, such as
depression, anxiety, and epilepsy [6]. The k-NN classifies objects
using a majority vote of the neighbors, assigning a case to the class
that has the highest percentage of members among its k-nearest
neighbors determined by a distance function. The algorithm in-
cludes three main aspects: a training set, similarity measure, and
the parameter’s size K. In this paper, we have used k-NN and SVM
for classification purposes.

3 PROPOSED METHODOLOGY
In this work, we propose an automated methodology for feature
selection. The overview of the methodology is shown in Fig. 1. The
standard machine learning pipeline (red) is extended by evolution-
ary feature extraction. The candidate extractor is executed and the
extracted features are fed into a given classification algorithm. The
achieved sensitivity, specificity, and number of extracted features
become desired design objectives to produce high-quality as well
as simple classifiers. Accuracy is correlated to sensitivity and speci-
ficity and therefore, it is not included as an objective. The final
classifiers should help the neuroscientists to interpret the results.
Since the search algorithm is multiobjective. Therefore, we decided
to use NSGA-II [4]. Since only high-quality feature-extractors are
required, we also introduced a limit to the search.

Figure 1: Overall methodology of the proposed searching
algorithm.

3.1 Data Preparation
In EEG preprocessing, artifact-free EEG data is desirable to avoid
subsequent erroneous analysis, ensuring that data genuinely rep-
resent the underlying neural activity. Therefore, in this study, the
EEG preprocessing involved the correction of artifacts due to eye
movements (horizontal and vertical), eye blinks, and muscular and
heart activities. Moreover, the artifact corrections were performed
with standard tools, including adaptive and surrogate filtering tech-
niques, implemented in brain electrical source analysis (BESA)
software [29]. In BESA, cleaning EEG data (artifact types: eyes
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blinks, muscle activity, line-noise, heart activity, etc.) is based on
a semi-automatic procedure; the technique has the name multiple
source eye corrections (MSEC) [3]. According to this technique,
the raw EEG data were used to estimate noise topographies. An
appropriately selected head model (selected in BESA) and the noise
topographies were used further to correct the artifacts. According
to the procedure, an investigator needed to select the type of ar-
tifact (artifact types: eye blinks, muscle activity, line noise, heart
activity, etc.) to be corrected. The selection allowed the software
to mark the artifacts in the full EEG recording. The procedure is
performed for all artifact types, including the artifacts due to eye
blinks, eye movements, and muscular and heart activity. Hence,
using BESA, the artifacts in the raw EEG were corrected for both
the MDD patients and the healthy controls.

After preprocessing, the next step is feature extraction. The
Power Spectrum Density (PSD) features are extracted from the
brain’s frontal, occipital, temporal and parietal regions. ANOVA
is applied to them using MATLAB to statistically see the features’
variance. The P-value for PSD for EEG bands is p < 0.05, showing the
independence of the two groups statistically. That is why we choose
PSD features for further analysis. The PSD is computed using the
FFT with the Welch method and hamming window to estimate the
power spectrum of the EEG time series with 2-seconds segments
(2 × 250 = 500 sample points), 50% overlapping (250 points) and
the non-equidistant fast Fourier transform with 512 points. The
PSD is estimated by the Welch method, which is an average of
periodograms across time. When data is in a rectangular window,
the periodogram consists of the non-overlapping blocks of data.
The advantage of using Welch method is its capability to find the
PSD of a signal by reducing the noise in the data. Also, it divides
and takes the signal in small intervals by retrieving the maximum
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Figure 2: One subject from the MDD dataset represented as
(a) PSD diagram (top), and (b) matrix heatmap (bottom).

information from non-linear EEG signal. The typical visualization
of these data is a PSD diagram (Fig. 2a). However, for the ML feature,
it is more effective to represent the data as a matrix heatmap (Fig.
2b).

3.2 Performance Parameters
In this paper, we have used accuracy, sensitivity, and specificity as
quality performance parameters to evaluate the classification which
takes the optimal selected EEG features as input. The performance
parameters are briefly defined as follows:
Accuracy The percentage of MDD patients’ EEG segments that
are correctly classified is known as accuracy. Mathematically, it is
calculated on the basis of false positives (FP), false negatives (FN),
true positives (TP), and true negatives (TN) and is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑁 +𝑇𝑁 + 𝐹𝑃 (2)

Sensitivity The accuracy rate of the positive samples is defined as
sensitivity and is given as:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3)

Specificity The accuracy rate of the negative samples is defined as
specificity and is given as:

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (4)

3.3 Evolutionary Feature Selection
As stated above, the goal of the evolutionary design program is to
select appropriate channels (EEG electrodes) and frequencies from
the power spectrum. The phenotype consists of a set of extractors.
Each extractor is specified by a channel, ranges of frequencies, and
function. The channel is specified by a name from the dataset. The
ranges of frequencies are limited from 0 to half of the sampling
frequency with a uniform step defined by Welch’s method (e.g.,
0.25 Hz). These ranges can be either unlimited or limited by so-
called waveband (alpha, beta, etc.) — we proposed to limit them to
0, 4, 8, 12, 20, 30, and 50Hz. We did not use frequencies above 50Hz
because the brain activity above 50Hz is corrupted with noise [11].
The selected power features can be either used as they are (CP
function), downsampled (DS2/4/8 function), or aggregated (AGG
function). Mathematically, the feature extractor is a function that
transforms the power-spectrum matrix into a single vector of size
𝑐 . An example of chromosome and phenotype is given in Fig. 3.
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Figure 3: Example chromosome (bottom) and visualization
of phenotype (top) of one candidate solution.
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The first gene of the example selects a range of 20Hz (with a step
0.25Hz) as they are. That results in 80 features for each subject. The
second gene extracts 8 features because 16 powers are downsampled
by 2. The aggregation function produces four features (min, max,
avg, amplitude) regardless of the frequency range.

Algorithm 1:Multiobjective feature selection
𝑃0 ← {𝑖 ∈ 0 . . . 𝑝 : randomIndividual()};
𝑙𝑖𝑚𝑖𝑡 ← 0 ;
for 𝑔← 0 to 𝑔𝑒𝑛𝑠 do

𝑄𝑔 ← {𝑖 ∈ 0 . . . 𝑞 :
mutate(crossover(pickOne(𝑃𝑔), pickOne(𝑃𝑔),𝑚)};

𝑅𝑔 ← 𝑃𝑔 ∪𝑄𝑔 ;
evaluate(𝑅𝑔) ; /* train and test ML model */

/* filter out weak individuals */

𝑅 ← {𝑟 ∈ 𝑅 : min(𝑠𝑒𝑛𝑠 (𝑟 ), 𝑠𝑝𝑒𝑐 (𝑟 )) ≥ 𝑙𝑖𝑚𝑖𝑡};
if |𝑅 | > 𝛼𝑝 then

𝑙𝑖𝑚𝑖𝑡 ← 𝑙𝑖𝑚𝑖𝑡 + 𝑙𝑖𝑚𝑖𝑡𝑠𝑡𝑒𝑝 ; /* increase limit */

end
𝑃𝑔+1 ← nsgaSelect(𝑅, 𝑝);

end

Algorithm 1 shows the proposed search algorithm. The algo-
rithm is inspired by the NSGA-II [4] algorithm. It is extended by an
adaptive quality limit. First, a set of 𝑝 random individuals is created.
Then, for each generation, the following procedure is performed.
First, a set of 𝑞 offspring is constructed from the parent population.
We propose to use uniform recombination at the level of genes.
For each offspring, up to𝑚 values are mutated. The mutation can
change the channel, the frequency range (in terms of waveband
boundaries if needed), or the extraction function. The mutation can
also drop one gene from the chromosome.

The entire population of feature extractors is evaluated. Each
candidate extractor is applied to all 𝑁 subjects, and a feature matrix
𝑋 of size (𝑁 𝑡𝑖𝑚𝑒𝑠𝑐) is constructed. This matrix 𝑋 , together with a
label vector 𝑦, enters the ML pipeline. Different quality metrics (ac-
curacy, sensitivity, or specificity) and different training approaches
(70:30 split, k-fold, etc.) can be used without loss of generality.

To avoid weak solutions, we propose to use an adaptive bound
for the quality. The initial limit for sensitivity and specificity is
set to 0. All candidate extractors leading to lower quality are re-
moved from the 𝑅 set. If more than 𝛼% of the candidates have better
quality, the quality limit is increased by a small value 𝑙𝑖𝑚𝑖𝑡𝑠𝑡𝑒𝑝 .
According to our initial experiments, the introduction of this limit
helped to fill the Pareto queue with more relevant solutions from a
quality perspective. However, it was not confirmed that the absence
of lower-quality solutions prevented the crossover operator from
reducing the number of solutions found. Finally, a set of 𝑝 non-
dominated solutions is selected using Pareto filtering and distance
crowding as proposed in NSGA-II [4].

4 EXPERIMENTAL SETUP
4.1 Dataset
This research uses a public dataset of MDD patients available from
PLOS One [18]. This public dataset includes a sample of 32 MDD

outpatients. The subjects were recruited based on the experiment
design approved by the human ethics committee of the Hospital
Universiti Sains Malaysia (HUSM), Kelantan, Malaysia. The study
subjects signed the consent forms. The subjects were also briefed
about the experiment protocol. The recruited MDD patients met
the internationally recognized diagnostic criteria Diagnostic and
Statistical Manual-IV (DSM-IV) for depression [2].

4.1.1 EEG data acquisition. An EEG cap with nineteen (19) electro-
gel sensors was used to acquire EEG data. The electro-gel sensors
required fewer adjustments than the hydro-sensors, facilitating
longer recordings and enhanced patient care. The on-scalp place-
ments of the EEG sensors followed the international 10–20 system
[12]. According to the 10–20 system, the sensors are categorized
into different regions, that is, the frontal region includes 7 elec-
trodes namely Fp1, F3, F7, Fz, Fp2, F4, and F8, the central electrodes
include C3, C4 and Cz, the parietal region includes P3, Pz and P4,
the occipital involves O1 and O2, and the electrodes T3, T4, T5, T6
cover the left and right temporal regions [19]. An amplifier named
Brain Master Discovery (Make: Brain Master, Model: Discovery
24e, Manufacturer: Brainmaster Technologies Inc.) was used to
amplify the weak EEG signals from the sensors. Furthermore, the
EEG data were digitized with 256 samples per second, band pass
filtered from 0.1 to 70 Hz with an additional 50 Hz notch filter to
suppress power line noise. The EEG data were recorded at pretreat-
ment (before the start of medication). The EEG data were recorded
during eyes open (EO) (5 minutes) conditions, while the study par-
ticipants (MDD patients and healthy controls) were instructed to
sit in a semi-recumbent position with minimal eye blinks and head
movements.

4.2 Evolutionary Algorithm
Based on the initial experiments, the size of the parent population
of NSGA-II algorithm was set to 𝑝 = 15, and 𝑞 = 40 offspring were
generated in each generation. The change in the population size,
except for extremely low or high values affected the convergence
only. The found extractors were similar in terms of quality and size.
The mutation rate𝑚 was up to 3. The evolutionary algorithm ran
for 1,000 generations.

In the classification pipeline, we used the following machine-
learning (ML) algorithms: k-NN using with Minkowski distance
with p=2, and SVM due to its robustness. The ML implementations
came from a well-established sklearn library. The accuracies (sensi-
tivity and specificity) were achieved using the k-fold(5) algorithm.
The dataset was divided into five folds. Then, in five iterations,
every single fold served as test data and the rest as training data.
This resulted in five accuracies that were averaged at the end.

To achieve statistically significant results, we performed four
independent runs for each configuration. All presented experiments
were executed on a computer equipped by AMD Ryzen 5 3600 6-
Core Processor with 32 GB RAM.

5 RESULTS
5.1 Evolutionary Search
Fig. 4 shows the progress of each parameter during evolution. We
can notice that at the beginning, the number of features is quite



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Vojtech Mrazek, Soyiba Jawed, Muhammad Arif, and Aamir Saeed Malik

high (more than 100), but very soon, we reach 20 features. The
sensitivity and specificity follow the same trends at the beginning.
However, the specificities higher than sensitivities occur at the end
of the search. The limit (same shared value for both parameters)
fastly reaches the value above 0.85 and keeps almost constant.
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Figure 4: Average number of features, sensitivity, and speci-
ficity during the search. The light boxes show a confidence
interval of 0.95 for all runs.

Table 1 summarizes the evolution parameters related to the se-
lected classifier. The time spent in the search for 1,000 generations
is related to the complexity of the training algorithm for particular
models. The fastest training was achieved by the SVM algorithm.
SVM and k-NN give comparable results; however, the number of
features used by the SVM classifier is 32, and the number of features
used by k-NN is 57. Since the MDD diagnosis is not a real-time
application the diagnosis can be done offline. Our algorithm takes
a maximum of 15 minutes, which is very realistic for this specific
application. The complexity of the classifiers (O(𝑛𝑑𝑘) for k-NN and
O(𝑛3) for SVM) does not limit this application because of size of
the dataset.

Table 1: Search algorithm results from 4 independent runs
Classifier Time Sensitivity Specificity # Features

avg. [s] min mean max min mean max min mean max

k-NN 768.08 86.7% 89.4% 93.3% 87.1% 93.5% 96.7% 6 16.66 57
SVM 588.35 86.7% 92.0% 96.7% 87.1% 92.6% 96.7% 4 18.55 32

5.2 Analysis of Feature Extractors
Fig. 5 shows the final parent population (the Pareto optimal solu-
tions and solutions close to the Pareto set) found from four inde-
pendent runs for each classifier. In the left figure (sensitivity vs.
specificity), we can see a regular grid. It is caused by a small dataset
having 61 subjects only, and therefore, the granularity is not very
smooth. Moreover, SVM and k-NN have six Pareto optimal solu-
tions for sensitivity and specificity. The SVM classifier achieved 92%
for both sensitivity and specificity (using 32 features - see Fig. 5 for
more details). Such high accuracy is achieved, not only because of
the quality of the classifier and selected features and the size of the
dataset but also due to the number of folds in the k-fold algorithm.

As can be seen from Fig. 5, the number of selected features sig-
nificantly affects the performance of the classifier. We evaluated
the number of features needed to achieve sensitivity in Fig. 6. We
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Figure 5: Tradeoff between design objectives. The Pareto op-
timal solutions for the pair of objectives are marked by a
cross and joined by a line.

divided the found solutions into six classes by the number of fea-
tures. For k-NN we can see that even with less than 10 features,
the maximal sensitivity can be achieved. On the other hand, SVM
classifiers need to have more than 20 features to reach the maximal
sensitivity.
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Figure 6: Histograms of achieved sensitivity for particularML
models depending on the number of the features extracted
by the found extractors.
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Figure 7: View how often each frequency range for different
channels appeared in the set of Pareto-optimal feature ex-
tractors.

The frequency ranges for each channel are shown in Fig. 7 to
show how frequently they appeared in the Pareto-optimal solu-
tions. A detailed view is given in Fig. 8. It can be observed that the
common frequencies for both classifiers are 4-12Hz and 30-50Hz;
however, the SVM uses a broader frequency range. For SVM, the
most frequent frequency ranges were 0-4 and 12-20Hz. For k-NN
classifier, the most frequent range was 30–50 Hz (gamma band).
Since there is an overlap between k-NN and SVM extractors at
range 30-50Hz and channel T5, we found the gamma bands to be
significant in MDD patients.

Fig. 9 shows an illustration of the histogram of extracted fre-
quency planes in terms of electrode placement. Here for both k-NN
and SVM classifiers, common activation is seen in the lateral T5
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Figure 8: Histogram of frequencies used in found Pareto-
optimal feature extractors.

electrode. In SVM features, C4 and P4 channels are seen in the final
FEs. However, these features do not have the same frequency range
(see Fig. 7, for example, F4 is used in 6 FEs for 0-4 Hz and in 4 FEs
in range 4-8 Hz.)
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Figure 9: Histogram of channels usage in found Pareto-
optimal feature extractors visualized on electrode placement
map

5.3 Interpretation of the Results
In psychiatric clinics, diagnosing MDD is an iterative process based
on the heuristic approach. In practice, sometimes patients with sim-
ilar symptoms but different disorders than MDD are misdiagnosed
and receive treatment as MDD patients. This conventional clinical
practice can be improved by incorporating EEG data recordings and
corresponding analyses that can help psychiatrists in providing an
accurate diagnosis. This research work is a step in that direction.

Our primary finding in this research work is that the GA-based
feature selection method using EEG modality is capable of diagnos-
ing MDD patients. As seen from Fig. 9, there is an overlap in the left
temporal region (T5 electrode) for both classifiers and also for the
frontal region (F8 electrode). As MDD is gender biased, therefore
for interpretability common to both genders, we select features
from the left temporal region (T5 electrode) as they can classify
MDD for both genders (males and females).

Existing literature also supports our findings. Vythilingam [30]
found evidence for a lateralization effect, reporting smaller left
temporal lobe volume in depression patients. Notably, the patient
sample studied by these authors had the longest illness duration
compared to other studies [30]. In this regard, the left-lateralized
temporal lobe changes may reflect the progression of the disease
over time or a distinct pathophysiological process that affects the

risk of relapse, as well as brain volume abnormalities associated
with MDD such as reduced BOLD responses in the temporal lobe.
Such a condition will also result in changes in brain electrical activ-
ity in the left temporal lobe which can be detected by T5 electrode
in EEG 10-20 system. Similarly, the hippocampus and amygdala
are key brain structures of the medial temporal lobe, that are in-
volved in cognitive and emotional processes, and are reported to be
affected in MDD [22, 23]. The activity detected at T5 electrode loca-
tion also incorporates the signals coming from these regions. Some
other studies [5, 14, 26] also find that amygdala and left temporal
lobe are affected in MDD patients as depicted in Fig. 10.

Figure 10: ForMDDpatients, the amygdala in left hemisphere
is less active and less connected with other parts of the brain
than normal control. [8].

To interpret the results, we selected one significant extractor
for each classifier. As shown in Fig. 7, we select one of the Pareto-
optimal extractors that employ some features with 60% occurrence
in all extractors and with a maximal overlap of each to other. Fig. 11
shows two solutions, that is, solution #1 for the SVM and solution
#2 for k-NN classifiers. It can be observed in Fig. 11a that solution
#1 consists of channel T5-LE (electrode T5 with reference to Linked
Ear LE) and its frequencies lie within the gamma band, (i.e., 30.0–
49.75Hz). A similar conclusion can be deduced from Fig. 11b and
hence an overlap exists in the results of the two classifiers at channel
T5-LE in frequencies range 30.0–49.75 Hz (gamma band). In both
cases, the powers are aggregated to avg, min, max and max-min
values. Thus, the power of gamma features extracted planes shows
the temporal region’s activation. Hence, we can conclude that for
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Figure 11: Visualization of the phenotypes of the selected
feature extractors designed with (a) SVM and (b) k-NN classi-
fiers
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MDD patients, the dominant affected region of the brain is the left
temporal region. Furthermore, in MDD patients’ the most affected
frequency band for both gender is the gamma band.

To generalize the results for interpretability, we cross-validate
the two selected solutions for each classifier individually, and a
combined version of the features extracted by the both selected
solutions is also investigated for the accuracies of the SVM and
k-NN classifiers in Table 2. In addition, the performance of both
classifiers is also examined by using all features for all channels
and frequencies (without any aggregation or downsampling). Since
the k-fold algorithm provides 𝑘 accuracies, they are statistically
summarized in Table 2.

Table 2: Accuracy of cross-validation of the selected feature
extractors, their combination, and all PSD features for all
frequencies and channels for both classifiers evaluated using
k-fold algorithm

Features SVM classifier k-NN classifier
extractor min mean max min mean max

#1 (designed for SVM) 83.30% 93.46% 100.00% 66.70% 83.60% 91.70%
#2 (designed for k-NN) 50.00% 52.42% 58.30% 75.00% 91.66% 100.00%

#1 ∪ #2 50.00% 65.62% 83.30% 75.00% 88.46% 100.00%
all PSD powers 75.00% 88.46% 100.00% 75.00% 86.92% 100.00%

It can be observed from the results that a specialized extractor
designed for a given ML model has the best quality (#1 for SVM and
#2 for k-NN). Interestingly, such specialization (with downsampling)
is better than a simple concatenation of both feature extractors.
However, k-NN-based features cannot be used for SVM due to low
sensitivity. On the other hand, both classifiers are not able to select
the right features from all frequency ranges. It illustrates the fact
that the performed task is non-trivial and the proposed algorithm
significantly helps to improve the accuracy.

We also evaluated the results statistically using 100 independent
k-fold classifications. Using the t-test, we found that the difference
between extractors #1 and #2 is statistically significant (p-value <
0.05) for both classifiers. For k-NN classifier, FE #2 is significantly
better than the others. However, for SVM classifier, the result (using
all extractors) is strongly dependent on the splitting of the training
and test data because of the variation of the classification accuracy.
Therefore, it is challenging for an SVM classifier to determine the
significance of these differences.

5.4 Comparison with manual approaches
A number of related methods are described in [6, 18, 24, 28]. The
first three approaches [6, 18, 24] are based on machine learning
and employ handcrafted features. Scalability is a problem with
these approaches. The current methods use up to two types of fea-
tures. In view of the large size feature vector for each type, adding
more features results in a scalability issue. In contrast, the proposed
method utilizes the GA method to address the scalability issue in-
herent in the existing state-of-the-art. In addition, the proposed
GA-based method achieves higher accuracy despite using fewer
features than the existing state-of-the-art method. A deep learning
method proposed for MDD classification in [28] achieves 89.33%
accuracy. Compared to an existing deep learning-based algorithm

[28], the proposed method achieves a higher accuracy of 93.5%. The
other advantage is interpretability; [6, 28] are not interpretable com-
pared to a proposed method that provides interpretability. Overall,
the proposed method has the edge over existing works regarding
comprehensive interpretability and scalability. The soundness of
the proposed method can be seen from the results as, for now, using
just a few features, it outperforms the above mentioned state-of-
the-art in terms of accuracy.

Table 3: Comparison with the State of the Art

Reference Method Accuracy

k-NN 82.45%
Duan et al. 2020 [6] SVM 86.15%

CNN 93.50%

Mumtaz et al. 2016 [18] logistic regression (LR) 87.50%

Saeedi et al. 2020 [24] E-KNN 91.38%

Uyulan et al. 2020 [28] CNN 89.33%

Proposed
SVM 93.46 %
k-NN 91.66 %

6 CONCLUSION
This paper proposes an interpretable electroencephalogram (EEG)-
based solution for classifying major depressive disorder (MDD)
patients. This study gives EEG features as input data to the pro-
posed GA method for MDD classification. The proposed GA-based
method offers a new methodology that provides high efficiency
(accuracy, sensitivity, and specificity) with fewer features. The re-
sults show that chromosomes from left lateral temporal areas can
successfully identify MDD. A feature matrix was constructed in-
volving frequency decomposition of EEG data based on power
spectrum density (PSD). To improve the interpretability, the ex-
tractor selecting the features are designed via NSGA-II algorithm
while minimizing number of features. The designed extractors are
compared with each other to improve interpretability. From the
results, it has been found that aggregated PSD of gamma bands
extracted from the temporal regions can distinguish MDD from
healthy control for both genders with an average sensitivity of
93.3%, specificity of 93.4% and accuracy of 93.5% using NSGA-II
best solution for SVM and k-NN classifiers.

The source code of this work is available at https://github.com/
ehw-fit/eeg-mdd.
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