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Abstract

In a noisy environment such as a cocktail party, humans can focus on listening to a desired speaker, an
ability known as selective hearing. Current approaches developed to realize computational selective
hearing require knowing the position of the target speaker, which limits their practical usage. This article
introduces SpeakerBeam, a deep learning based approach for computational selective hearing based on
the characteristics of the target speaker’s voice. SpeakerBeam requires only a small amount of speech
data from the target speaker to compute his/her voice characteristics. It can then extract the speech of

that speaker regardless of his/her position or the number of speakers talking in the background.
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1. Introduction

Automatic speech recognition technology has pro-
gressed greatly in recent years, thus enabling the
rapid adoption of speech interfaces in smartphones or
smart speakers. However, the performance of current
speech interfaces deteriorates severely when several
people speak at the same time, which often happens
in everyday life, for example, when we take part in
discussions or when we are in a room where a televi-
sion is on in the background. The main reason for this
problem arises from the inability of current speech
recognition systems to focus solely on the voice of
the target speaker when several people are speaking
[1].

In contrast to current speech recognition systems,
human beings have a selective hearing ability (see
Fig. 1), meaning that they can focus on speech spo-
ken by a target speaker even in the presence of noise
or other people talking in the background by exploit-
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ing information about the characteristics of the voice
and the position of the target speaker.

Previous attempts to replicate computationally the
human selective hearing ability used information
about the target speaker position [1]. With these
approaches, it is hard to focus on a target speaker
when the speaker’s position is unknown or when he/
she moves, which limits their practical usage.

We have proposed SpeakerBeam [2], a novel
approach to mimic the human selective hearing abil-
ity that focuses on the target speaker’s voice charac-
teristics (see Fig. 2). SpeakerBeam uses a deep neural
network to extract speech of a target speaker from a
mixture of speech signals. In addition to the speech
mixture, SpeakerBeam also inputs the characteristics
of the target speaker’s voice so that it can extract
speech that matches these characteristics. These
voice characteristics are computed from an adapta-
tion utterance, that is, another recording (about 10
seconds long) of the target speaker’s voice.
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Fig. 2. SpeakerBeam'’s selective hearing capability.

Consequently, SpeakerBeam enables the extraction
of the voice of a target speaker based solely on the
target speaker’s voice characteristics without know-
ing his/her position, thus opening new possibilities
for the speech recognition of multi-party conversa-
tions or speech interfaces for assistant devices.

In the remainder of this article we briefly review
conventional approaches for selective hearing. We
then detail the principles of the proposed Speaker-
Beam approach and present experimental results
confirming its potential. We conclude this article with
an outlook on possible applications of SpeakerBeam
and future research directions.

NTT Technical Review Vol. 16 No. 11 Nov. 2018

2. Conventional approaches for computational
selective hearing

Much research has been done with the aim of find-
ing a way to mimic the selective hearing ability of
human beings using computational models. Most of
the previous attempts focused on audio speech sepa-
ration approaches that separate a mixture of speech
signals into each of its original components [1, 3].
Such approaches use characteristics of the sound
mixture such as the direction of arrival of the sounds
to distinguish and separate the different sounds.

Speech separation can separate all the sounds in a
mixture, but for this purpose it must know or be able
to estimate the number of speakers included in the
mixture, the position of all the speakers, and the
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Fig. 3. Novel deep learning architecture developed for SpeakerBeam.

background noise statistics. These conditions often
change dynamically, making their estimation difficult
and thus limiting the actual usage of the separation
methods. Moreover, to achieve selective hearing, we
still need to inform the separation system which of
the separated signals corresponds to that of the target
speaker.

3. Principles of SpeakerBeam

SpeakerBeam focuses on extracting only the target
speaker instead of separating all components in the
mixture. By focusing on the simpler task of solely
extracting speech that matches the voice characteris-
tics of the target speaker, SpeakerBeam avoids the
need to estimate the number of speakers, the position,
or the noise statistics. Moreover, it can perform target
speech extraction using a short adaptation utterance
of only about 10 seconds.

SpeakerBeam is implemented by using a deep neu-
ral network that consists of a main network and an
auxiliary network as described below and shown in
Fig. 3.

(1) The main network inputs the speech mixture
and outputs the speech that corresponds to the
target speaker. The main network is a regular
multi-layer neural network with one of its hid-
den layers replaced by an adaptive layer [4, 5].
This adaptive layer can modify its parameters
depending on the target speaker to be extracted;
namely, it can change its parameters depending
on the characteristics of the voice of the target
speaker provided by the auxiliary network.

(2) The auxiliary network is a multi-layer neural
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network that inputs a recording of only the voice
of the target speaker (adaptation utterance) that
is different from that in the speech mixture. The
auxiliary network outputs the characteristics of
the voice of the target speaker.

These two networks are connected to each other
and trained jointly to optimize the speech extraction
performance. Training the auxiliary network jointly
with the main network enables the system to learn
automatically from data the features that best charac-
terize the target speaker’s voice, thus avoiding the
complex task of manually engineering features char-
acterizing the target speaker’s voice. Moreover, by
training the network with a large amount of training
data covering various speakers and background noise
conditions, SpeakerBeam can learn to achieve selec-
tive hearing even for speakers that were not included
in the training data. Details of the network architec-
ture and training procedure are explained in our pub-
lished report [2].

4. Performance of SpeakerBeam

We conducted experiments to evaluate the speech
extraction performance of SpeakerBeam and its
impact on speech recognition [2]. We used a corpus
consisting of sentences read from English newspaper
articles and created artificially mixtures of two speak-
ers. Although SpeakerBeam can work with a single
microphone, it achieves better performance when
using more microphones. In this experiment, we used
eight microphones and combined SpeakerBeam with
microphone array processing (i.e., beamforming).

An example of processed speech using SpeakerBeam
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Fig. 4. Evaluation of speech extraction performance and automatic speech recognition with SpeakerBeam.

and the speech recognition accuracy obtained when
recognizing mixtures of two speakers with Speaker-
Beam (red bar) and without it (blue bar) are shown in
Fig. 4. We observed a 60% relative improvement in
speech recognition performance with SpeakerBeam.

SpeakerBeam can also be employed to improve the
audible quality. Interested readers can refer to a video
[6] to appreciate the target speaker extraction perfor-
mance in realistic conditions (real recordings in
reverberant conditions with music in the back-
ground).

5. Outlook

SpeakerBeam is a novel approach to perform com-
putational selective hearing that offers several advan-
tages compared to previous approaches. For example,
it can track a target speaker regardless of the number
of speakers or noise sources in the mixture and
regardless of the speaker’s position. This opens new
possibilities for speech recognition of multi-party
conversations, speech interfaces for assistant devices
such as smart speakers, or for voice recorders and
hearing aids that could focus on the speech of a target
speaker.

However, there are some issues that need to be
addressed before SpeakerBeam can be widely used.
For example, speech extraction performance degrades
when two speakers with similar voices speak at the
same time. To tackle this issue, we plan to investigate
improved target speaker characteristics that could
better distinguish speakers and to combine target
speaker characteristics with location information
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such as direction-of-arrival features.
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